Another proof of Hiramine’s theorem on three-dimensional Schur rings

Tsuyoshi Atsumi (厚見寅司)
Department of Mathematics
Faculty of Science, Kagoshima University, Kagoshima, 890 Japan
atsumi@sci.kagoshima-u.ac.jp

1 Introduction

Let \(G \) be a finite group. For a subset \(S \) of \(G \), let \(S^{-1} = \{ x^{-1} | x \in S \} \), \(\overline{S} = \sum_{x \in S} x (\in C[G]) \).

Let \(G = S_0 \cup S_1 \cup S_2 \) be a partition of \(G \) of order \(n^2 \) such that \(S_0 = \{1\}, S_1 = S_1^{-1}, S_2 = S_2^{-1} \) and \(\overline{S_i} = \sum_{k=0}^{2} \nu_i^k \overline{S_k} \), where \(\nu_i^k \) are nonnegative integers (0 \(\leq i, j \leq 2 \)). The subring \(\mathcal{R} = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle \) of \(Z[G] \) is called a three-dimensional (3D) Schur ring over \(G \). It is well known that the concept of a (3D) Schur ring is equivalent to that of a strongly regular Cayley graph (cf. [1]).

We say that \(\mathcal{R} \) is rational if the eigenvalues of the corresponding strongly regular Cayley graph are rational. \(\mathcal{R} \) is called primitive if \(S_i \) generates \(G \) for all \(i \neq 0 \). \(\mathcal{R} \) is said to be of \((n,r)\)-type if \(|S_1| = r(n-1) \) for some \(r (1 \leq r \leq n) \). We here note that by definition \(\mathcal{R} \) is a Schur ring of \((n,r)\) - type if and only if it is of \((n,n-r+1)\)-type.

We now give an example.

Example 1 Let \(G \) be an group of order \(n^2 \). Let \(\{H_1, H_2, \ldots, H_r\} \) (1 \(\leq r \leq n \)) be a partial spread of \(G \) with degree \(r \). We set \(S_0 = \{1\}, S_1 = H_1 \cup H_2 \cup \ldots H_r - \{1\}, S_2 = G - S_0 \cup S_1. \) Then \(\langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle \) is a Schur ring of \((n,r)\)-type over \(G \).

We note that the Schur ring of the example above satisfies an equation

\[
\overline{S}_1^2 = r(n-1)\overline{S}_0 + (n+r^2-3r)\overline{S}_1 + r(r-1)\overline{S}_2. \tag{A}
\]
A Schur ring of (n, r)-type is said to be of Latin square type [2] if it satisfies [A].

We state a conjecture due to [2].

Conjecture 1 Let $\mathcal{R} = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle$ be a Schur ring of (n, r)-type over an abelian group G of order n^2. Then \mathcal{R} is of Latin square type.

Hiramine [2] verified the conjecture for the case $n > f'(r)$, where $f'(r) = 4r^5 - 8r^4 - 2r^3 - 10r^2 - 3r - 1$.

In this note we shall verify the conjecture for the case $n > f(r)$, where $f(r) = r^5 - 2r^4 + r^3 + 3r^2 - r$.

Notation. We follow the notation and terminology of [2].

2 Preliminary results

Assume that $\mathcal{R} = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle$ is a Schur ring of (n, r)-type over a group G of order n^2. By [3] we have

Lemma 1 The following hold.

(i) \mathcal{R} is primitive unless $r \in \{1, n\}$.

(ii) \mathcal{R} is rational.

In the rest of paper let us assume that $\mathcal{R} = \langle \overline{S}_0, \overline{S}_1, \overline{S}_2 \rangle$ is a Schur ring of (n, r)-type over an abelian group G of order n^2. We have the following, which is due to [2].

Lemma 2 Set $\overline{S}_1^2 = a\overline{S}_0 + b\overline{S}_1 + c\overline{S}_2$, where a, b and c are some nonnegative integers. Then,

(i) $a = r(n - 1)$ and $(c - r^2)n + r^2 + (b - c + 1)r + c = 0$.

(ii) If $n > 2r - 1$, then c is even.

(iii) Set $m = \sqrt{(b - c)^2 + 4(rn - r - c)}$. Then m is an integer and $m | n^2$.

Lemma 3 $c \neq 0$.

Proof. If $c = 0$, then \mathcal{R} is non-primitive. This fact contradicts Lemma 1 (ii).

\blacksquare
Lemma 4 If \(r = 1 \), then the conjecture is true.

Proof. If \(r = 1 \), then \((n-1)^2 = (n-1) + b(n-1) + c(n^2 - (n-1))\). From this we see that \(c = 0 \) and \(b = n - 2 \), which show that \(\mathcal{R} \) is of Latin square type. □

3 Sketch of Proof

If \(c = r^2 - r \), then \(b = n + r^2 - 3r \) and so the conjecture is true. Our proof is by contradiction. Therefore, we assume that \(2 \leq r \leq n-1 \), and \(c \neq r^2 - r \).

Lemma 5 \(c \neq r^2 \).

Proof. See [2]. □

Lemma 6 \(2 \leq c \leq r^2 - 1 \).

Proof. By Lemma 2 (i),

\[
c = r^2 + \frac{r^3 - 2r^2 - (b+1)r}{n-r+1} < r^2 + \frac{r^3 - 2r^2 - r}{f(r) - r + 1} < r^2 + 1.
\]

Hence \(c \leq r^2 - 1 \) by Lemma 5. Lemmas 3 and 2 show that \(2 \leq c \). □

Assume \(g = r^2 - c \), where \(1 \leq g \leq r^2 - 2 \). Set \(d = g(n+1)/r \). Then \(d \) is a positive integer. After some calculations we have the following lemma, which is due to Hiramine [2].

Lemma 7

\[(gd + 2r^2 - 2rg - g + gm)|2(r - g)^2(r^2 - g)\]

Proof. See [2]. □

We now distinguish two cases.

(i) The case when \(2 \leq c < r^2 - r \). The following is a key to our proof of the conjecture.
Lemma 8 If \(n > f(r) \), then
\[
m^2 - n^2 = ((r - c/r)^2 - 1)n^2 + (2c^2/r^2 + 2c/r + 2r - 2r^2)n
+ 1 - 2c + c^2/r^2 + 2c/r - 2r + r^2
> 0.
\]

Proof. Set \(h(n) = r^2(m^2 - n^2) \). Recall that \(g = r^2 - c \). So \(r + 1 \leq g < r^2 - 1 \). Hence
\[
r^2(1 - 2c + c^2/r^2 + 2c/r - 2r + r^2) > 0. \tag{B}
\]
Observe that in case (i)
\[
(r^2 - c)^2 - r^2 > 0. \tag{C}
\]
From (B) and (C) it follows that
\[
h(n) > h'(n) = ((r^2 - c)^2 - r^2)n^2 + (2c^2 + 2cr + 2r^3 - 2r^4)n
= n[(r^2 - c)^2 - r^2)n + 2c^2 + 2cr + 2r^3 - 2r^4]
> 0, \quad \text{when } n \geq \frac{-1(2c^2 + 2cr + 2r^3 - 2r^4)/((r^2 - c)^2 - r^2)}.
\]
On the other hand, since \(r + 1 \leq g < r^2 - 1 \), it follows that \(2r^3 - 3r - 1 > -1(2c^2 + 2cr + 2r^3 - 2r^4)/((r^2 - c)^2 - r^2). \) Hence if \(n(> f(r)) > 2r^3 - 3r - 1 \), then \(h(n) > 0 \). This completes the proof of this lemma.

So if \(n > f(r) \), then \(m > n \). From this inequality and Lemma 7 we have
\[
gd + 2r^2 - 2rg - g + gn < 2(r - g)^2(r^2 - g). \tag{D}
\]
Since \(gd > gn \), substitution of \(gn \) in \(gd \) of the inequality (D) yields
\[
2gn < 2(r - g)^2(r^2 - g) - 2r^2 - 2rg + g.
\]
So
\[
n < [(r - g)^2(r^2 - g) - r^2 - rg + g/2]/g. \tag{E}
\]
Since \(r + 1 \leq g \leq r^2 - 2 \), the right hand side of (E) is less than \(r^4 + r^3 - 5r^2 - 7r - 1/2 \), which contradicts our assumption. So we complete the proof of our conjecture in this case.

(ii) The case when \(r^2 - r < c \leq r^2 - 1 \). Elaborate arguments show that if \(n > f(r) \), then \(gn/r \leq m \). From this inequality and Lemma 7 we have a contradiction, so we complete the proof of our conjecture. ■
References

