<table>
<thead>
<tr>
<th>Title</th>
<th>Another proof of Hiramine's theorem on three-dimensional Schur rings (Algebraic Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Atsumi, Tsuyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1109: 101-105</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63306</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Another proof of Hiramine's theorem on three-dimensional Schur rings

Tsuyoshi Atsumi
Department of Mathematics
Faculty of Science, Kagoshima University, Kagoshima, 890 Japan
atsumi@sci.kagoshima-u.ac.jp

1 Introduction

Let G be a finite group. For a subset S of G, let $S^{-1} = \{x^{-1} | x \in S\}$, $\overline{S} = \sum_{x \in S} x \in C[G]$. Let $G = S_0 \cup S_1 \cup S_2$ be a partition of G of order n^2 such that $S_0 = \{1\}, S_1 = S_1^{-1}, S_2 = S_2^{-1}$ and $\overline{S}_i \overline{S}_j = \sum_{k=0}^{2} \nu_{ij}^k \overline{S}_k$, where ν_{ij}^k are nonnegative integers $(0 \leq i, j \leq 2)$. The subring $\mathbb{R} = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle$ of $\mathbb{Z}[G]$ is called a three-dimensional (3D) Schur ring over G. It is well known that the concept of a (3D) Schur ring is equivalent to that of a strongly regular Cayley graph (cf. [1]). We say that \mathbb{R} is rational if the eigenvalues of the corresponding strongly regular Cayley graph are rational. \mathbb{R} is called primitive if S_i generates G for all $i \neq 0$. \mathbb{R} is said to be of (n, r)-type if $|S_1| = r(n-1)$ for some $r (1 \leq r \leq n)$. We here note that by definition \mathbb{R} is a Schur ring of (n, r)-type if and only if it is of $(n, n-r+1)$-type.

We now give an example.

Example 1 Let G be an group of order n^2. Let $\{H_1, H_2, \ldots, H_r\}$ $(1 \leq r \leq n)$ be a partial spread of G with degree r. We set $S_0 = \{1\}, S_1 = H_1 \cup H_2 \cup \ldots H_r - \{1\}, S_2 = G - S_0 \cup S_1$. Then $\langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle$ is a Schur ring of (n, r)-type over G.

We note that the Schur ring of the example above satisfies an equation

$$\overline{S}_1^2 = r(n-1)\overline{S}_0 + (n + r^2 - 3r)\overline{S}_1 + r(r-1)\overline{S}_2.$$

[A]
A Schur ring of \((n, r)\)-type is said to be of Latin square type [2] if it satisfies \([A]\).

We state a conjecture due to [2].

Conjecture 1 Let \(R = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle\) be a Schur ring of \((n, r)\)-type over an abelian group \(G\) of order \(n^2\). Then \(R\) is of Latin square type.

Hiramine [2] verified the conjecture for the case \(n > f'(r)\), where \(f'(r) = 4r^5 - 8r^4 - 2r^3 - 10r^2 - 3r - 1\).

In this note we shall verify the conjecture for the case \(n > f(r)\), where \(f(r) = r^5 - 2r^4 + r^3 + 3r^2 - r\).

Notation. We follow the notation and terminology of [2].

2 Preliminary results

Assume that \(R = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle\) is a Schur ring of \((n, r)\)-type over a group \(G\) of order \(n^2\). By [3] we have

Lemma 1 The following hold.

(i) \(R\) is primitive unless \(r \in \{1, n\}\).

(ii) \(R\) is rational.

In the rest of paper let us assume that \(R = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle\) is a Schur ring of \((n, r)\)-type over an abelian group \(G\) of order \(n^2\). We have the following, which is due to [2].

Lemma 2 Set \(\overline{S}_1^2 = a\overline{S}_0 + b\overline{S}_1 + c\overline{S}_2\), where \(a, b\) and \(c\) are some nonnegative integers. Then,

(i) \(a = r(n - 1)\) and \((c - r^2)n + r^2 + (b - c + 1)r + c = 0\).

(ii) If \(n > 2r - 1\), then \(c\) is even.

(iii) Set \(m = \sqrt{(b - c)^2 + 4(rn - r - c)}\). Then \(m\) is an integer and \(m|n^2\).

Lemma 3 \(c \neq 0\).

Proof. If \(c = 0\), then \(R\) is non-primitive. This fact contradicts Lemma 1 (ii).
Lemma 4 If $r = 1$, then the conjecture is true.

Proof. If $r = 1$, then $(n-1)^2 = (n-1) + b(n-1) + c(n^2 - (n-1))$. From this we see that $c = 0$ and $b = n - 2$, which show that \mathcal{R} is of Latin square type.

3 Sketch of Proof

If $c = r^2 - r$, then $b = n + r^2 - 3r$ and so the conjecture is true. Our proof is by contradiction. Therefore, we assume that $2 \leq r \leq n-1$, and $c \neq r^2 - r$.

Lemma 5 $c \neq r^2$.

Proof. See [2].

Lemma 6 $2 \leq c \leq r^2 - 1$.

Proof. By Lemma 2 (i),

$$c = r^2 + \frac{r^3 - 2r^2 - (b+1)r}{n-r+1}$$

$$< r^2 + \frac{r^3 - 2r^2 - r}{f(r) - r + 1}$$

$$< r^2 + 1.$$

Hence $c \leq r^2 - 1$ by Lemma 5. Lemmas 3 and 2 show that $2 \leq c$. Assume $g = r^2 - c$, where $1 \leq g \leq r^2 - 2$. Set $d = g(n+1)/r$. Then d is a positive integer. After some calculations we have the following lemma, which is due to Hiramine [2].

Lemma 7

$$(gd + 2r^2 - 2rg - g + gm)(2(r - g)^2(r^2 - g)).$$

Proof. See [2].

We now distinguish two cases.

(i) The case when $2 \leq c < r^2 - r$. The following is a key to our proof of the conjecture.
Lemma 8 If $n > f(r)$, then

$$m^2 - n^2 = ((r - c/r)^2 - 1)n^2 + (2c^2/r^2 + 2c/r + 2r - 2r^2)n$$
$$+ 1 - 2c + c^2/r^2 + 2c/r - 2r + r^2$$
$$> 0.$$

Proof. Set $h(n) = r^2(m^2 - n^2)$. Recall that $g = r^2 - c$. So $r + 1 \leq g < r^2 - 1$. Hence

$$r^2(1 - 2c + c^2/r^2 + 2c/r - 2r + r^2) > 0.$$

(B) Observe that in case (i)

$$(r^2 - c)^2 - r^2 > 0.$$

(C) From (B) and (C) it follows that

$$h(n) > h'(n) = ((r^2 - c)^2 - r^2)n^2 + (2c^2 + 2cr + 2r^3 - 2r^4)n$$
$$= n((r^2 - c)^2 - r^2)n + 2c^2 + 2cr + 2r^3 - 2r^4$$
$$> 0, \text{ when } n \geq -1(2c^2 + 2cr + 2r^3 - 2r^4)/(r^2 - c)^2 - r^4).$$

On the other hand, since $r + 1 \leq g < r^2 - 1$, it follows that $2r^3 - 3r - 1 > -1(2c^2 + 2cr + 2r^3 - 2r^4)/(r^2 - c)^2 - r^2)$. Hence if $n(> f(r)) > 2r^3 - 3r - 1$, then $h(n) > 0$. This completes the proof of this lemma.

So if $n > f(r)$, then $m > n$. From this inequality and Lemma 7 we have

$$gd + 2r^2 - 2rg - g + gn < 2(r - g)^2(r^2 - g).$$

(D) Since $gd > gn$, substitution of gn in gd of the inequality (D) yields

$$2gn < 2(r - g)^2(r^2 - g) - 2r^2 - 2rg + g.$$

So

$$n < [(r - g)^2(r^2 - g) - r^2 - rg + g/2]/g.$$

(E) Since $r + 1 \leq g \leq r^2 - 2$, the right hand side of (E) is less than $r^4 + r^3 - 5r^2 - 7r - 1/2$, which contradicts our assumption. So we complete the proof of our conjecture in this case.

(ii) The case when $r^2 - r < c \leq r^2 - 1$. Elaborate arguments show that if $n > f(r)$, then $gn/r \leq m$. From this inequality and Lemma 7 we have a contradiction, so we complete the proof of our conjecture.

\blacksquare
References

