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Abstract

Fixed point theorems for set valued mappings are reexamined from 2 unified viewpoint on the
local direction of mappings. Several important fixed point theorems are generalized so that
we could apply them to game theoretic' and economic equilibrium existence problems with
non-ordered preferences having neither global continuity nor convexity conditions.
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1 INTRODUCTION

In this paper, fixed point theorems for set valued mappings are reexamined from a unified view-
point on the local directions of mappings, i.e., the sets, ¢(z) — z, of a correspondence ¢ : X 3
z — p(z) C X for all z in a certain neighbourhood of z. Famous fixed point theorems such
as the theorem of Kakutani (1941), Fan (1952), Glicksberg (1952), and Theorem 1 of Browder
(1968), etc., may be considered as a special case of the main theorem, so that we could apply it to
game theoretic and economic equilibrium existence problems with (possibly) non-ordered prefer-
ences having neither global continuity (such as lexicographic ordering preferences) nor convexity
conditions, intrinsically (in the sense that we do not even assume z ¢ co ¢(z)).

In section 2, the main fixed point theorem and its corollaries are proved. Amongst all, the
case with condition (K*) in Theorem 1 gives a simple and powerful extension of Kakutani-Fan-
Glicksberg’s thorem and Browder’s theorem (Browder (1968; Theorem 1)), and also gives a partial
generalization of the concept of #*majolized maps the notion frequently used in resent mathemat-
ical economics literature. ' ‘ '

In section 3, the Nash equilibrium existence problem (c.f. Nash (1950), Nikaido (1959), Nishimu-
ra and Friedman (1981), etc.,) and the social equilibrium existence problem (c.f. Debreu (1952),
Shafer and H.F.Sonnenschein (1975), Yannelis and Prabhakar (1983), etc.,) are reexamined. By
applying the main theorem, we may obtain some of the most general results for these problems
(e.g. see Theorem 5, Corollary 5.2). From the economic viewpoint, however, the most interesting
result among these may be Corollary 5.1 of Theorem 5, which gives us a clear condition for the
existence of economic equilibria with (intrinsically) non-convex non-ordered preferences.
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Section 4 is devoted to the market equilibriﬁm existence theorems known as Gale-Nikaido-Debreu
Theorem (c.f. Debreu (1956), Nikaido (1959), Mehta and Tarafdar (1987), etc.)

In this paper, all vector spaces are assumed to be over the real field R. The duality between
two vector spaces £ and F will be denoted by (F,E). Typically, F may be considered as the
algebraic dual E* or the topological dual E’ of E when E is a locally convex space. All concepts
~ and definitions for vector spaces will be used in the sense of Schaefer (1971).

2 FIXED POINT THEOREMS

Throughout this section, we denote by £ a Hausdorff topological vector space over R. The
algebraic dual of E is denoted by £* and the topological dual of E is denoted by E’ when E is a
locally convex space. At first, we show. the main fixed point theorem of this paper. (Case (K1) is
a thorem of Urai and Hayashi (1997), and some spec1al cases of (K2) and (K3) are shown in Urai
 (1998; Theorem 8.1).)

Theorem 1: Let X be a non-empty compact convex subset of E, and let ¢ be a non-empty
valued correspondence on X to X. Denote by K the set {z € X|z & o(z)}. Suppose that E and
@ satisfy one of the following conditions:

(Kl) E is a locally convex spa.ce, and for each reK , there exist a vector p(z) € E' and a
neighbourhood U(z) of z in X satisfying that Vz € U(z), if z ¢ ¢(z), then p(z)-zC{ve
E|{p(z), v) > 0}.

(K2) For each z € K, we may define a vector p(z) € E* such that p(z) -z C {v €
E|(p(z),v) > 0}. Moreover, for each z € K, there are a point y(z) in X and a neighbourhood
U(z) of z in X such that Vz € U(z), if z € K, then (p(z),y(z) — z) > 0.

(K3) E is alocally convex space, and for each z € K, we may define a vector p(z) € E* such
that ¢i(z) ~z C {v € E| (p(z), v} > 0}. Moreover, for each z € K, there are a vector v(z)
in E and a neighbourhood U(:c) of z in X such that Vz € U(z), if z € K, then I\(z) € Ry,
satisfying z + A(z)v(z) € X, and (p(2), v(z)) > 0.

(K*) There is a convex valued correspondence ® such that for each z € K , there exist a
neighbourhood U(z) of z in X and a point y(z) such that for each z € U(z), (€ K) =
(#(2) C () and = ¢ B(2) and y(z) € B(2)).

Then, ¢ has a fixed point z*, z* € p(z*).

Proof: (Case: K1) Suppose that ¢ does not have a fixed point. Then, since X = K is compact,
- we have z1,---,2, € X and a finite open covering U (z1),-++,U(zn) of X satisfying condition
(K1). Let 8 : X —[0,1], ¢ = 1,---,n, be a partition of unity subordinated to U(zy), -+, U(zn).
Denote by f the continuous mapping f : X 3 z — PR ﬁ,(w)p(aﬁt) € E’'. Moreover, let 9 be a
correspondence on E’ to X such that (p) = {z € X|(p, z) = maxye x(p,y)}. Since X is compact,
and since each B, p(z;) are continuous, f is continuous and v is non-empty compact convex valued
upper semi-continuous correspondence. Hence, 1 o f has a fixed point £ € ¥(f(£)) under Fan-
Glicksberg’s fixed point theorem. By the definition of f and v, we have Yorey B (@) (p(z), &) >
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Y r_ 1 Be(2){p(zt), z) for all z € X. On the other hand, since £ belongs to at least one U(z:), we
have for an arbitrary element z of (%) C &(%), I 1=, Bt()(p(z:), z — &) > 0, a contradiction.
(Case: K2) Suppose that ¢ does not have a fixed point. Then, since X = K is compact,
we have z;,---,2, € X and a finite covering {U(z1),-++,U(za)} of X together with points
y(zt),---,y(z") € X satisfying condition (K2). Let §; : X — (0,1}, t =1,---,n, be a partition of
unity subordinated to U(zy), -+, U(z,). Let us consider a function f on D = co{y(z1),--*,¥(zn)}
to itself such that f(z) = Y r=, B:(z)y(z:). Then, f is a continuous function on the finite dimen-
~ sional compact set D to itself. Hence, f has a fixed point z by Brouwer’s fixed point theorem.
On the other hand, for all ¢ such that z € U(z:), y(z:) — 2 satisfies (p(2), y(z¢) — 2} > 0, so that
we have (p(z), 1= Bi(2)(y(2:) — 2)) > 0. In other words, (p(z), f(z) — z) > 0, so that we have
f(z) = z # 0, a contradiction.

(Case: K3) Suppose that ¢ does not have a fixed point. Then, since X = K is compact,
we have z,,-++,z, € X and a finite covering {U(z), --,U(zn)} of X together with vectors
v(21),"-+,v(2a) € E satisfying (K3). Let 8, : X — [0,1], ¢ = 1,---,n, be a partition of unity
subordinated to U(zy),--,U(zs). For each ¢ and for each z € U(z:), we may suppose that
A, 2)v(z:) + 2z € X for a certain a(t,z) € Ry4. Denote by f the continuous mapping f:
X 3z z+ Y0, Be(z)Mt, z)v(x:) and let z be a fixed point of f. Since for all £ such that
z € U(z:), (p(2), Mt, 2)v(z:)} > 0, we have (p(z), B:(2)A(t, 2)v(2:)) > 0. It follows that we have
(p(2), F(2) = 2) = (p(2), Loy Be(2)e(t, z)v(z:)) > 0, which contradict the fact that f(z) — 2z = 0.

(Case: K*) Suppose that ¢ does not have a fixed point. Then, since X = K is compact,

“we have z;,-+,2, € X and a finite covering {U(z;),-,U(zn)} of X together with points
y(z!), -+, y(z") € X satisfying condition (K*) for a certain correspondencg ®. Let B : X — [0,1],
t=1,---,n, be a partition of unity subordinated to U(z1),---,U(zn). Let us consider a function
fon D =co{y(z1), -, y(zn)} to itself such that f(z) = Y ., B:(2)y(z:). Then, f is a contin-
uous function on the finite dimensional compact set D to itself. Hence, f has a fixed point z by
Brouwer’s fixed point theorem. On the other hand, for all ¢ such that z € U(z:), y(z:) € @(2).
Moreover, since & is convex valued, we have z = Yy, Bi(2)y(z:) € ®(z), which contradicts the
condition z ¢ ®(z) stated in (K*). a

Corollary 1.1 : Let X be a non-empty compact convex subset of E, and let 4 be a (possibly empty
valued) correspondence on X to X. Suppose that E and a correspondence ¢ : X — X such that
(z ¢ ¥(z)) = (p(z) # 0 and = & ¢(z)), (typically, ¢ may be taken as a selection of ¢ if ¢ is non-
empty valued) satisfies one of the condition (K1), (K2), (K3), (K*) for K = {z € X|z ¢ ¥(2)}.
Then, ¥ has a fixed point.

Proof: Suppose that 1 does not have a fixed point. Then ¢ is non-empty valued and does not have
a fixed point, either. Moreover, we have X = {z € X|z ¢ ¢¥(2)} C {z € X|z ¢ go(:c)} CX,ie,p
satisfies one of the condition (K1), (K2), or (K3) even when we define K as K = {z € X|z & p(z)}.
Hence, by applying Theorem 1 to the non-empty valued correspondence ¢, we have a fixed point

of p, a contradiction. 0

Theorem 1 and the corollary to Theorem 1 may be generalized for the product of mappings and
may be reformulated as Nash equilibrium existence results in the following section.



Theorem 2: Foreachi€ I,let X! bea noh-empty compact convex subset of E, and let ¢*
be a non-empty valued correspondence on X = Hier Xito X¢. Let ¢ = Hie! o : X — X and
K ={z € X|z ¢ p(z)}. Suppose that E and ¢ satisfy one of the following conditions:

(NK1) E is a locally convex'spa.ce. For each z € K, there exist at least one i € I, a
vector p” € E', and a neighbourhood U(z) of  in X satisfying that Vz € U(z), if z € K,
¢'(z) - 2 C {v e E|(p",v) > 0}.

(NK2) For each i and for each z such that z ¢ ¢'(z), we may chose p¥ € E* such that
¢'(z)—z* C {v € E|(pf,v) > 0}. Moreover, for each z € K, there exist at least one i € I, an
~ element y* € X?, and a neighbourhood U(z) of z in X satisfyihg that for all z € U(z)N K,

(i, ¥* —z‘) > 0.

(NK3) E is a locally convex space. For each i and for each z such that z ¢ ¢'(z), we may
chose pf € E* such that ¢'(z) — 2 C {v € E| (p¥,v) > 0}. Moreover, for each z € K, there
exist at least one i € I, a vector v(z) € E, and a neighbourhood U(z) of z in X, satisfying
that Vz € U(z) N K, 3X(z) € Ryy, 2° + A(2)v" € X and (p?,v") > 0.

(NK*) For each i there is a convex valued correspondence & : X — X* such that Vz €
X,¢'(z) C ®¥(z) and (2f ¢ ¢i(z)) => (z° ¢ & (x)). Moreover, for each z € K, there exist
at least one i € I, an element ¥* € X*, and a neighbourhood U (z) of z in X satisfying that
forall zeU(z)N K, y° €'<I>’.(z).

Then, ¢ has a fixed point z*, z* € p(z*).

Proof : (Case: NK1) Assume that @ does not have a fixed point. Then, since X is compact, we
have a finite set {z,---,2¥} C X, a covering {U(z!),---, U(z*)} of X, a finite sequence of indices
il,...,i¥ € I, and vectors p”l,---,p”k € E’, satisfying condition (NK1) for each z!,-..,z*. For
each z € X, let J(z) be the set {i™[z € U(z™)} C I, and let N(z) be the set {n|z € U(z")} C
{1,---,k}. Define for each ¢ € X, p(z) € (E")I) as p(z) = (p')jer, where p/ = p*" for a
certain m such that € U(z™) for j € J(z), and p/ = 0 for j ¢ J(z). Then, the neighbourhood
V(2) = Nmen(s) U(a™) satisfies that for all z € V(3), (p(2), p(2) ~2) = Tj ¢ sy (P, 9 (2) = 27) 2
T Lome N(x)(p"'m, ¢'" — 2"} > 0. Hence, g satisfies the condition (K1) in Theorem 1, so that it
has a fixed point, a contradiction.

(Case: NK2) Suppose that ¢ has no fixed point. Then, since X is compact, we have a finite set
{z!,--,2z¥} C X, a covering {U(z!), -, U(z*)} of X, finite sequences of vectors pf,l Yo ,pf:, and
yf,‘,n-,yf: together with the sequence of indices i1, --, ¥, satisfying (NK2) for each non-fixed
point z1,---,zF of . For each z € X, let J(z) = {i™|z € U(z™)} C I and let N(z) = {m|z €
U(z™)} C {1,---,k}. Define for each = € X, p(z) € (E')D as p(z) = (p/)jer, where p/ = pfa. for
a certain ™ such that z € U(z™) for j € J(z) and p’ = 0 for j ¢ J(z). Moreover, for each z € X,
define y(z) = (¥ )jer € X as y/ = yf~ for a certain m such that z € U(z™) for j € J(z) and 3/ is
an arbitrary element of X7 for j ¢ J(z). Then, by considering the neighbourhood (¢ Ny U (z™)
of ¢ in X, the mapping ¢ satisfies (K2) of Theorem 1. (Indeed, for all z € 1, N(z) U(z™) for a
certain z, {p(z),y(z) — z) = Zjel(z)<p;:’yj -2) > %ZmeN(z)(me’yf: —#") > 0.) Hence, ¢
has a fixed point, a contradiction.
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(Case: NK3) Assume that ¢ does not have a fixed point. Then, since X is compact, we have
a finete set {z!,---,2*} C X, a covering {U(z}),---,U(z*)} of X, a finite sequence of indices
i, ..., i, vectors pf: y pf:, in E*, and vectors v* 1, v satisfying (NK2) for each non-fixed
point z!,...,z%. For each z € X, let J(z) be the set {i(z™)|z € U(z™)}, and let N(z) be the
set {n|z € U(z")}. Define for each z € X, p(z) € (E')) as p(z) = (p’)jer, where p = pf
for j € J(z) and p' = 0 for j ¢ J(z). Moreover, for each z € X, define v(z) = (v/);er as
v = v®" for a certain m such that j = i(z™) for j € J(z) and v/ = 0 for j ¢ J(z). Then,
by considering the neighbourhood (¢ n(z) U(z™) of = in X, the mapping ¢ satisfies (K2) of
Theorem 1. (Indeed, for all z € ()¢ n(s) U(z™) for a certain z, (p(2),v(z)) = Zje.l(x)(?}?v"j) >
%Zme N(z)(pf(zm),v‘m) > 0.) Hence, ¢ has a fixed point, a contradiction.

(Case: NK*) Suppose that ¢ has no fixed point. Then, since X is compact, we have a finite set
{1,---,2*} C X, a covering {U(z!),---,U(z*)} of X, and a finite sequence y% , -+ -, y{': together
with the sequence of indices &%, - - i, satisfying (NK*) for correspondences &', - -, ®". For each
z€ X,let J(z) = {i"|z € U(z™)} C I and let N(z) = {m|z € U(z™)} C {1,---,k}. Denote
by @ the convex valued correspondence defined as ®(z) = [[;c (s ®i(z) x.HiE,;,-g_,(,) Xt. For
each z € X, define y(z) = (¥)jer € X by letting 3/ be a y%. for a certain i™ = j, m € N(z),
for j € J(z) and %’ be an arbitrary element of ¢/(z) for j ¢ J(z). Then, by considering the
neighbourhood (), vz U(z™) of  in X, the mapping ¢ satisfies (K*) of Theorem 1. (Indeed,
for each z € X, for each z € (,en(s) U(z™), and for each j € {i*,---,i*}, y(z) = ()jer satisfies
y(z) € ®(2) since for each j € J(z), 3 € ¥(z) for all z € Nmen(z) U(z™).) Hence, ¢ has a fixed
point, a contradiction. O

Corollary 2.1 : For each i € I, let X* be a non-empty compact convex subset of E, and let ¢ be
a (possibly empty valued) correspondence on X = [];c; X  to X*. Define a correspondence 1 as
V= [lier ¥? : X — X. Suppose that for each i € I, we have a non-empty valued correspondence
@' : X — X%, such that for each z = (z¥)jer, (z* ¢ ¥'(z)) = (2* € ¥'(2)), (typically, we may
chose each ' as a selection of ¢’ when ¢’ is non-empty valued) and that E and ¢*, i € I satisfy
~one of the conditions (NK1), (NK2), (NK3), (NK*) in Theorem 2 for K = {z € X|z ¢ ¥(z)}.
Then, ¥ has a fixed point.

Proof : Suppose that ¢ does not have a fixed point. Then, ¢ = [[;¢; ¢ does not have a fixed
point, either. Hence, we have X = K = {z € X|z ¢ ¥(2)} C {z € X|z ¢ [[;c; ¥'(2)} C X, s0
that E and ¢*, i € I, satisfies one of the condition (NK1), (NK2), (NK3), (NK*) in Theorem 2
even when we define K as K = {z € X|z ¢ ¢(z)} instead of K = {z € X|z ¢ ¢(z)}. Therefore,
since ¢ is non-empty valued, by Theorem 2, ¢ has a fixed point, a contradiction. a

3 NASH EQUILIBRIUM EXISTENCE THEOREMS

In this section, we apply theorems in the previous section to the existence of equilibrium problem
for strategic form non-cooperative games (c.f. Nash (1950), Nash (1951), Nikaido (1959), etc).

Throughout this section, we denote by I the set of players. (The cardinal number of I is v
arbitrary.) For each i € I, we denote by X? the strategy set of player i. All strategy sets are



assumed to be compact convex subsets of a Hausdorff topological vector space E. The payoff
stracture for gemes will be given in the form of prefereﬁce (better set) carrespondehces Piiel,
which are defined as (possibly empty valuaed) correspondences on X = [Tier to X%, i € I,
satisfying that for each z = (27)je; € X, 2' ¢ Pi(z) (the irreflexivity) for all i € I. For each
z = (2/)jer € X, the set Pi(z) may be interpreted as the set of all strategies for player i which
is better than z’ if the strategies of other players (27 )jer,ji are fixed. A strategic form game
will be denoted by (X*, P*);es. For a strategic form game (X*, P)ier, a sequence of strategies,
(z')ier € X, (a strategy profie for the game) is said to be a Nash equilibrium if Pi((z)ier) = 0 for
alliel.

When I = {i}, the Nash equilibrium is nothing but a maximal element for the relation P’ on
X:. By applying the results in the previous section, we obtain the following maximal element
existence theorem.

Theorem 3 : (Maximal Element Existence) Let X bea compact convex subset of a Hausdorff
topological vector space E, and let P be a (possibly empty valued) correspondence on X to X such
thatforallz € X, z ¢ P(z). Assume that there exists a correspondence ¢ : X — X, satisfying that
Vz € X, (P(z) # 0) => (p(z) # 0 and P(z) C p(z) and z ¢ ¢(z)), and that for ¢ together with
E one of the conditions (K1), (K2), (K3), (K*) in Theorem 1 holds for K = {z € X| P(z) # 0}.
Then there is a maximal element z* of X with respect to P. (P(z*) = 0.)

Proof : Assume the contrary, ie., assume that for all z € X, P(z) # 0. Then, we have
{z € X|z ¢ P(z)} = X = K = {z € X| P(z) # 0}. Therefore, P satisfies all the conditions for 1
mentioned in Corollary 1.1, so that P has a fixed point, a contradiction. a

The above theorem shows that any types of convexity assumptions for P (including the weakest
one, r ¢ coP(z),) is unnecessary for assuring the existence of maximal elements even when the
preference is non-ordered. The special case of Theorem 3 in which P = ¢ satisfies condition
(K*), givés us a generalization of the corollary on the maximal element existence in Yannelis and
Prabhakar (1983; Corollary 5.1). (In the sense that if there is no maximal element, an Zmajolized
map P satisfies the condition stated in Theorem 3 for (K*).)

~ As Theorem 1 (Corollary 1.1) gives the maximal element existence theorem, Theorem 2 (Corol-
lary 2.1) gives the Nash equilibrium existence theorem.

Theorem 4 : (Nash Equilibrium Existence) For a strategic form game (X?, P*);c;, the Nash
equilibrium exists if the following conditions are satisfied.

(A1) For each i € I, X! is a non-empty compact convex subset of a Hausdorff topological

vector space E.

(A2) For each i € I, P* is a (possibly empty valued) correspondence on X = [Lies X* to
X! satisfying Vz = (2/)jer € X, &* ¢ Pi(z).

(A3) For each P¢, we may define a non-empty valued correspondence ¢' 1 X — X satisfying
that Yz = (f)jes € X, (Pi(2) # 0) = (o ¢ ¢(a)).
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(A4) E and ¢, i € I fulfills one of the condition (NK1), (NK2), (NK3), (NK*) in Theorem
2 for K = {z € X|3i, Pi(z) # 0}.

Proof : Assume the contrary, that is, for each ¢ € X, there is at least one i € I such that
Pi(z) # 0. Then, we have {z € X|z ¢ [];er Pi(z)} = X = {z € X|3i, Pi(x) # P} =KcCX. It
follows that P?, i € I, satisfies all the conditions for ¥¢,i € I, in Corollary 2.1, so that P = [];.; P

has a fixed point, which contradicts to the condition (A2). _ a

As in the maximal element existence theorem (Theorem 3), the convexity assumption for the
preferences has been completely. replaced in Theorem 4. Even in the special case of the theorem
such that P¥ = ¢ for all i € I, (in such cases, the condition “Vz,z* ¢ co Pi(z)” necessarily
holds,) the theorem gives us a drastic 1mprovement on the conditions assuring for the existence of
Nash ethbna. by replacing all types of continuity conditions for weeker conditions on the local
direction of mappings (NK1), (NK2), or (NK3). We also note that the implication of the theorem
contains the result of Nishimura and Friedman (1981) since the best response correspondences,
if such exist, under the preferences P?, i € I, may typically be considered as examples of ¢'’s
satysfying the condition (NKI)

It is not difficult to extend our result to the existence of equilibrium problems for the abstract
economy, a generalized non-cooperative strategic form games (c.f. Debreu (1952), Shafer and
H.F.Sonnenschein (1975), etc). For the non-cooperative strategic form games, we add a structure
of constraint correspondences describing the situation that for some reasons, an adequate outcome
of the game should be restricted on a certain subset of the set of strategy profiles. That is, we
consider a correspondence K* : H el jdi X? for each i € I, and given other player’s strategies,
(27)jer i Testrict the choice of the strategy of player i, on the subset Ki((z9)jerj#i) of X*.
We call a strategy profile . = (2i)ics a social equilibrium (a generalized Nash equilibrium) if (1)
ot € Ki((21)jer j:) for each i, and (2) Pi(z,) =0 for all i € I. The generalized non-cooperative
strategic form game (abstract economy) will be denoted by (X i P KYer-

Theorem 5 : (Social Equilibrium Existence) An abstract economy (X i P K*%);cr has a gen-
eralized Nash equilibrium if the following conditions are satisfied.

(B1) For each i € I, X* is a non-empty compact convex subset of a Hausdorff topological

vector space E.

(B2) For each i € I, P* is a (possibly empty valued) correspondence on X = Hze 1 Xito XP
satisfying Yz = (2/)jer € X, z* ¢ Pi(z), and K i is a non-empty valued correspondence on
X to X%

(B3) For each i € I, we may define a non-empty valued correspondence ¢ : X — X*
satisfying that Vz = (z/)jer € X, (¢° € Ki(z) and Ki(z) N Pi(z) # 0) = (=% ¢ ¥'(z)),
and that Yz = (2f);e1 € X, (z* ¢ Ki(z)) = (2 ¢ ¢'(z)). '

(B4) E and ¢, i € I, satisfies one of the condition (NK1), (NK2), (NK3), (NK*) in Theorem
2 for K = {z = (2¥)jer € X|3, (= € K‘(a:) and Ki(z) N Pi(z) £ 0) or (z' ¢ Ki(z))}.



Proof : For each i € I, and z = (z)jer € X, if 2° ¢ Ki(z), let Bi(z) = Ki(z), else if
P(z)NKi(z) # 0, let B* = Ki(z)N P;(z), else let Bi(z) = 0. Then, z* € X is a generalized Nash
équi]ibrium point for (X*, P*, K*);er iff z* € X is a Nash equilibrium point of (X%, B). Since for
each z = (2/)jer in X, Bi(z) # 0 necessarily implies that ¢*(z) # 0 and z' ¢ ¢*(z), and since
{z € X|3i, Bi(z) # 0} is clearly equal to K, conditions (A3) and (A4) in Theorem 4 is satisfied
for the game (X*, B'). Hence, we have an equilibrium for (X?, B?). .0

Corollary 5.1: (Non-convex Social Eqﬁilibrium Existence) An abstract economy (X?#, P¥ K "),-E‘ I
has a generalized Nash equilibrium if the following conditions are satisfied.

(Cl) For each i € I, X* is a non-empty compact convex subset of a Hausdorff topological
vector space E.

(C2) Foreach i € I, P is a (possibly empty valued) correspondence on X = H,-e 1 Xito X*
satisfying Vz = (27)jer € X, 2* ¢ P(z), and K* is a non-empty valued correspondence on
X to X*.

(C3-1) For each i € I, and for each z = (z/);e; € X, such that ¥ € K¥(z) and Pi(z) N
Ki(z) # 0, we may select a vector p} € E* representing (in a certain well defined sense) a
direction of P¢(z) from the point z*. '

(C4-1) For each i € I, and for each z = (27);¢r € X, such that 2* ¢ Ki(z), we may select
a vector pf € E* representing (in a certain well defined sense) a direction of K*(z) from the

point z%.

(C5) If z is not an equilibrium point, then there exists at least one ¢ € I such that there are
a neighbourhood U(z) of z in X and a point y(z) satisfying that for every non-equilibrium
point z = (/)jer € U(a), (p}, 4(2) - ) > 0.

Proof : Let K = {z = (z)je1 € X|7' € K¥(z) and P'(2) N Ki(z) # 0} U {z = (¥)jes| 2 ¢
Ki(z)}. For each i € I, let ¢i(z) = {z! € X?|(pf,z") > 0} for z € K and ¢*(z) = 0 for z ¢ K.
Then, (C3-1) and (C4-1) implies that ¢'’s satisfy (B3) in Theorem 5. Moreover, since z is not an
equilibrium point iff z € K, (C5) implies that E and ¢, i € I satisfies (NK2) in Theorem 2 for
K, so that (B4) in Theorem 5 is also satisfied. Hence, by Theorem 5, we have a generalized Nash
equilibrium for the abstract economy (X*, P, K*);cr. 0

In order to clarify the relation of our results to resent reseraches such as Tan and Yuan (1994),
~ Bagh (1998), we shall give the following special case of Theorem 5 as another corollary. By
considering the fact (i) that in pseudo-metric locally convex space, compact convex valued upper
semi-continuous correspondences K%, i € [ satisfies the condition (NK*) on the open set {z =
(2)jer € X|2* ¢ Ki(z)}, and (ii) that £ majolized correspondences' P?, i € I, satisfies the
condition (NK*) on {z € X|Pi(z) # 0}, we can see that the following corollary generalize their

results in many applications.

1In the sense of Bagh (1998). For the deﬁ.n.itioﬁ, see also Yannelis and Prabhakar (1983) and Tan and Yuan
(1994). Note that Bagh's definition of .%-majolized map is slightly different from that of Yannelis-Prabhakar-Tan-
Yuan's.
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Corollary 5.2 : (Social Equilibrium Existence) An abstract economy (X*, P!, K*)ier has a
generalized Nash equilibrium if the following conditions are satisfied.

(C1) For each i € I, X* is a non-empty compact convex subset of a Hausdorff topological

vector space E. -

(C?) For each i € I, P¥ is a (possibly empty valued) correspondence on X = [J;¢; X* to X*
satisfying Yz = (2)jer € X, o' ¢ P'(z), and K* is a non-empty valued correspondence on
X to X'

(C3-2) For each i € I, the pair P’ and E satisfies condition (NK*) for K = {z € X| Pi(z) #
0}.

(C4-2) For each i € I, the pair K* and E satisfies condition (NK*) for K = {z = (2)jer €
X|z* ¢ Ki(z)}.

(C5-2) For each i € I, {z € X| K'(z) N Pi(z) # 0} is open.

Proof : For each i € I, let PP and K* be extensions of P? and K°*, respectively, satisfying
the condition in (NK*). Moreover, let us define a non-empty valued correspondence X -
Xt as ¢i(z) = Ki(z) for z € {z = (¢/)jer € X|2' ¢ Ki(2)}, ¢'(z) = Pi(z) for z € {z =
(29)jer € X|2* € Ki(z) and Pi(z) 0 Ki(z) # 0}, and ¢i(z) = X' for {z = (2)jer € X|2" €
Ki(z) and Pi(z) N K'(z) = 0}. Clearly, each ¢' satisfies the condition stated in (B3) in Theorem
5. Furthermore, since each pair of K* and E satisfies (NK*) for {z = (27)jer € X|2* ¢ K'(z)},
we have for each i the set {z = (27);er € X|2z! ¢ K'(z)} is open. Moreover, since by (C5-
2), the set {z € X|K*(z) N Pi(z) # 0} is also open, E and ¢*’s satisfy (B4) in Theorem 5 for
K = {z = (2/)jer € X|(z* € Ki(z) and K*(z)NPi(z) # B) or (z* ¢ K*(z))}. Hence, by Theorem
5, the abstract economy (X?, P!, K%);cs has a generalized Nash equilibrium. ' O

4 GALE-NIKAIDO-DEBREU THEOREM

The purpose of this section is to apply our results in previous sections to the market equilibrium
existence problem of Gale-Nikaido-Debreu type (Gale (1955), Nikaido (1956a), Debreu (1956)).
We can find one of the most general form of results for this problem in Nikaido (1956b), Nikaido
(1957), or Nikaido (1959). After 1980’s, essentially the same problem (with some varieties in
topologies, boundafy conditions, and so on,) has been treated by many authors (e.g., Aliprantis
and Brown (1983), Florenzano (1983), Mehta and Tarafdar (1987), etc). '

Let E be a vector space, and assume that there is a duality (E,F) between E and a certain
vector space F. Denote by P C E a non-empty closed convex cone with vertex 0 such that
PN —P # P, and by P* the polar cone of —P with respect to the duality (E,F). Moreover,
denote by P; the set P*\ {0}. At first we apply Theorem 1 to the setting given in Nikaido (1959).

Theorem 6 : (Market Equilibrium Existence: with Compact Range) Suppose that there is .
a non-empty valued correspondence ¢ defined on a convex o(F, E)-dense subset D of Py to £

satisfying the following conditions.



- (D1-1) For each convex hull A of a finite subset of D and the cone L4 C P} spanned by A, and

- for each p € A such that {(p) N L} = 0, there are a neighbourhood U(p) of p in (F,o(F, E))
and a point p in A such that Vg€ ANU(p), Vz € {(q), (C(g)N L, = 0 => (5,z) > 0), where
LS denotes the polar of L4.

(D2-1) Compact Range: The range of {, Upe p ¢(p), is o(E, F)-compact.
(D3) Walras’ Law: Vp € D, (p, z) < 0 for all z € {(p).
Then, 3p*, {(p*)N—-P £ 0.

Proof : Let us divide the proof in three steps. :

(STEP1: We use only (D1-1) and (D3)) Let A be a convex hull of a finite subset of D, and let
L4 C Py be the convex cone spanned. by A. Then, Vp € 4, {(p) N L% = 0 means, by (D1-1), that
there are a neighbourhood U(p) C (F,o(F, E)) of p and a point 5 in A such that Yg € ANU(p),
Vz € {(q), ({(9) N LY = 0 = (B,2) > 0. Since A is a compact subset of (F,o(F, E)), by letting
K ={p€ Al¢(p) N Ly = 0}, ¢(p) = {g € A|Vz € ((g),(3,2) > 0} for p € K, and p(p) = A for
p ¢ K, we see that K = {p € A|p ¢ p(p)} by (D3) and that A and ¢ satisfies the condition (K2)
in Theorem 1, so that y has a fixed point p4. By the definition of , we have ¢(p4) N Ly #0.

(STEP2: We use only (D2-1) and the definition of p4.) Denote by 27 the set of all convex hull of
finite subset of D directed by the inclusion. By (D2), an arbitrarily fixed net {z4 € {(pa)NL%, A €
&} has a subnet {z4, € ((pa,) N L%, p € #} converging to a point z, in the range of ¢ under
the topology o(E, F). ‘

(STEP3: We use (D1-1), the definition of p4 and p., and the fact p, € D.) Now, assume that
z. ¢ —P. Then, since P is closed, there is a vector # € D such that (P, 2.) > 0. On the other
hand, since for all 4 € .# sufficiently large, we have 5 € A,, we have (Pyza,) < Oforall pe.#
sufficiently large, so that we have (5, z,) < 0, a contradiction. Hence, z, € — P, and it follows that
there exists ap € D, {(p)N—P = 0. O

We may also obtain the following theorem which may be considered as a generalization of the
result given in Aliprantis and Brown (1983), the Gale-Nikaido-Debreu Theorem with a boundary
condition. '

Theorem 7 : (Market Equilibrium Existence: with Boundary Condition) Suppose that P*
is spanned by a o(F, E)-compact subset A of P*, and that there is a non-empty valued corre-
~ spondence ¢ defined on a convex o(F, E)-dense subset D of A \ {0} to E satisfying the following
_conditions. '

(D1-1) For each convex hull A of a finite subset of D and the cone L, spanned by A, and
for each p € A such that {(p) N L} = 0, there are a neighbourhood U(p) of p in (F,o(F, E))
and a point p in A such that Vg € ANU(p), Vz € {(g), ({(g)N LY = @ = (p, z) > 0), where
LS denotes the polar of Ly.

(D1-2) For each p € D such that {(p) N —P # 0, there exist a neighbourhood U(p) of p in
(F,o(F,E)) and a vector p € D such that Yg € U(p) N D, Yz € {(q), (((¢)N =P = 0 =
{p,2) > 0).
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(D2;2) Boundary Condition: For each net {p”,v € A4} in D converging to a point p € A\ D,
there is a vector p € D such that for a certain subnet {p*,.#} of {p*, A}, (B, 2) > 0 for all
z € p(p*) for all p € A.

(D3) Walras’ Law: Vp € D, (p,z) < 0 for all z € {(p).
Then, 3p*, ((p*) N—P # 0.

Proof : Let us divide the proof in three steps.

(STEP1: We use only (D1-1) and (D3)) Let A be a convex hull of a finite subset of D, and let
L4 be the convex cone spanned by A. Then, Yp€ AC D, {(p) N LY = # means that, by (D1-1),
there are a neighbourhood U(p) C (F,c(F, E)) of p and a point 5 in A such that Vg € ANU(p),
Vz € ¢(q), (C(g) N LY = 0 = (,z) > 0. Since A is a compact subset of (F,o(F, E)), by letting
K = {p € A|¢(p) N LY = 0}, p(p) = {a € A|Vz € ((g),(g,2) > 0} for p € K, and ¢(p) = A for
p ¢ K, we see that K = {p € A|p ¢ ¢(p)} by (D3) and that A and ¢ satisfies the condition (K2)
in Theorem 1, so that ¢ has a fixed point p4. By the definition of ¢, we have {(pa) N L} # 0.

(STEP2: We use only (D2-2) and the definition of p4.) Denote by & the set of all convex hull
of finite subset of D directed by the inclusion. Since {pa, A € &} is a net in the compact set A, it
has a subnet {pa, , 4 € #} converging to a point p, € A. If p. € A\ D, then by (D2-2), thereis a
subnet {pa,,,,v € A} of {pa, ,p € 4} and p. € D such that (p.,2) > 0 for all z € ¢(pa,,,) for
all v € J which is impossible since for all A sufficiently large, p» € A and each one of such a py
(which may be considered as equal to a pa,,, for a v sufficiently large) satisfies ((pa) N LY # 0
ie., 3z € ((pa,,,) such that (5., z) < 0. Therefore, we have p, € D.

(STEP3: We use (D1-2), the definition of ps and p., and the fact p, € D.) Now assume that
for all p € D, {(p) N =P = 0. Then, by (D1-2),

there exist a neighbourhood U(p.) of p. in (F,c(F,E)) and a vector p. € D such that for
all convex hull A of a finite subset of D satisfying that {p.,p.} C A, we have ¥g € U(p.) N 4,
Vz € ¢(q), (B+,2) > 0. On the other hand, the subnet {pa,, s € 4} converges to p. so that for
all p € # sufficiently large, A, D {p.,P+} and pa, € U(p.). Of course, by the definition of such
a pa,, 3z, € ((pa,) such that (Ps,2,) < 0, a contradiction. Therefore, there exists a p € D,
¢(p)N—-P =0. ’ ]

In the above setting, if we use a slightly more stringent boundary condition (D2-3) in the next
theorem, we may perfectly drop the condition (D1-1). Note that in the following theorem, the
condition (D2-3) is stronger than the boundary condition (D2-2) of, so called, Grandmont (1977)
type, but is weaker than the boundary condition of Neuefeind (1980) type.

Theorem 8 : (Market Equilibrium Existence: with Strong Boundary Condition) Suppose that
P* is spanned by a o(F, E)-compact subset A of P*, and that there is a non-empty valued
correspondence ¢ defined on a convex o(F,E)-dense subset D of A\ {0} to E satisfying the
- {following conditions.

(D1-2) For each p € D such that {(p) N —P # 0, there exist a neighbourhood U (p) of pin
(F,o(F,E)) and a vector p € D such that ¥g € U(p) N D, Yz € {(g), ((g) N —P = 0=
(p, 2z} > 0). C



(D2-3) Strong Boundary Condition: For each point 5 € A \ D, there exist a neighbourhood
U(p) of pin (F, o(F, E)) and a vector p € D such that Vg € DNU (), Vz € ¢(q), (e(9)n—-P =
- 0= (p,z) >0).

(D3) Walras’ Law: Vp € D, (p, z) < 0 for all z € {(p).
Then, 3p*, {(p*) N—=P #£ 0.

Proof : The argument is essentially the same with the (STEP1) in the proof of the previous
theorem. Since A is a compact subset of (F,o(F,E)), by letting K = {p € Di¢(p) N -P =
0} U(A\ D), ¢(p) = {g € D|Vz € {(q),(g,2) > 0} for p € KN D, p(p) = {p} for p € K \ D,
and ¢(p) = A for p ¢ K, we see that K = {p € A|p ¢ ¢(p)} by (D3), and that A and ¢ satisfies
the condition (K2) in Theorem 1, so that ¢ has a fixed point p*. By the definition of ¥, we have
((pr)N-P #0. o

In Theorem 8, if we consider the special case A = D, i.e., the mapping ¢ (the excess demand
correspondence) is defined on the whole A, then the above theorem gives the result in Urai and
‘Hayashi (1997). (Of course, in such a case, condition (D2-3) can be dropped.) Even in such a
special case, the result is one of the most general form of Gale-Nikaido-Debreu Theorem. (See,
e.g., Mehta and Tarafdar (1987; Theorem 8). We do not assume the value of ¢ to be compact
and/or convex.)
- Note also that in all preceeding theorems of this section, the condition (D3: Walras’ Law) may
be replaced by the following weak version of Walras’ Law (used in Yannelis (1985), Mehta and
Tarafdar (1987),) without any changing in the proofs.

(D3-1) Weak Walras’ Law: Vp € D, (p,z) < 0 for a certain z € ¢(p).

I think that such a generalization is unnecessary since Walras’ law from an economic viewpoint
has an important meaning representing the fact that the circulation of income is closed in a model.

5 RELATIONS TO OTHER MATHEMATICAL RESULTS
5.1 Kakutani’s Fixed Point Theorem

In locally convex spéces, the following fixed point theorem is known as a generalization of the
fixed point theorem of Kakutani (1941).

Theorem 9 : (Fan (1952), Glicksberg (1952)) Let X be a compact convex subset of a locally
convex Hausdorff topological vector space over R, and let ¢ be a non-empty closed convex valued
upper semi-continuous correspondence on X to itself. Then, ¢ has a fixed point.

The following lemma shows: (i) that we may consider the above result as a special case of (K1)
of Theorem 1, and (ii) that in a pseudo-metrizable topological vector space, the above result may
also be seen as a special case of (K*) of Theorem 1.

Lemma 10 : Let ¢ be a non-empty closed convex valued upper semi-continuous correspondence
on a compact convex subset X of a locally convex Hausdorff topological vector space E over R to
itself. Then, the following conditions are satisfied.
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(i) For each z € K = {z € X|z ¢ ¢(z)}, there are a vector p° € E' and an open
neighbourhood U® of z in X such that forall z € U, w e ¢(2), (z € K) => ((p*,w—z) > 0).
(That is, ¢ satisfies (K1).)

(ii) If E is pseudo-metrizable, then there is a correspondence & : X — X, satisfying that
for each ¢ € K = {z € X|z ¢ ¢(2)}, p(z) C &(z), B(z) is convex, and there are an open
neighbourhood U(z) of z in X and a point y® € X such that Yz € U(z) N K, v* € ®(z2).
(That is, ¢ satisfies (K*).) '

Proof :

(i) For each z € K, let p” be the normal vector of a hyper plane which separates z and ¢(z).
Then, by the upper semi-continuity of ¢, we have an open neighbourhood U# of z in X satisfying
the condition. '

(ii) For each z € K, let p® be the normal vector of a hyper plane which separates z and o(z).
Then, by the upper semi-continuity of ¢, we have an open neighbourhood U? of z in X satisfying
the condition stated in (i). If E is pseudo-metrizable, K is also pseudo-metrizable. Hence, K is
paracompact and we may suppose that the open cover {V(z)}sex has a locally finite refinement
{V(2)}zes. For each z € K, let ®(z) = {w € X|{p",(w — z)) > 0 for all z € J such that z €
V(z)}. Moreover, let ®(z) = X for each z ¢ K. Then, for each z € K, by letting U(z) be
the intersection (\,¢; ev(z) V(z) and y* be an arbitrary element of ¢(z), the correspondence
® : X — X satisfies all of the condition stated in (ii). , a

5.2 #majolized Maps

Let I be a non-empty index set, and let X = [];.; be the product of subsets of a topological
vector space E. Moreover, let ¢ : X — X* be a correspondence on X to a certain X i At first, we
shall give the following definitions.?

(1) We say that ¢ is of class £ if Yz = (z;)jer € X, i ¢ cod(z) and Vy € X*, ¢71(y) is
open in X. '

(2) A correspondence &, : X — X% is said to be an £ majorant of ¢ at z if ®; is of class &
and there is an open neighbourhood U, of z in X such that ¢(z) C ®.(z) for all z € Us.

(3) ¢ is said to be .?”—ma.jolized if for all z € X such that ¢(z) # 0, there is an #majorant
of ¢ at z.

For the special case I = {i}, the following result is known.

Theorem 11: (Yannelis-Prabhakar (1984) Corollary 5.1.) Let X be a non-empty, compact, convex
subset of a Hausdbrff topological vextor space and P : X — X be an #“majolized correspondence.
Then there exists an z* such that P(z*) = 0.

As stated before, our Theorem 3 essentially generalize the above result as a maximal element
existence theorem in the sense that if we assume that there are no maximal elements, then we

2More generally, see, e.g., Tan and Yuan (1994).



have X = K = {z € X| P(z) # 0} and that P satisfies the condition in Theorem 3 for (K*). If X
is a subset of pseudo-metrizable space, we can see that the above Theorem 11 is indeed a special
case of our Theorem 3.

Lemma 12 : Let X be a non-empty, compact, convex subset of a pseudo-metrizable topological
vector space and P : X — X* be an .Zmajolized correspondence. Then, there is a convex non-
empty valued correspondence @ : X — X such that Vz € K = {z € X|P(z) # 0}, &(z) # 0,
P(z) C ®(z), z ¢ ®(z), and for all z € K, there exist a neighbourhood U(z) of £ in X and a
point y° € X* such that for each z € U(z) N K, y* € &(z). (That is, for ®, condition (K*) in
Theorem 1 is satisfied.) '

Proof : Since P is % majolized, for each z € K , there are an “majorant ®; of P at z and
an open neighbourhood U of z in X such that Vz € U,, ¢(z) C ®;(z). Since X is a subset
of pseudo-metrizable space, K is also pseudo-metrizable. Hence, K is paracompact and we may
suppose that the open cover {Ur}zex has a locally finite refinement {U,}z¢s. For each z € K,
let ®(z) = (,¢;.cv, Bo(2). Moreover, for each z ¢ K, let ®(z) = X. Then, for each z € K,
by letting U(z) be the intersection (., .y, Uz and y* be an arbitrary element of P(z), the
correspondence ® : X — X satisfies all of the condition stated above. ]

5.3 FEaves’ Theorem

The following theorem is known as Eaves’ theorem.

Theorem 13 : (Eaves (1974)) Let S be a simplez of full dimension in R and v be a function on
S to R® such that z + v(z) € int S for allz € S\ int S. Then, there is a point 2° € S such that
for all neighbourhood U of z° in S, 0 € cov[U].

In the theorem, int denotes the interior in R¢ and co denotes the convex hull. As we can see
in Nishimura and Friedman (1981), Eaves’ theorem enables us to constract economic equilibrium
arguments without referring to the convexity and/or continuity of individual preferences or best
reply correspondences. Here, it is shown that Eaves’ theorem may easily be generalized through
our Theorem 1.

At first, we see the following lemma which is an immediate consequence of case (K1) of Theorem
1.

Lemma 14 : Let X be a non-emply compact conver subset of R:, and f be a function on X to
X. Then, there is a point 2° € X such that for all neighbourhood U of % in X, p(z) = f(z) — =
satisfies 0 € co p[U].

Proof : Suppose that for all z in X, there is a neighbourhood UZ of z such that 0 ¢ cop[U=].
_Then, there is a vector p® in the topological dual of R such that p®(¢(2)) = p*(f(z) — z) > 0 for
~all z € U®. Hence, f satisfies the condition (K1) of Theorem 1, so that f has a fixed point z°,
which is contradictory since 0 # ¢(z) = f(z) —z for all z € X. o
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In the above proof, the separation argument crucially depends on the fact that the dimension
of the total space is finite. Now, we prove the main theorem.

Theorem 15: (Generalization of Eaves’ Theorem) Let X be a non-empty compact convezr subset
of Rt, and v be a function on X to R such that z+v(z) € X for allz € X \int X. Then, there
is a point % € X such that for all neighbourhood U of 2% in X, 0 € cov[U].

Proof : For each ¢ € int X, let A, be a positive real number such that z + A;v(z) € X and for
each ¢ € X \int X, let A, = 1. Let us define a function f: X — X as

f(z) =z + Azv(z).

| By lemma 14, there is z° € X such that for all neighbourhood U of 2%, 0 € co {f(z) — z|z € U}.

That is, for a certain natural number 7, there are z!,---,z" € X and al,---,a" € Ry, E?._:l of =
1, such that 0 = "1, o*A:v(z"). Hence, if we define Ag as min {A;1,--+,Az"} and A; as % for
eachi=1,---,n, we have

0 € co{Mw(z?), -+, Anv(z™)},

M >1forall i = 1,---,n. On the other hand, if 0 ¢ co{v(z!),---,v(z")}, there exists a
p in the topological dual of R¢ such that p(v(z®)) > 0 for all ¢ = 1,---,n. Hence, we have
0 ¢ {z € RYp(z) > 0} D co{Mw(z!), -, Av(z")}, a contradiction. Therefore, we have 0 €
co{v(z!), -+, v(z")}, and z° satisfies the condition stated in the theorem. a

Note that Theorem 15 generalize Theorem 13 in three ways, i.e., in Theorem 15, (i) X may not
be a simplex, (i) X may not be full dimensional, and (iii) +v(z) may not be an element of int X..

5.4 TFurther Generalization

Let X be a subset of a topological vector space E. Suppose that for a certain pair (z,y) of
elements of X, we may define a convex subset V(z,y) of X satisfying

(i) z ¢ V(z,y),
(i) y € V(z,9),
(iii) (z € V(=,y)) => (y € V(z,2)).

The set V(z,y) may be interpreted as a set representing the direction of y at z. By considering
a space X equipped with such a structure, we may obtain the following fixed point theorem,
which may considered as a further generalization of Theorem 1. (By taking such a structure
appropriately, each condition in Theorem 1 may be considered as a special case of condition (K)
in Theorem 16.)

Theorem 16 : (A Generalization of Threorem 1) Let X be a non-empty compact convex subset
of a Hausdorff topological vector space E, and let ¢ be a non-empty valued correspondence on
X to X. Suppose that for a certain subset S C X x X and for each (z,y) € S, a convex subset
V(z,y) C X is defined so that z ¢ V(z,y), y € V(z,y), and for each z € X, (z € V(z,y)) iff
(y € V(z,z)). Suppose that  satisfies the following condition:



(K) For each = such that z ¢ ¢(z), there exist a point y¥* € X and a neighbourhood U(z)
of z in X satisfying that Vz € U(z), if z ¢ ¢(z), then ¢(z) C V(z, ¥%).

Then, ¢ has a fixed point.

Proof : Assume that ¢ does not have a fixed point. Then, since X = {z € X|z ¢ ¢(z)} is
compact, we have points z!,---,z" € X, open neighbourhoods U(z!),--,U(z") of each z, - - -, 2"
in X such that |Ji.., U(z*) D X, together with points v eX satisfying for each z*,
t=1,---,n, the point y* and the neighbourhood U(z") satisfies condition (K). Let B : X —
[0,1], t = 1,---,n, be a partition of unity subordinated to U(z!),--,U(z"). Let us consider a
function f on D = co{y(z?), --,y(z")} to itself such that f(z) = Y i, Be(z)y(z*). Then, f is
a continuous function on the finite dimensional compact set D to itself. Hence, f has a fixed
point z by Brouwer’s fixed point theorem. On the other hand, for all ¢ such that z € U(z?),

e(z) C V(z, y"), hence, for an arbitrary element y of ¢(z), v e V(z,y). Since V(z,y) is convex,

we have z = 31", B:(2)y(z*) € V(z,y), which contradicts the condition z ¢ V(z,y). : a
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