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Abstract

The paper studies the efficiency of economic networks and the stability
of links when players freely choose to form or cut them for their self-interests.
Although it is desirable that a network is both efficient and stable, these
two objectives are often incompatible. Imposing reasonable requirements
on the distributive rule, we will give conditions under which this conflict is

avoided.



1. Introduction

The paper studies the efficiency of economic networks and the stability
of links when players freely choose to form or cut them for their self-interests.
We will show that some of the efficient networks are unstable and some of
the stable networks are inefficient. However we can give reasonable
sufficient conditions under which these two requirements are compatible in
fairly general settings. We will also show that in some typical networks the
conflict can be resolved by-imposing reasonable conditions on parameters
characterizing the networks. | '

Our framework is very similar to that in Jackson and Wolinsky (1996)
Emphasis is laid on the compatibility of efﬁciency and stability of networks.

-We argue that inefficiency results because players’ net benefit from the
formation of links conflicts with the social benefit. Other related studies
include Aumann and Myerson (1988), Myerson (1977) and Qin (1996).

Some recent studies, including Bolton and Dewartripont (1994), Radner
(1992) and Hendrics , Piccione and Tan (1995), aim at explaining
structural features of networks. Other studies, including Radnér_ (1993),
Sobel (1992), Zamir, Kamien and Tauman(19'90), highlight aspects of
information processing. Economides(1996a,b) and Economides and White
(1994) relate the compatibility and the networks that rely on it with the
vertically related industries and discuss policy issues arising in modern

economies.
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2. Key Concepts and Notations

Let N={1,2,...n} be the set of players. The network relations among
them are represented by graphs whose nodes are identified with the players
and whose arcs indicate the pairwise relations.

The graph representing the set of all subsets of N of size 2 will be
called the complete graph and denoted g". It will also be referred to as a
point-to-point network. The subset of N containing i and j will be
denoted as ij. IJE g means that i and j are directly connected.
Welet g+ij denote the graph obtained by addinglink ij to g and
g-ij denote the graph obtained by deleting link ij from g

A sequence of direct connections will be called a path. A pair of nodes 1
and j are connected if there is a path between i and j. The nodes in
g which are connected by a path, together with the corresponding arcs, form
a componentof g The set of components of g will be denoted C(g). A
component of a graph will called a star or a hub-spoke network if all edges

are linked to one central edge.
Let G be the set of all subsets (subgraphs) of g". The performance

of the graph g will be captured by a real valued function v :G — R, often
referred to as the social utility function or the valuation function. In some
~ applications the value will be an aggregate of individual utilities or
productions and may be expressed as v(g)=Zu,(g) for gEG. The set of all
social utlhty functions will be denoted V. Allocation rule
Y:GxV—=R"

describes how the value associated with each network are distributed to the
individual players. Y,(g,v) is the payoff to player i from graph &
under the value function v. A simple example of the allocation rule is the
equal distribution rule (Y, = v(g)/n for all i) which splits the value of the
game v(g) equally among the players. A graph g€G is strongly
efficient if v(g)=wWg') for all g'€G. The term strong efficiency indicates
that it refers to the total value rather than Paretian notion.
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3. Some Examples and Preliininary Remarks

We will discuss whether a network is efficient from a social viewpoint
and which links are likely to be formed. Itis easy to find examples in which
- these two objectives are compatible.

‘Typical examples include the case of a good young couple in love and
links among several friendly countries. Inthese cases the benefit from the
connections well compensates for the cost of the formation oflinks. In the
opposite case where the cost is high compared to the benefit, no link will be
formed and this will be socially desirable also.

But there are many cases in which the efficiency and stability of
networks are incompatible. The basic reason for this is that the individual
motive to form or remove links with others may deviate from the social
objective. We will discuss that such cases are very typical.

Next two example shows that adding a link may decrease the total
utility of the society (even in Paretian sense), even if the cost of formation
of network is zero and individuals act so as to maximize their utilities (cf.

- Garcia, C.B. and W. I. Zangwill (1981)).

Ex 1
Suppose there are 3 (thousands) commuters from suburb A to city C and

2 (thousands) commuters from suburb B to city C. It takes 30 minutes to
go from A to C, but because of bad road condition, 1 hour is required to go
from B to C.

(Fig.1a about here)
(Fig .1b about here)

Because the travel from B to C is slow, it may appear to be desirable to
build a new road from Bto A. Let n (resp.n,) denote the number of the
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residents of suburb B following the route AC (resp. BC). The cost functions
(expressing the loss of hours by commuting) for the suburb A and B are

expressed as
| Ca(n)=30+n,
Cy(n,)= min(60,50 +2n,).
Thecase n =0 and n,=0 (C, =30,C,=60) describes the cost functions
before the construction of the route.
The equilibrium condition
60 = 50+2n,
gives n,=5 and C, =35, C,=60. Hence no one is better off and some

one is worse off by the construction of the route.

The famous Braess Paradox shows that by adding a link everyon'e is made

worse off.

Example2. (Braess Paradox)
(Fig.2a about here)
(Fig.2b about here)

Fig.2a shows the relevant network and the associate cost functions
which depend on the numbers of travelers. Assume that 6 people must travel
AtoD. Inequilibrium, hours required for following the route A BD and
route A C D must be the same. Hence, letting n denote the number of
the people following the first route we have

11n+50 =11(6 — n) + 50,
which yields n=3. Ittakes 30 minutes from A to B and 53 minutes from
Ato C. The total required hours are 83 minutes in both routes.
Let us now add a link from B to C which yields the equilibrium

conditions.
10n, + n, +10 =n, +50 (hours from A to C)
n, +50 =10n, + n; +10 (hours from B to D)
n, =n,+ns (population at B)
n,+n, =6 (population at D)
n, + n,=6- (population at A)

These equations yield n =4, n,=2, n,=2, n, =4, n;=2, and the travel

from A to D requires 92 minutes for any route.



Example3d (Two Sided 'Matchjng’)

There are finite disjoint sets of agents, M= (m,,...,m)) and W= (wl,...,w”).
Each agent m,EM owns a; units of the first resource and each agent
w,EM owns b, units of the second resource. We assume that

a,<a, <..<a, andthe b <b <..<b,.

In the marriage model, M is the set of men and W is the set of
women and a; and b, express the amounts of some specific talents
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they have. Alternatively, we may assume that M and W are the sets of

agents with two kinds of resources which could be used to produce a

homogeneous product. |
Each member of M is matched only to one member of W and the
total product of the whole matching is given by
ug) = zif(ai’bj(i))
where j(i) istheagentin W whois matched to agent 7 in M.

In general the maximum of the total product may be attained when a

man with high talent is matched with a woman of low talent. For example,
let n=2 and dl =1, a,=2, b =1, and b,=2, and production function be
defined by f(L1)=1, f(2,2)=4, f(@12)=f(21)=3. Then we have
F@L2)+ f(2D > fLD + f(2,2), as claimed. ’

This matchingis considered to be very unstable because the man and the
woman with high talents can improve upon the original position, if we
assume e.g. the equal distribution rule. This conflict can be resolved in the
case where the production function satisfies supermodularity as defined
below.

We say that a real valued function w(a,b) is supermodular if a'<a,
b'< b implies that

-~ u(a,b") +u(a,b)>u(a,b)+u(ab).

Hence the supermodularity f of implies that if a, <a, and b, <b, then
f(a,b)+ f(a,,b,) > f(a,b,)+ f(a,,b). Using this relation repeatedly, we see
that the maximum of the total product is attained when j(i)=i, and the
maximal value is given by u*(g)==,f(a,,b;). This matching is considered
to be stable under the equal distribution rule in the sense that no oneis
willing to form a newlink. This conclusmn will be examined in more detail

in the following sections.
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4. Conditions on Stability and Allocation Rules

To describe which networks are likely to arise, we need to introduce a
notion of stability and some additional coxicepts. We say that graph g is
pairwise stable with respect to the valuation function v and the
distribution rule Y if .

@  forall jE€g Yi(gv)2Yi(g-4,v)and Yi(gV)=Y;(g-¥,v)

and : ‘ _
(]l) fOl'all U%g lf )’i(grv)<Yi(g+ ij,V) then Yj(g’v)>Yj(g+ij:V)'

We say that g improvesupon.g' withrespectto v and Y if
Y,(gv) =Y, (g',v), forall iES
| and Y(gv) > Y,(g,v), forsome iES.
g is coalitionally stabel (CS) if there is no g'€g" and the set S of
players joined by the graph g' which improve upon g.

Let & be a permutation on the set of players N. We define g”
as g"={jjli=n(k)j= () HEg andlet v(g")=v(g).

DEFINITION The allocation rule Y 1is anonymous if, for any
permutation of w, Y, ,(8",v")=Y;(gV).

This means that the distribution rule depends only on the architectural
form of the graph and not on the naming of players.

DEFINITION An allocation rule Y is balanced (oxr feasible) if
3Y(gv)=v(g) forall v and & .

DEFINITION A link j is critical to the graph g if g-ij bhas more
components than g orifitislinked onlyto j under g

Recall that we defined C(g) to be the set of components of g We
now introduce a stronger notion of balancedness.



DEFINITION A value function v is component additive if
v(g)= 2haz:(‘g)_"(h)

We also give: -
DEFINITION An allocation rule Y satisfies equal bargaining power

(EBP)ifforall v,g and iEg
Y(eV)-Y.(g-§,v)=Y(gV)-Y,(g-§,v)

The basic reason for the incompatibility of efficiency and pairwise
stability is that, whereas pairwise stability is attained only through the
adjustments of the private benefits of the directly connected of players, the
social objective concerns with the benefit of the whole network. In
particular, when a critical link i (such a A,B, in Fig.4b) is severed for

private benefits, other players will be separated and may incur a huge loss,
resulting in the decrease in the social utility .

The following example, which is due to Jackson and Wolinsky (1996)
shows explicitly the ranges of parameters in which efficiency and pairwise
stability are compatible. ‘

Example4 Connections Model (3 players symmetric case)‘
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We assume that players directly communicate with those whom they

are liked . In the symmetric case we consider, the intrinsic value of the
direct communication is w and that of the indirect communication is (for
simplicity) w?. We also assume that the cost of maintaining the direct link
is ¢ (with w>c) foreach player.

Except for the trivial case where no link is formed, there are three

representative cases.

(Fig.3 abdut here)

We will assume that the allocation rule satisfies equal bargaining

power.
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case i) When only one link is formed as in Figure 1, each of the 2 players
who are directly linked enjoys the utility of Y,(g)=Y,(g)=w-c, and
' Y,(g)=0. Hence the social utility of the graph is given by v(g)=2(w-¢), .

case (i) Figure 2 represents the case of a star. The center is directly
linked to the other players and the other players are directly linked to the
center and indirectly to the third player. Hence the social utility is given by
v(g,) = 4w + 2w’ ~4c. '

We have Y,(g,-23)=Y,(g,-23)=w-c and Y,(g-23)=0. Onthe
other hand, Y,(g,-12)=0 and Y,(g,-12)=Y,(g -12)=w-c. Alsofrom
the equal bargaining power, we have Y,(g,)- (w-c)=Y,(g,)-0=Y,(g-0.
Since v(g,) =Yy (g,)+Y.(&) + Ys(g,) = 4w +2w” - 4c, we have
Y,(8,) =Ya(g)=w+(2/3W —c and Y,(g)=2w+(2/3W.
case (iii) Figure 3 represents the case of the complete graph (or a circle in
the present case). Each player is directly linked to others, hence we have
Y,(8) = Y,(&) =Ys(8:)=2(w-¢) and v(g)=6(w-c).

Graph g, is stable if no benefit is obtained from removing any of the
links. It is shown that in the range w-2w’/3<c<w the strongly
efficient network g, is uniquely stable, but in the range
w-2w'<c<w-2w’ /3 theinefficient network g, is the only stable one.



5 Some General Results

In this section we will bring together some of the salient results on the
stability of networks and interpret and discuss the implications of related
research work stated in somewhat different settings.

Theorem 1 of Jackson and Wo]jnsky (1996) says that
P tion I | v
I n 23, then there is no allocation rule Y which is anonymous and
component balanced and such that for each v at least one strongly
efficient graph is pairwise stable.

However, the conflict between efficiency and stability can be avoided if
we assume either a special nature of distribution rules or restrict the
allowable class of graphs. For example, we know the following (see,
Theorem 3 of Jackson and Wolinsky (1996)) :

E ‘c . 2 - |
Equal distribution rule (Y; (g,v)=v(g)/n for all i) is an anonymous
and pairwise stable network.

‘ This allocation rule is not very attractive because it is not sensitive to
the changes in the structure of network and is not even individual rational in
general. ‘There are distributive rules which satisfy stability and other
desirable properties for a broad class of graphs, as we show below.

Let N={1,2,..n} and (N,u) be a N-person game in the coalitional
form (characteristic function form). We say that game (V,u) is

superadditive if .

1) wWSUT)= w(S)+u(T) forall S, TCN suchthat SNT=g¢.
We also say that game (IN,u) is convex, if for each iEN and

SCTCN-{3, .

@) . w(S UL - u(S) s w(T U §) - w(T).

This means that the contribution of each player i in a set is not smaller
than that in its subset. = This condition is known to be equivalent to
®3) | WSUT)+ u(SNT)zu(S)+w(T) forall S, TCN

71
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(see, Ichiishi (1983) or Driessen (1988)). This set function is also referred to
as supermodular. Hence so far as u(¢)=0, any convex game is
superadditive. - ' ' |

~ When a graph g and value function v(g) are given, a cooperative
game in the coalitional form can be defined in a natural way. For each
subset S of N, the coalitional game is defined as
CY) U, (8)=v(l$)

where gS={jE€g: iESand jES}.

This expresses the characteristic function of the original game which would
result if we require that players can only cooperate along links in g.

For a graph which is not fully connected, let C(g) be the set of
components of g Then under the assumptidn of component additivity, the
above characteristic function may be expressed as |
(5) U, s (S) = Zucciao(h)-

It easily follows that if the characteristic function satisfies v(¢)=0
and superadditity then v(T)=w(S) for all SCT. This implies the
following: |
Proposition 3

- If the characteristic function (4) is superadditive then the complete
graph g% is strongly efficient.

It is established (Theorem 4 of Jackson and Wolinsky (1996)) that

If value function v 1is component additive, then the unique allocation
‘rule Y which satisfies component balance and EBP is the Shapley value
(*1) of the game defined by the characteristic function (4) .

The proof relies on the results in cooperative gaine theory (see,
Myerson(1977)) and uses the above definition of the characteristic function.
The solution described in Proposition 4 is also referred to as the Myerson
value.

No explicit statement is made on the stability of networks in
Proposition(3). But based on Propositions 3 and 4, we can establish a
stability result: |

P on &



If the value function v is component additive and allocation rule Y
(which reduces to the Shapley value) satisfies component balance and EBP
and if, for each fixed g the associated characteristic function (4) is
superadditive then the strongly efficient graph is pairwise stable.

For a proof we note, as Myerson(1977) showed explicitly in the proof of his
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Theorem, that if the characteristic function (4) is superadditive then EBP

rule is pairwise stable. Proposition 3 then completes the proof.

In a different context, Qin (1994), utilizing a result of a Apotential (*2) game
(see, Monderer and Shapley (1996)), established an important stability
result. He considered a game of coalition formation in which a strategy for
a player i1 is a set of players whom i wishes to form links and a link
between a pair of players is actually formed if both players wish to form it.
A payoff function is defined as the allocation rule in our model.

A strategic form game with a potential has a learning property. This
means that network forming processes converges to equilibria of the game
and the stable equilibria maximizes the potential. The main stability
- results of Qin (1994) may be restated as in the following propositions.
Proposition 6

The Myerson value is feasible and the cooperation formation game has a
potential. '

Proposition 7

If the payoff of the coalitional game is defined by the characteristic
function (4) then the process of forming links with others result in the
attainment of full cooperation (complete graph g% in our context).

It is known that if the game is convex then the core is not empty and the
Shapley value is in the core (See, Ichiishi (1983) or Driessen (1988)). This
implies that coalitional stability holds in this case.

The attainment of the Shapley value relies on the assumption of equal
bargaining power. If we drop this assumption, similar stability results
~can be obtained for many solution concepts of the cooperative game such as
the kernel, the nucleolus, the bargaining set and z-value (see, Tijs(1987) or
Driessen(1988)), once we know the axioms which characterize the solutions
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and know that the solution is in the core.  Thus coalitional stability can
be attained for many distribution rules. Superadditivity of a game is a
strong assumption in analyzing the entry problem of modern industries,
where firms have large fixed costs and social optimality requires to restrict
the entry of firms. Convexity of the game (the super modularity of the
value function) is also a strong assumption because it implies the
superadditivity.



6. Conclusion

In many situations efficiency and stability of networks are incompatible.
We argued that this is because new links bring about externality which is
not taken into account as benefits of the individual players.

These two objectives are compatible if the distribution rule satisfies
equal bargaining power and the game is superadditive. A stronger
requirement than the latter is the supermodularity or convexity of game,
which gurantees stronger coalitional St'abﬂity under alternative distribution
rules. Supermoduality of the numerical function as defined in example 3
serves for a similar purpose. |

Our analysis in this paper has been conducted in a very abstract setting,
with no assymmetries among players. In fact to explain the emergence of
a star or complete network was one of our chief objectives. In industries
such as telephone and railroad, geographical conditions require some specific
network structures such as ones with stars. We hope to discuss these
problems and policy issues in a later research.
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Footnote

(1) The Shapley value of the characteristic function game (N,v), denoted
(V)= ($,(V) - ¢, (v)), is given by -

$:(v) = ZAGXUS) - W(S-{}) with A(S)=((s-D!(n-9)H/n!,
where s is the number of players in S and the above summation is over all
S which contain 7.

(2) A potentialfor a strategic form game is a function which maps strategy
profiles into real numbers (in the present context the action of forming links)
such that, when a player deviates the change in the payoff equals the change
in the potential (see Monderer and Shapley (1996)) for a formal definition
and details). |
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A _ 30minutes C
fig. 1a
60minutes
B . .
A (30+n,)minutes C
(n,+20) thinutes

fig. 2a

n=n,=n,=n,=3

fig. 2b

A

n=4, n,=2, n,=2, n,=4, n,=2



fig. 3a

fig. 3b

fig. 3¢
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