# Construction of flag-transitive designs with line size 4

Jumela Sarmiento
Graduate School of Mathematics
Kyushu University
Fukuoka, JAPAN

### 1 Introduction

 $\mathcal{D}=(\mathcal{P},\mathcal{B})$  is called a 2-(v,k,1) design if  $\mathcal{P}$  is a set of v points and  $\mathcal{B}$  is a collection of subsets of  $\mathcal{P}$  (called blocks), each of size k, such that every pair of distinct points is contained in exactly one block. A flag of  $\mathcal{D}$  is an incident point-block pair (x,B), that is,  $x \in \mathcal{P}, B \in \mathcal{B}$  with  $x \in B$ .

For a 2-(v, k, 1) design  $\mathcal{D}$ , let  $\phi$  be a permutation on  $\mathcal{P}$ . If  $\mathcal{B}^{\phi} = \{B^{\phi} | B \in \mathcal{B}\} = \mathcal{B}$  then  $\phi$  is called an *automorphism* of  $\mathcal{D}$ . The group of all automorphisms of  $\mathcal{D}$ , denoted by  $Aut(\mathcal{D})$ , is called the *(full) automorphism group* of  $\mathcal{D}$ .

 $\mathcal{D}$  is called a flag-transitive design if its automorphism group acts transitively on flags.

There has been a great deal of activity in the study of the pairs  $(\mathcal{D}, G)$ , where  $\mathcal{D}$  is a 2-(v, k, 1) design and G is a group of automorphisms acting transitively on the flags of  $\mathcal{D}$ . A classification of the pairs  $(\mathcal{D}, G)$  was announced in [1] and among the known ones, the case when G is isomorphic to a subgroup of  $A\Gamma L(1, v)$  has not been handled completely.

Here, we consider flag-transitive 2-designs whose blocks are of size 4 and whose automorphism group is a subgroup of  $A\Gamma L(1, v)$ . Specifically, we wish to construct flag-transitive 2- $(2^{2n}, 4, 1)$  designs such that

$$AG^{3}L(1,2^{2n}) < Aut(\mathcal{D}) < A\Gamma L(1,2^{2n})$$

where  $AG^3L(1,2^{2n}) = \{z \longmapsto a^3z + b \mid a,b \in GF(2^{2n}), a \neq 0\}$ . We hope to contribute to the complete classification of flag-transitive designs.

|    |            | $<\omega>$ -orbits on $\Omega$ |        |
|----|------------|--------------------------------|--------|
| n  | $ \Omega $ | # orbits                       | Length |
| 3  | 3          | 1                              | 3      |
| 4  | 8          | 1                              | 8      |
| 5  | 40         | 2                              | 5      |
| Ĺ  |            | 3                              | 10     |
| 6  | 147        | 1                              | 3      |
|    |            | 12                             | 12     |
| 7  | 616        | 6                              | 7      |
|    |            | 41                             | 14     |
| 8  | 2408       | . 1                            | 8      |
|    | -          | 150                            | 16     |
| 9  | 9747       | 19                             | 9      |
|    |            | 532                            | 18     |
| 10 | 38760      | 2                              | 5      |
|    |            | 3                              | 10     |
|    |            | 1936                           | 20     |

Table 1:  $<\omega>$ -orbits on  $\Omega$  in PG(2n-1,2)

## References

- F. Buekenhout, A. Delandsheer, J. Doyen, P.B. Kleidman, M.W. Liebeck and J. Saxl,
   Linear spaces with flag-transitive automorphism groups, Geom. Ded. 36 (1990) 89-94.
- [2] W. Kantor, 2-Transitive and flag-transitive designs, Coding Theory, Design theory, Group Theory (Burlington, VT, 1990), Wiley-Intersci. Publ., New York, 1993.
- [3] A. Munemasa, Flag-transitive 2-designs arising from line-spreads in PG(2n-1,2), to appear in Geom. Dedicata.

## 2 2-Designs from spreads in PG(2n-1,2)

Let  $\Sigma = PG(2n-1,2)$ , the (2n-1)-dimensional projective geometry over GF(2). Points of  $\Sigma$  are the 1-dimensional subspaces of V(2n,2) which can be identified with  $V(2n,2)\setminus\{0\}$ . Hence, when  $GF(2^{2n})$  is regarded as a 2n-dimensional vector space over GF(2), then we can identify the points of  $\Sigma$  with  $GF(2^{2n})^{\times}$ . A line of  $\Sigma$  is a 2-dimensional GF(2)-subspace of  $GF(2^{2n})$  excluding 0.

Let  $\beta$  be a primitive element of  $GF(2^{2n})^{\times}$ . The multiplication by  $\beta$  is a permutation  $\sigma$  on  $GF(2^{2n})^{\times}$ , and this is the action of a Singer cycle on the points of  $\Sigma$ . When the Singer group  $<\sigma>$  acts on the set of lines of  $\Sigma$ , all but one  $<\sigma>$ -orbits have length  $2^{2n}-1$  and one orbit has length  $(2^{2n}-1)/3$ . The short orbit actually consists of the cosets  $GF(2^{2n})^{\times}/GF(4)^{\times}$ .

Throughout this paper, let  $K = GF(2^{2n})$ ,  $K^{\times} = <\beta>$ , and  $H = <\beta^3>$  be the subgroup of index 3 in  $K^{\times}$ . An orbit of a line L in PG(2n-1,2) under subgroup of index 3 in the Singer group  $<\sigma>$  is a spread if and only if L meets each of the coset of H in  $K^{\times}$  at exactly one point. Using these lines we construct flag-transitive 2- $(2^{2n}, 4, 1)$  designs.

#### Construction 1

Let L be a line of PG(2n-1,2). We construct an incidence structure  $\mathcal{D}_L = (\mathcal{P}, \mathcal{B}_L)$  as follows:

Points: 
$$\mathcal{P} = K$$
  
Blocks:  $\mathcal{B}_L = \{ a^3(L \cup \{0\}) + b \mid a, b \in K, a \neq 0 \}.$  (1)

In other words, the blocks are the images of  $L \cup \{0\}$  under the group

$$AG^{3}L(1,2^{2n}) = \{z \longmapsto a^{3}z + b \mid a,b \in K, a \neq 0\}.$$

The incidence structure  $\mathcal{D}_L$  is a 2- $(2^{2n}, 4, 1)$  design if and only if  $L^{<\sigma^3>}$  is a spread. The following theorem, due to Munemasa [3], gives the number of such lines. **Theorem 1 (Munemasa, 1998)** The number of lines in PG(2n-1,2) whose orbit under the subgroup of index 3 in the Singer group is a spread is given by

$$\frac{1}{27}(2^{2n}-1)(2^n+(-1)^{n+1})^2.$$

## 3 Isomorphism among designs

From the classification of flag-transitive designs, if a flag-transitive design  $\mathcal{D}$  is a 2- $(2^{2n},4,1)$  design not isomorphic to AG(n,4) then  $Aut(\mathcal{D})$  is isomorphic to a subgroup of  $A\Gamma L(1,2^{2n})$ . From a proposition due to Munemasa [3], the design  $\mathcal{D}_L$  is isomorphic to the affine space AG(n,4) if and only if  $n \not\equiv 0 \pmod{3}$  and  $L \in K^{\times}/GF(4)^{\times}$ . Since our objective is to construct flag-transitive 2- $(2^{2n},4,1)$  designs whose automorphism group is a subgroup of  $A\Gamma L(1,2^{2n})$ , we shall be concerned with all lines satisfying Theorem 1 excluding the cosets  $K^{\times}/GF(4)^{\times}$ . Let  $\mathcal{L}$  be the set of all such lines.

If  $n \not\equiv 0 \pmod{3}$ , the number given in Theorem 1 includes the cosets  $K^{\times}/GF(4)^{\times}$ . Hence, the number of lines in  $\mathcal{L}$  is given by

$$|\mathcal{L}| = \begin{cases} \frac{1}{27} (2^{2n} - 1)(2^n + (-1)^{n+1})^2 & \text{if } n \equiv 0 \pmod{3} \\ \frac{1}{27} (2^{2n} - 1)[(2^n + (-1)^{n+1})^2 - 9] & \text{if } n \not\equiv 0 \pmod{3} \end{cases}$$

By the isomorphism testing method described by Kantor in [2], if  $L, L' \in \mathcal{L}$  then the designs  $\mathcal{D}_L$  and  $\mathcal{D}_{L'}$  are isomorphic if and only if L, L' belong to the same orbit under  $\Gamma L(1, 2^{2n})$ . Therefore, the number of non-isomorphic designs  $\mathcal{D}_L$ , constructed from a line in  $\mathcal{L}$  is equal to the number of  $\Gamma L(1, 2^{2n})$ -orbits in  $\mathcal{L}$ .

# 4 $\Gamma L(1, 2^{2n})$ -orbits

The Frobenius automorphism  $\omega: a \longmapsto a^2$  of K acts on the points of  $\Sigma$  under the identification of points with elements of  $K^{\times}$ . Let  $\Omega$  be the set of all  $<\sigma>$ -orbits in  $\mathcal{L}$ . Since  $\Gamma L(1,2^{2n})\cong <\sigma> \bowtie <\omega>$ , the number of  $\Gamma L(1,2^{2n})$ -orbits in  $\mathcal{L}$  is equal to the number of  $<\omega>$ -orbits in  $\Omega$ . From Theorem 1 and the fact that the length of each

 $<\sigma>$ -orbits in  $\mathcal{L}$  is  $2^{2n}-1$ , the number of elements of  $\Omega$  is given by

$$|\Omega| = \begin{cases} \frac{1}{27} (2^n + (-1)^{n+1})^2 & \text{if } n \equiv 0 \pmod{3} \\ \frac{1}{27} [(2^n + (-1)^{n+1})^2 - 9] & \text{if } n \not\equiv 0 \pmod{3} \end{cases}$$

Using GAP and MAGMA, we computed the number of  $<\omega>$ -orbits on  $\Omega$  and the size of each orbit for  $3 \le n \le 10$ . The result is given in Table 1. For example, when n=5, the table shows that there are two  $<\omega>$ -orbits on  $\Omega$  of length 5 and three of length 10. Thus, there are a total of five  $<\omega>$ -orbits on  $\Omega$  giving five nonisomorphic designs constructed from spreads of PG(9,2).

We can easily see that for  $\mathcal{O} \in \Omega$ , the orbit of  $\mathcal{O}$  under  $\langle \omega \rangle$  is of length r if and only if  $Stab_{\langle \omega \rangle}(\mathcal{O}) = \langle \omega^r \rangle$ . This occurs when  $\mathcal{O}^{\omega^r} = \mathcal{O}$  but  $\mathcal{O}^{\omega^k} \neq \mathcal{O}$  for  $k \mid r$ . In order to determine such orbits  $\mathcal{O}$ , we need the following propositions.

**Proposition 2** Let  $\mathcal{O} \in \Omega$  and r an odd divisor of n.  $\mathcal{O}^{\omega^r} = \mathcal{O}$  if and only if of the three lines in  $\mathcal{O}$  containing 1, one line is fixed by  $\omega^r$ , the other two are interchanged by  $\omega^r$  and each of these two lines contain a root of

$$x^{2^r+1} + 1 = 0.$$

#### Proof:

There exists three  $\langle \sigma^3 \rangle$ -orbits in  $\mathcal{O}$ . Since each of these  $\langle \sigma^3 \rangle$ -orbits is a spread there exists exactly one line containing 1 in each  $\langle \sigma^3 \rangle$ -orbit. Hence, there are three lines in  $\mathcal{O}$  which contain 1.

Suppose  $\mathcal{O}^{\omega^r} = \mathcal{O}$ . Then for all lines  $L \in \mathcal{O}$ ,  $L^{\omega^r} \in \mathcal{O}$ . There are two possibilities:  $L^{\omega^r} = L$  and  $L^{\omega^r} \neq L$ . We wish to determine the lines L containing 1, which satisfy each case and we wish to show that  $|L^{<\omega^r>}| = 2$  in the latter case.

Let 
$$L = \{1, \alpha, 1 + \alpha\} \in \mathcal{O}$$
, thus  $L^{\omega^r} = \{1, \alpha^{2^r}, 1 + \alpha^{2^r}\}$ .

Case 1.  $L^{\omega^r} = L$  if and only if  $\alpha^{2^r} = \alpha$  or  $\alpha^{2^r} = 1 + \alpha$ . The first case does not occur since if  $\alpha = \beta^l$  then  $\alpha^{(2^r-1)} = 1$  implies  $2^{2n} - 1 | (2^r - 1)l$  and so  $2^r + 1 | l$ . Since r is odd,

3  $2^r + 1$ . Consequently, 3 l, contradicting the fact that  $\alpha \notin H$ . Hence, only the case when  $\alpha$  satisfies

$$x^{2^r} + x + 1 = 0 (2)$$

occurs and  $L = \{1, \alpha, \alpha^{2^r}\}.$ 

The other two lines of  $\mathcal{O}$  containing 1:  $\alpha^{-1}L$  and  $(\alpha+1)^{-1}L$  do not contain an element which satisfies (2). In other words, only one line which contains 1 is left invariant by  $\omega^r$ .

Case 2. If  $L^{\omega^r} \neq L$ , then we can choose  $\alpha \in L$  such that  $L^{\omega^r} = \alpha^{-1}L$ . Consequently,  $L^{\omega^r} = \alpha^{-1}L = \{1, \alpha^{-1}, 1 + \alpha^{-1}\}$ , and either  $\alpha^{2^r} = \alpha^{-1}$  or  $\alpha^{2^r} = 1 + \alpha^{-1}$ . The first possibility occurs when  $\alpha$  satisfies

$$x^{2^r+1} + 1 = 0 (3)$$

The second possibility can not occur since  $\alpha^{2^r}=1+\alpha^{-1}$  implies  $\alpha+1=\alpha^{2^r+1}\in H$ , contradicting the fact that  $L\cap H=\{1\}$ . Thus,  $L^{\omega^r}=\alpha^{-1}L$  if and only if  $\alpha$  satisfies (3). Now,  $L^{\omega^{2r}}=\{1,\alpha^{-2^r},1+\alpha^{-2^r}\}$ , but  $\alpha^{2^r+1}+1=0$  and multiplying both sides by  $\alpha^{-2^r}$  gives  $\alpha^{-2^r}=\alpha$ . Hence,  $L^{\omega^{2r}}=L$  and so  $|L^{<\omega^r>}|=2$ .

Conversely, suppose  $\mathcal{O} = L^{<\sigma>}$  where  $L = \{1, \alpha, 1 + a\}$  and  $\alpha$  satisfies (3). Furthermore, L and  $\alpha^{-1}L$  are interchanged by  $\omega^r$  while  $(\alpha + 1)^{-1}L$  is left fixed by  $\omega^r$ . If  $L_1 \in \mathcal{O}$ , then  $L_1 = L^{\sigma^k}$  for some  $k < 2^{2n} - 1$ . Moreover, since  $<\sigma> \lhd \Gamma L(1, 2^{2n})$ ,  $L_1^{\omega^r} = L^{\sigma^k \omega^r} = L^{\omega^r \sigma^m} = (\alpha^{-1}L)^{\sigma^m} \in \mathcal{O}$  for some  $m < 2^{2n} - 1$ . Hence,  $\mathcal{O}^{\omega^r} \subset \mathcal{O}$ . Since  $|\mathcal{O}^{\omega^r}| = |\mathcal{O}|$ ,  $\mathcal{O}^{\omega^r} = \mathcal{O}$ .  $\square$ 

From Proposition 2, we see that for  $\mathcal{O} \in \Omega$ , if  $|\mathcal{O}^{<\omega}| = r$  then there exists a line  $L = \{1, \alpha, 1 + \alpha\} \in \mathcal{O}$  such that  $\alpha$  satisfies (3). We wish to determine if the converse is true, that is, if  $\alpha$  satisfies (3) then  $L = \{1, \alpha, 1 + \alpha\} \in \mathcal{L}$ . We need to take a closer look at the polynomial  $f(x) = x^{2^r+1} + 1$ .

Since  $x^{2^r+1} + 1 | x^{2^{2^r-1}} + 1$ , if  $x^{2^r+1} + 1 = 0$  then  $x \in GF(2^{2r})^{\times}$ .

Now, some solutions to (3) are in H. To see this, we first need to determine the

intersection between  $GF(2^{2r})^{\times}$  and H. One can easily check that

$$GCD\left(\frac{2^{2n}-1}{3}, 2^{2r}-1\right) = \begin{cases} (2^{2r}-1) & \text{if } n/r \equiv 0 \pmod{3} \\ \frac{1}{3}(2^{2r}-1) & \text{if } n/r \not\equiv 0 \pmod{3} \end{cases}$$

The intersection between  $GF(2^{2r})^{\times}$  and H is the set of all roots of the following polynomial:

$$GCD(x^{\frac{2^{2n}-1}{3}}+1, x^{2^{2r}-1}+1) = x^g+1.$$

where  $g = GCD(\frac{2^{2r}-1}{3}, 2^{2r}-1)$ . Thus, when  $n/r \equiv 0 \pmod{3}$ ,  $GF(2^{2r})^{\times} \cap H = GF(2^{2r})^{\times}$  and so, all solutions to (3) are in H. We have the following proposition.

**Proposition 3** If r is an odd divisor of n such that  $n/r \equiv 0 \pmod{3}$  then there does not exist an orbit  $\mathcal{O} \in \Omega$  such that  $|\mathcal{O}^{\triangleleft \omega}| = r$ .

Now, assume  $n/r \not\equiv 0 \pmod{3}$ . Then  $GF(2^{2r})^{\times} \cap H = (GF(2^{2r})^{\times})^3$  and so, solutions to (3) which are in H must be the roots of

$$f(x) = GCD(x^{2^{r}+1}+1, x^{\frac{2^{2r}-1}{3}}+1) = x^{\frac{2^{r}+1}{3}}+1.$$
 (4)

Next, we consider all solutions to (3) which are in  $GF(2^2)^{\times}$ . Since  $3 \mid 2^r + 1, x^3 + 1 \mid x^{2^r+1} + 1$ . But  $x^3 + 1 = (x+1)(x^2 + x + 1)$  and so solutions to (3), different from 1, which are in  $GF(2^2)^{\times}$  are the roots of  $g(x) = x^2 + x + 1$ . Hence, solutions to (3) which are not in  $H \cup GF(2^2)^{\times}$  are the roots of

$$h(x) = \frac{x^{2^r+1}+1}{LCM(f(x),g(x))}.$$

For odd integers t, let

$$h_t(x) = \frac{x^{2^t+1}+1}{LCM(x^{\frac{2^t+1}{3}}+1, x^2+x+1).}$$

and for r an odd divisor of n such that  $n/r \not\equiv 0 \pmod{3}$ , define

$$s_r(x) = LCM(h_{r_1}(x), h_{r_2}(x), \dots, h_{r_m}(x))$$

where  $r_1, r_2, \ldots, r_m$  are proper divisors of r. We have the following proposition.

**Proposition 4** Let r be an odd divisor of n such that  $n/r \not\equiv 0 \pmod{3}$ . Then  $\mathcal{O}$  is an orbit in  $\Omega$  with  $|\mathcal{O}^{\triangleleft \omega}| = r$  if and only if  $\mathcal{O}$  contains a line  $L = \{1, \alpha, 1 + \alpha\}$  such that  $\alpha$  is a root of

$$H_r(x) = \frac{x^{2^r+1} + 1}{LCM(x^{\frac{2^r+1}{3}} + 1, x^2 + x + 1, s_r(x))}.$$
 (5)

Moreover, in this case,  $|L^{<\omega^r>}|=2$ .

#### Proof:

Suppose  $\mathcal{O}$  is an orbit in  $\Omega$  with  $|\mathcal{O}^{<\omega>}| = r$ . Then  $\mathcal{O}^{\omega^r} = \mathcal{O}$ . From Proposition 2, there exists a line  $L \in \mathcal{O}$  containing 1 and an element  $\alpha$  satisfying

$$x^{2^r+1} + 1 = 0.$$

Since  $L \in \mathcal{L}$ ,  $\alpha$  is not a root of  $LCM(x^{\frac{2^r+1}{3}}+1, x^2+x+1)$ . Moreover,  $\mathcal{O}^{\omega^t} \neq \mathcal{O}$  for all proper divisors t of r. Thus,  $\alpha$  is not a root of  $x^{2^t+1}+1=0$  and so,  $\alpha$  is not a root of  $h_t(x)$  for all proper divisors t of r. Therefore,  $\alpha$  is not a root of  $s_r(x)$ . So  $\alpha$  is a root of

$$H_r(x) = \frac{x^{2^r+1}+1}{LCM(x^{\frac{2^r+1}{3}}+1, x^2+x+1, s_r(x))}.$$

Conversely, suppose  $\mathcal{O}$  is the Singer group orbit containing a line  $L = \{1, \alpha, 1+\alpha\}$  such that  $\alpha$  is a root of  $H_r(x)$  in (5). If  $b = \alpha + 1$  then  $H_r(b+1) = 0$ . Thus,  $(b+1)^{2^r+1} + 1 = 0$  and so  $b^{2^r+1} + b^{2^r} + b = 0$ . Consequently,  $b^{2^r}(b+1+b^{-2^r+1}) = 0$ . Since  $\alpha \neq 1$ ,  $b \neq 0$  and so,  $b+1+b^{-2^r+1}=0$ . Hence,  $\alpha=b^{-2^r+1}$ .

The roots of  $f(x) = x^{\frac{2^r+1}{3}} + 1$  are the only roots of  $x^{2^r+1} + 1$  in H. Since  $\alpha$  is not a root of f(x),  $\alpha \notin H$ . Moreover,  $\alpha = b^{-2^r+1}$  so  $b = \alpha + 1 \notin H$  and since r is odd,  $-2^r + 1 \equiv 2 \pmod{3}$ . Thus,  $\alpha$  and  $\alpha + 1$  belong to different cosets of H in  $K^{\times}$ . Therefore,  $L \in \mathcal{L}$  and  $\mathcal{O} \in \Omega$ .

Since  $\alpha$  satisfies (3),  $L^{\omega^r} = \alpha^{-1}L$  and  $(\alpha+1)^{-1}L$  is left fixed by  $\omega^r$ . From Proposition 2,  $\mathcal{O}^{\omega^r} = \mathcal{O}$ . Suppose  $\mathcal{O}^{\omega^k} = \mathcal{O}$  for k|r. Then from Proposition 2,  $\alpha$  is a root of  $x^{2^k+1}+1=0$ . But this is not possible since  $x^{2^k+1}+1$  does not divide  $H_r(x)$ . Thus,  $\mathcal{O}^{\omega^k} \neq \mathcal{O}$  for k|r. Consequently,  $Stab_{<\omega>}(\mathcal{O}) = <\omega^r>$  which is equivalent to  $|\mathcal{O}^{<\omega>}| = r$ .  $\square$ 

# 5 Automorphism group of flag-transitive designs

From a line L in PG(2n-1,2) satisfying Theorem 1 but not one of the cosets  $K^{\times}/GF(4)^{\times}$ , Constructions 1 yields flag-transitive 2- $(2^{2n},4,1)$  designs  $\mathcal{D}_L$  whose automorphism group contains  $AG^3L(1,2^{2n})$ . We will also show in this section that  $Aut(\mathcal{D}_L) < A\Gamma L(1,2^{2n})$ .

Let r be a divisor of n such that  $n/r \not\equiv 0 \pmod{3}$  and consider the subgroup  $<\omega^r>$  of the Frobenius group  $<\omega>$ . Define  $A\Gamma^{3,r}L(1,2^{2n})$  as follows:

$$A\Gamma^{3,r}L(1,2^{2n}) = \{z \mapsto a^3 z^{\psi^r} + b \mid a,b \in K, a \neq 0, \psi \in Aut(K)\}$$
$$= AG^3L(1,2^{2n}) > < \omega^r >$$

**Theorem 5** Let  $A = AG^3L(1,2^{2n})$ , L a line in PG(2n-1,2) such that  $L^{<\sigma^3>}$  is a spread,  $L \notin K^{\times}/GF(4)^{\times}$ .  $\mathcal{D}_L = (K,(L \cup \{0\})^A)$  is a flag-transitive 2- $(2^{2n},4,1)$  design whose automorphism group is

#### **Proof:**

Let  $g \in T \cdot Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$ , then there exists  $\phi \in T$ , and  $\gamma \in Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$  such that  $g = \phi \gamma$ . Let B be a block of  $\mathcal{D}_L$ , that is  $B = a^3(L \cup \{0\}) + b$  for some  $a \in K^{\times}$  and  $b \in K$ . Let  $\phi : z \longmapsto z + c$  where  $c \in K$ , then  $B^g = B^{\phi \gamma} = (a^3(L \cup \{0\}) + b + c)^{\gamma} = (a^3(L \cup \{0\}))^{\gamma} + (b + c)^{\gamma} = a'^3(L \cup \{0\}) + d$  for some  $a' \in K^{\times}$  and  $d \in K$ . Therefore,  $B^g \in \mathcal{B}_L$  and since  $|\mathcal{B}_L^g| = |\mathcal{B}_L|$ ,  $\mathcal{B}_L^g = \mathcal{B}_L$ . Thus,  $g \in Aut(\mathcal{D}_L)$ .

Let  $g \in Aut(\mathcal{D}_L)$ . There exists  $h \in T$  such that  $0^{hg} = 0$ . Moreover,  $hg \in Aut(\mathcal{D}_L)$  and  $hg \in \Gamma L(1, 2^{2n})$ . Specifically,  $hg \in (Aut(\mathcal{D}_L))_0$ , the stabilizer of 0 in  $Aut(\mathcal{D}_L)$ , which is  $Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$ . Therefore,  $g = h^{-1}hg$  with  $h^{-1} \in T$  and  $hg \in Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$ . Thus,  $g \in T \cdot Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$ . Therefore,  $Aut(\mathcal{D}_L) = T \cdot Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$ . Since  $T \triangleleft Aut(\mathcal{D}_L)$  and  $T \cap Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>}) = 1$ ,  $Aut(\mathcal{D}_L) \cong T > \square Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})$ .  $\square$ 

Corollary 6 If the orbit of L under  $\Gamma L(1,2^{2n})$  is of length  $r(2^{2n}-1)$  then

$$Aut(\mathcal{D}_L) \cong A\Gamma^{3,r}L(1,2^{2n}).$$

#### **Proof:**

If  $|L^{\Gamma L(1,2^{2n})}| = r(2^{2n} - 1)$  then  $Stab_{\Gamma L(1,2^{2n})}(L) \cong \langle \omega^r \rangle$ . We wish to show that  $Stab_{\Gamma L(1,2^{2n})}(L^{\langle \sigma^3 \rangle}) = G^3 L(1,2^{2n}) \cdot Stab_{\Gamma L(1,2^{2n})}(L)$  where  $G^3 L(1,2^{2n}) = \{z \longmapsto a^3 z \mid a \in K^{\times}\}$ .

Let  $g \in G^3L(1,2^{2n}) \cdot Stab_{\Gamma L(1,2^{2n})}(L)$ , that is, there exists  $\phi \in G^3L(1,2^{2n})$  and  $\delta \in Stab_{\Gamma L(1,2^{2n})}(L)$  such that  $g = \phi \delta$ . Now,  $(L^{\langle \sigma^3 \rangle})^g = (L^{\langle \sigma^3 \rangle})^{\phi \delta} = (L^{\langle \sigma^3 \rangle})^{\delta}$ . However,  $\delta \in Stab_{\Gamma L(1,2^{2n})}(L) \cong \langle \omega^r \rangle$  and so, for any  $a^3L \in L^{\langle \sigma^3 \rangle}$ ,  $(a^3L)^{\delta} = a'^3L \in L^{\langle \sigma^3 \rangle}$  for some  $a' \in K^{\times}$ . Thus,  $(L^{\langle \sigma^3 \rangle})^{\delta} = L^{\langle \sigma^3 \rangle}$ . Therefore,  $g \in Stab_{\Gamma L(1,2^{2n})}(L^{\langle \sigma^3 \rangle})$ . Hence,  $G^3L(1,2^{2n}) \cdot Stab_{\Gamma L(1,2^{2n})}(L) \subset Stab_{\Gamma L(1,2^{2n})}(L^{\langle \sigma^3 \rangle})$ .

Since  $|(L^{<\sigma^3>})^{\Gamma L(1,2^{2n})}| = 3r$ , we have,  $|Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>})| = (2^{2n} - 1)(2n)/(3r) = |G^3L(1,2^{2n})\cdot Stab_{\Gamma L(1,2^{2n})}(L)|$ . Thus,  $Stab_{\Gamma L(1,2^{2n})}(L^{<\sigma^3>}) = G^3L(1,2^{2n})\cdot Stab_{\Gamma L(1,2^{2n})}(L) \cong G^3L(1,2^{2n}) >$   $Stab_{\Gamma L(1,2^{2n})}(L) \cong G^3L(1,2^{2n}) >$   $<\omega^r> \subseteq \Gamma^{3,r}L(1,2^{2n})$ , where  $\Gamma^{3,r}L(1,2^{2n}) = \{z \longmapsto a^3z^{\psi} \mid a \in K^{\times}, \psi \in <\omega^r> \}$ . This implies that  $Aut(\mathcal{D}_L) \cong T >$   $\Gamma^{3,r}L(1,2^{2n}) \cong A\Gamma^{3,r}L(1,2^{2n})$ .  $\square$ 

The last section provides a more explicit construction of a class of flag-transitive 2- $(2^{2n}, 4, 1)$  designs. The construction is as follows:

#### Construction 2

Let r be an odd divisor of n such that  $n/r \not\equiv 0 \pmod{3}$ . Consider a line L in PG(2n-1,2) containing 1 and a root of  $H_r(x)$  as given in Proposition 4. The 2- $(2^{2n},4,1)$  flag-transitive design  $\mathcal{D}_L$ , as in Construction 1, consists of the following:

$$Points: \mathcal{P} = K$$

Blocks: 
$$\mathcal{B}_L = (L \cup \{0\})^A$$

where  $A = AG^3L(1, 2^{2n})$ .

The design  $\mathcal{D}_L$  obtained from Construction 2 is constructed from a line L whose orbit under  $\Gamma L(1, 2^{2n})$  is of length  $r(2^{2n} - 1)$ . Thus, its automorphism group is given by

$$Aut(\mathcal{D}_L) \cong A\Gamma^{3,r}L(1,2^{2n}).$$

The number of pairwise nonisomorphic such designs can be obtained using the results of Proposition 4 as follows: let  $d = deg(H_r(x))$ , where  $H_r(x)$  is the polynomial defined in (5). As usual,  $\mathcal{L}$  is the set of lines in PG(2n-1,2) satisfying the conditions of Theorem 1 but not one of the cosets  $K^{\times}/GF(4)^{\times}$ . Then there are d lines in  $\mathcal{L}$  which contain 1 and a solution to  $H_r(x) = 0$ . But if  $L = \{1, \alpha, 1 + \alpha\}$  such that  $\alpha$  is a root of (5) then  $\alpha^{-1}L$  is also one of the d lines. Since L and  $\alpha^{-1}L$  belong to the same  $<\sigma>$ -orbit in  $\mathcal{L}$ , only d/2 of these d lines belong to different orbits. Let these lines be  $L_1, L_2, \ldots, L_{d/2}$ . Then  $L_1^{<\sigma>}, L_2^{<\sigma>}, \ldots, L_{d/2}^{<\sigma>}$  are  $<\sigma>$ -orbits in  $\mathcal{L}$  whose orbit under  $<\omega>$  is of length r. Therefore, the number of  $<\omega>$ -orbits in  $\Omega$  of length r is d/2r. This is also the number of  $\Gamma L(1, 2^{2n})$ -orbits in  $\mathcal{L}$  of length  $r(2^{2n}-1)$ . This gives d/2r pairwise nonisomorphic such designs  $\mathcal{D}_L$  whose automorphism group satisfies

$$Aut(\mathcal{D}_L) \cong A\Gamma^{3,r}L(1,2^{2n}).$$

We have proved the following proposition.

**Proposition 7** Let r be an odd divisor of n such that  $n/r \not\equiv 0 \pmod{3}$  and  $d = deg(H_r(x))$  where  $H_r(x)$  is the polynomial defined in (5). The number of nonisomorphic flag-transitive  $2 \cdot (2^{2n}, 4, 1)$  designs (from Construction 1) whose automorphism group is isomorphic to  $A\Gamma^{3,r}L(1, 2^{2n})$  is d/2r.

## Acknowledgment

The author would like to thank Prof. Akihiro Munemasa for helpful discussions.