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Construction of flag-transitive designs with line size 4
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1 Introduction

D = (P,B) is called a 2-(v,k,1) design if P is a set of v points and B is a collection
6f subsets of P (called blocks), each of size k, such that ei/ery pair of distinct points is
contained in exactly one block. A flag of D is an incident point-block pair (z, B), that is,
x € P, B € Bwith x € B.

For a 2-(v,k,1) design D, let ¢ be a permutation on P. If B* = {B%|B € B} = B
then ¢ is called an auiomorphﬁsm of D. The group of all automorphisms of D, denoted -

by Aut(D), is called the (full) automorphism group of D.

D is called a flag-transitive design if its automorphism group acts transitively on flags.

There has been a greét deal of activity in the study of the pairs (D, G), where D is a
2-(v,k,1) design and G is a group of automorphisms acting transitively on the flags of D.
A classification of the pairs' (D, G) was announced in [1] and among the known ones, the
case when G is isomorphic to a subgroup of AT'L(1,v) has not been handled completely.

Here, we consider flag-transitive 2-designs whose blocks are of size 4 and whose au-
tomorphism group is a subgroup of AT'L(1,v). Specifically, we wish to construct flag-
transitive 2-(22",4,1) designs such that

AGPL(1,2"") < Aut(D) < AT'L(1,2%")

where AG3L(1,2%") = {z s a®2+b| ab e GF(2>),a # 0}. We hope to contribute to

the complete classification of flag-transitive designs.



<w>-orbits on {2

n | |2 [ # orbits | Length
3 3 1 3
4 8 1 8
5 40 2 5
3 10
6 147 1 3
12 12
7 616 6 7
41 14
8 | 2408 1 8
150 16
9 | 9747 19 9
532 18
110 | 38760 2 5
3 10
1936 20

Table 1: <w>-orbits on Q in PG(2n — 1,2)
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2 2-Designs from spreads in PG(2n — 1,2)

Let © = PG(2n—1,2), the (2n—1)-dimensional projective geometry over GF(2). Points of
Y, are the 1-dimensional subspaces of V(2n,2) which can be identified with V/(2n,2)\ {0}.
Hence, when GF(2?") is regarded as a 2n-dimensional vector space over GF(2), then we
can identify the points of & with GF(2%")*. A line of ¥ is a 2-dimensional GF'(2)-subspace
of GF(22") excluding 0. |

Let § be a primitive element of GF(2**)*. The multiplication by # is a permutation
o on GF(2%)*, and this is the action of a Singer cycle on the points of ¥. When the
Singer group <o > acts on the set of lines of X, all but one <o >-orbits have length
92n _ 1 and one orbit has length (22" — 1)/3. The short orbit actually consists of the
cosets GF(22")* |GF(4).

Throughout this paper, let K = GF(2*"), KX = <>, and H = < > > be the
subgroup of index 3 in K*. An orbit of a line L in PG(2n — 1, 2) under subgroup of index
3 in the Singer group <o> is a spread if and only if L meets each of the coset of H in K*

at exactly one point. Using these lines we construct flag-transitive 2-(22",4,1) designs.

Construction 1
Let L be a line of PG(2n — 1,2). We construct an incidence structure Dy, = (P, By)

as follows:
Points: P = K
Blocks: By, = {d3(Lu{0})+b]|a,be K,a#0}. (1)
In other words, the blocks are the images of L U {0} under the group
AG3L(1,2") = {z+— a®2+b]| a,b € K,a # 0}.

The incidence structure Dy is a 2-(22",4,1) design if and only if L<°*> is a spread.

The following theorem, due to Munemasa [3], gives the number of such lines.
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Theorem 1 (Munemasa, 1998) The number of lines in PG(2n — 1,2) whose orbit un-

der the subgroup of index 3 in the Singer group is a spread is given by

51:]_(227; - 1)(2n +.(_1)n+1)2_

-3 Isomorphism among designs

From the classification of flag-transitive designs, if a flag-transitive design D is a 2-
(22",4,1) design not isomorphic to AG(n,4) then Aut(D) is isomorphic to a subgroup
of AT'L(1,2%"). From a proposition due to Munemasa [3], the design D, is isomorphic to
the affine space AG(n,4) if and only if n 20 (mod 3) and L € K*/GF(4)*. Since our
objective is to construct flag-transitive 2-(22",4,1) designs whose automorphism group
is a subgroup of AI'L(1,2?"), we shall be concerned with all lines satisfying Theorem 1
excluding the cosets K*/GF(4)*. Let £ be the set of all such lines.
Ifn#0 (mod 3), the number given in Theorem 1 includes the cosets K*/GF(4)X.
Hence, the number of lines in £ is given by
Lo 1)(2n 4 (=1)rH1)2 ifn=0 (mod 3)
= { (2" - D[+ (-1)")?—9] ifn#0 (mod 3)
By the isomorphism testing method described by Kantor in [2], if L, L' € £ then the
designs Dy, and Dy are isomorphic if and only if L, L' belong to the same orbit under

I'L(1,22"). Therefore, the number of non-isomorphic designs Dy, constructed from a line

in £ is equal to the number of I'L(1, 22")-orbits in L.

4 TL(1,2°")-orbits

2 of K acts on the points of ¥ under the

The Frobenius automorphism w : ¢ — a
identification of points with elements of K*. Let Q be the set of all <o>-orbits in L.
Since I'L(1,2%") & <0> > <w>, the number of I'L(1,2%")-orbits in £ is equal to

the number of <w>-orbits in (2. From Theorem 1 and the fact that the length of each
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<o>-orbits in £ is 22" — 1, the number of elements of 2 is given by

.2%(2“ + (=1)nt1)2 if n=0 (mod 3)
1] =
=2+ (-1)**1)2 = 9] ifn#0 (mod 3)

Using GAP and MAGMA, we computed the number of <w>-orbits oﬁ Q) and the size
of each orbit for 3 < n < 10. The result is given in Table 1. For example, when n = 5, the
table shows that there are two <w>-orbits on ) of length 5 and three of length 10. Thus,
there are a total of five <w>-orbits on §) giving five nonisomorphic designs constructed
from spreads of PG(9,2).

We can easily see that for O € (), the orbit of @ under <w> is of length r if and only
if Stabyy(O) =<w">. This occurs when O = O but O«* # O for k| r. In order to

determine such orbits O, we need the following propositions.

Proposition 2 Let @ € Q and r an odd divisor of n. O*" = O if and only if of the three
lines in © containing 1, one line is fized by w", the other two are interchanged by w" and

each of these two lines contain a root of
2 +1=0.

Proof:

There exists three <o3>-orbits in @. Since each of these <g®>-orbits is a spread there
exists exactly one line containing 1 in each <g*>-orbit. Hence, there are three lines in O
which contain 1.

Suppose @“" = @. Then for all lines L € O, L*" € O. There are two poésibilities:
[¢" = L and L*" # L. We wish to determine the lines L containing 1, which satisfy each
case and we wish to show that |L<'>| = 2 in the latter case.

Let L ={1,a,1+a} € O, thus L*" = {1,0¥, 1+ o' }.

Case 1. [*" = L if and only if 0¥ = o or o® = 1 + . The first case does not occur

since if @ = A then o2’ =1 = 1 implies 2>" — 1| (2" — 1)l and so 2" + 1| L. Since r is odd,
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3] 2" + 1. Consequently, 3| I, contradicting the fact that « ¢ H. Hence, only the case

- when o satisfies
¥ +z+1 =0 (2)

occurs and L = {1,,a* }.
The other two lines of O containing 1: o' and (a+41)"'L do not contain an element
which satisfies (2). In other words, only one line which contains 1 is left invariant by w".
Case 2. If L*" # L, then we can choose € L such that L*" = o~'L. Consequently,
L¥" = a7'L = {1,a7},1 + a1}, and either o2 = @' or ¥ = 1+ a~'. The first

possibility occurs when « satisfies
241 =0 (3)

The second possibility can not occur .since o =1+ a! implies a +1 = o?* € H,
contradicting the fact that L N H = {1}. Thus, I*" = a~'L if and only if « satisfies (3).
Now, L = {1,a™?,1+ o'}, but ®*! + 1 = 0 and multiplying both sides by a~%"
~ gives o2 = a. Hence, L*"" = L and so |[L%"™| = 2.

Conversely, suppose O = L<°> where L = {1,a;1 + a} and « satisfies (3). Fur-
thermore, L and o™'L are interchanged by w” while (a + 1)L is left fixed by W' If
Ly € O, then L; = L°* for some k < 22" — 1. Moreover, since <o> < L(1,22),
L = L7 = [ (a@™'L)"" € O for some m < 227 — 1. Hence, O*" C ©. Since

0| = |0], 0" = . O

From Proposition 2, we see that for O € Q, if |O<%”| = r then there exists a line
L ={1,0,1+ a} € O such that « satisfies (3). We wish to determine if the converse is
true, that is, if o satisfies (3) then L = {1,a,1 + a} € L. We need to take a closer look
at the polynomial f(z) = z¥* +1.

Since 22+ 4+ 1] 221 4 1,if 22+ 4 1 =0 then 7 € GF(22)x,

Now, some solutions to (3) are in H. To see this, we first need to determine the
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intersection between GF(2?")* and H. One can easily check that
o2 _ 1 (22" —1) ifn/r=0 (mod 3)
, 2% — 1) =

327 -1) ifn/r#0 (mod 3)

6ep

The intersection between GF(2%')* and H is the set of all roots of the following |

polynomial:

92n

41,22 4 1) =2 4+ 1.

GCD(z

where g = G’C’D(22"3‘1 ,22r—1). Thus, when n/r =0 (mod 3), GF(22")*NH = GF(2*)*

and so, all solutions to (3) are in H. We have the following proposition.

Proposition 3 If r is an odd divisor of n such that n/r =0 (mod 3) then there does

not exist an orbit O € Q such that |O*>| =r.

Now, assume n/r # 0 (mod 3). Then GF(2¥)*NH = (GF(2*)*)? and so, solutions
to (3) which are in H must be the roots of

227 3 r .
+)=z5"4+1. (4)

f(z) = GCDE* T +1,z

Next, we consider all solutions to (3) which are in GF(2%)%. Since 3| 2" + 1, z3 +
1} ¥+ + 1. But 23 + 1 = (z + 1)(2% 4+ 2 + 1) and so solutions to (3), different from 1,
which are in GF(22)* are the roots of g(z) = z* + z + 1. Hence, solutions to (3) which

are not in H U GF(2%)* are the roots of

2+ 41

LCM(f(z),9(2))-

h(z) =

- For odd integers ¢, let

¥t 41
LOM (25 +1,22 + 2+ 1).
and for 7 an odd divisor of n such that n/r 20 (mod 3), define

hi(z) =

sp(z) = LCM (hy (z), hpy(2), .. ., By, (7))

where 711,79, . .., Tm are proper divisors of r. We have the following proposition.
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Proposition 4 Let r be an odd divisor of n such that n/r 20 (mod 3). Then O is an -
orbit in Q with |O%?| = r if and only if O contains a line L = {1,a,1 + o} such that o
is a root of

z?+ 4 1
LCM(z5™ + 1,22+ 3 +1, ().

Moreover, in this case, || = 2.

H(z) =

(5)

Proof:
'Suppose O is an orbit in Q with [O<%>| = r. Then O*" = @. From Proposition 2,

there exists a line L € O containing 1 and an element « satisfying
T y1=0

Since L € L, « is not a root of LCM(a;zrsi + 1,22 + 2 + 1). Moreover, @ # O for all
proper divisors ¢t of r. Thus, « is not a root of ¥+ + 1 = 0 and so, « is not a root of
hi(z) for all proper divisors t of r. Therefore, e is not a root of s,(z). So a is a root of

¥t 41

H.(z) = 2711
(=) LCM(:E"*s't*+1,x2+x+l,s,(x)).

Conversely, suppose O is thei Singer group orbit containing a line L = {1, a,1+a} such
‘that a is a root of H,(z) in (5). If b= a +1 then H,(b+1) = 0. Thus, (b+ 1)t +1=0
and so b*'*! 4+ b + b = 0. Consequently, b (b+ 1+ b=2+!) = 0. Since o # 1, b # 0 and
$0, b+ 14 b2+ = 0. Hence, @ = b~2't1,
The roots of f(z) = 253 41 are the only roots of 22" *1 41 in H. Since « is not a root
of f(z), @ ¢ H. Moreover, a = b2+ 50 b= g +1 ¢ H and since r is odd, =27 +1 = 2
'(mod 3). Thus, a and « + 1 belong to different cosets of H in K*. Therefore, L € £
~and O € Q.
Since a satisfies (3), L*" = ™' L and (a+1)7!L is left fixed by w”. From Proposition 2,
O“" = O. Suppose O = O for k|r. Then from Proposition 2, a is a root of z2*+1 41 = 0.
But this is not possible since 22°+! 4 1 does not divide H,(z). Thus, O“* £ O for kr.

Consequently, Stab,,(0) =<w"™> which is equivalent to |[O<%>| =r. O
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5 AutomOrphis_m group of flag-transitive
designs

From aline L in PG(2n—1,2) satisfying Theorem 1 but not one of the cosets K*/GF(4)%,
Constructions 1 yields flag-transitive 2-(22",4, 1) designs D;, whose automorphism group
contains AG3L(1,22"). We will also show in this section that Aut(Dy) < ATL(1,2**).

Let r be a divisor of n such that n/r #0 (mod 3) and consider the subgroup <w™>
of the Frobenius group <w>. Define AT3"L(1,2%") as follows:

AF3,1*L(1,221!.) — {z R A ) l a,be K,a#0,¢ € Aut(K)}

= AG3L(1,2"") > <w" >

Theorem 5 Let A = AG®L(1,22"), L a line in PG(2n — 1,2) such that L™ is a
spread, L ¢ K*/GF(4)*. D = (K,(L U {0})4) is a flag-transitive 2-(22",4,1) design

whose automorphism group is
Aut(Dp) = T > Stabpyy gy (L),

Proof:

Let g €T - Stapr(l,gzn)(L<”3>), then there exists ¢ € T, and v € Stab[‘L(l,22n)(L<03>)
such that g = ¢ry. Let B be a block of Dy, that is B = a*(L U {0}) + b for some a € K*
and b € K. Let ¢ : z+— z+c where c € K, then B = B¥ = (a3(LU{0})+ b+¢c) =
(@3(LU{0})) + (b+¢) = a®*(LU{0}) + d for some o’ € K* and d € K. Therefore,
B9 € By, and since |BrY| = |Bi|, BL? = By. Thus, g € Aut(Dy).

Let g € Aut(Dy). There exists h € T such that 09 = 0. Moreover, hg € Aut(Dy)
and hg € TL(1,2%"). Specifically, hg € (Aut(Dy))o, the stabilizer of 0 in Aut(Dy), which
is Stabpp gy (L<"">). Therefore, g = h™'hg with h~! € T and hg € Stabpy zm)(L<"7).
Thus, g € T - Stabpy gy (L) Therefore, Aut(Dy) = T - Stabpy gom)(L<">). Since
T < Aut(Dy) and T O Stabpq geny(L) = 1, Aut(Dy) = T >< Stabpp g2y (L), O
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Corollary 6 If the orbit of L under T'L(1,2%") is of length r(22" — 1) then
Aut(Dy) = AT3"L(1,2%).

Proof:

If |[LFEA2*)| = £(22" — 1) then Stabppy0my)(L) = <w”>. We wish to show that
Stabpy (L) = GPL(1,22") - Stabpri 9my(L) where G3L(1,22") = {z — %z | a €
K*}. |

Let g € G3L(1,2%") - Stabry12:y(L), that is, there exists ¢ € G3L(1,22") and 6 €
Stabpy(192)(L) such that g = ¢6. Now, (L<">)9 = (L<>)# = (L<>)5. However,
6 € Stabpyy0my(L) = <w"> and so, for any a3L € L<™, '(agL)‘s = a3l € L= for
some a' € K*. Thus, (L<"™>) = L<*">  Therefore, g € Stabpr1920)(L<">). Hence,
GPL(1,22") - Stabpy gmy(L) C Stabpy gomy(L<").

Since |[(L<>)FL12)| = 37, we have, |Stabpy(1 020y (L) = (22" — 1)(2n)/(3r) =
|G2L(1,2%")- Stabr(1,gm)(L)|. Thus, Stabp1,pmy (L) = G3L(1,22")-Stabry gy (L) &
G®L(1,2*") >« Stabppagmy(L) = G°L(1,2%) >4 <w”> = TI37L[(1,2%), where
I3 L(1,22) = {z > a%2% | a € K*,9. € < w" >}. This implies that Aut(Dy) =
T > T3 [(1,220) & ATS"L(1,220). O

The last section provides a more explicit construction of a class of flag-transitive 2-

(22",4,1) designs. The construction is as follows:

Construction 2
Let r be an odd divisor of n such that nf/r # 0 (mod 3). Consider a line L in
PG(2n—1,2) containing 1 and a root of H,(z) as given in Proposition 4. The 2-(22 4, 1)

flag-transitive design Dy, as in Construction 1, consists of the following:

Points: P = K

Blocks: By, = (Lu{0o}h*

where A = AG®L(1,2%").
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The design Dy, obtained from Construction 2 is constructed from a line L whose orbit

under T'L(1,22") is of length (22" — 1). Thus, its automorphism group is given by

Aut(Dyp) = AT3"[(1,2%).

The number of pairwise nonisomorphic such designs can be obtained using the results
of Proposition 4 as follows: let d = deg(H,(z)), where H, () is the polynomial defined in
(5). As usual, £ is the set of lines in PG(2n — 1,2) satisfying the conditions of Theorem
1 but not one of the cosets K*/GF(4)*. Then there are d lines in £ which contain 1
and a solution to H,(z) = 0. But if L = {1,@,1+ a} such that « is a root of (5) then
o~ L is also one of the d lines. Since L and o 'L belong to the same <o>-orbit in L,
only d/2 of these d lines belong to different orbits. Let these lines be Ly, La,..., Las.
Then Li<*>, Ly~?, ..., La2™ are <o>-orbits in £ whose orbit under <w> is of length r.
Therefore, the number of <w>-orbits in  of length r is d/2r. This is also the number of
['L(1, 22%)-orbits in £ of length r(2" -- 1). This gives d/2r pairwise nonisomorphic such

designs Dy whose automorphism group satisfies
Aut(Dp) = AT L(1,2%).
We have proved the following proposition.

Proposition 7 Let v be an odd divisor of n such that n/r # 0 (mod 3) and d =
deg(H,(x)) where H,.(z) is the polynomial defined in (5) . The number of nonisomor-
phic ﬂag—imnsz’tz've 2-(22",4,1) designs (from Construction 1) whose automorphism group

is isomorphic to AT®L(1,2%") is d/2r .
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