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Projective Planes and Hadamard
Designs

Chihiro Suetake(GEAT +18)
Amagasaki-minami High School, Amagasaki, Hyogo 660-0804, Japan

1. Definition

Let D be a symmetric (v, k, ) design, then 4n —1 < v <n®+n+ 1, where
n = k— A(the order of D). If v = 4n—1 ( therefore k = 2n—1, A = n—1), then
D is a Hadamard design of order n. If v = n®*+n+1(therefore k = n+1,A = 1),
then D is a projective plane of order n.

In the note, we show that there are some relations between projective planes
with some small automorphism group and Hadamard designs.

Let IT = (P, L) be a projective plane of order n, where P is the point set
and £ is the line set. Then an automorphism ¢ of IT is a perspectivity if ¢
fixes all poins on a line [ of II and all lines through a point P of II. The line
l is called the azis, and the point P the center of . If P € I, we call ¢ an
elation, and if P ¢ I, we call ¢ a homology. Clearly, if ¢ is an elation, then
o(p)|n, and if ¢ is a homology, then o(p)|n — 1.

2. The Elation Type
Throughout this section we assume the following.

HYPOTHESIS 2.1. LetII = (P, L) be a projective plane of even order n(> 8).
Let G be an elation group of order —%n of IT with a common center Py and a
common azis ly.

For example, all translation planes of even order 2¢(> 8) satisfy the hy-
pothesis.

Let (Py) = {lo,11," - -, ln}(the set of lines through the point Fy) and (ly) =
{Py,P,,-++, P} ( the set of points on the line ly). Let Py, Py1,---,Ps, be
G-orbits on P and Ly, Ly, -+, Lan G-orbits on £. Then we may assume the



following: _
Pi={F}, Li={L} (0<i<n),

1
1Pl = |Li] = % (n+1<1i<3n),
(lt) = Pn+i ) 7)2'n+i; (Pz) = Ln—}—é U £2n+i (1 S 7 S 'n)
If Q is a point orbit and A is a line orbit of G, set (2 A) = |2 (1)),

where [ is a line in A. Here we remark that the number (2 A) depends only

on § and A, not on I. For a subset H of G, set H = Y uen M€ Z[G]) and
H'={p ' |p€ H}.

Set m;; = (P; Li) for 4,5,0 < 4,5 < 3n, M = (myj)o<ij<an and L =
("Lij)n-f-lgi,jSBn = (l'ij)OSz',jS%,——l- Choose a, point P, € P; and a line li € L; for
i,n+1 <1< 3n. Set Dy = {p €GP € (l;)} fori,n+1 <1 < 3n. Clearly
| Dl = my;.

LEMMA 2.2. Let n+1 <4,i’ < 3n. Then Sy, 1<jcan Dy Diy
n o if i=4,

=¢ 0 if {,i}e{{n+L,2n+1},{n+2,2n+2},---,{2n,3n}},
G otherwise.

Proof. Set @ = 3, 1<j<3n D:J\“ll‘j;] Assume that i = 7. Then & =
Cnt1<i<an Pyrels)uec B = (Pat1 U Pangr) N (1)] + |(Prya U Ponga) N (1) +
o [(Pon U Pan) 0 (L) = n.

Assume that {7,¢'} € {{n+1,2n+1},{n+2,2n+2},---,{2n,3n}}. Then
there don’t exist p,§ € G such that P € (l;) and Pj* € (ly). Therefore
® = Cni1gican pirels), Biely), meea € =0.

Assume that i # ¢’ and {i,¢'} ¢ {{n+1,2n+1},---,{2n,3n}}. Let n € G.
Then there exists (j,£) € {n+1,n+2,---,3n} x G such that [;’Nly = P{. Set
p=E&n~L. Since P# = f)jfn_l € (I;) and P € (Iy), we get p € Dyj,& € Dy;
and 1 = p~ €. Next suppose that ' € Dy, & € Dyj and = p/~'¢'. These
yield ,"N 1y = P:,vg'. Therefore P* = P;¢. Hence j = j/,& = ¢ and p = .
Thus ® = G. '

We get the following lemma by considering the action of the trivial charac-
ter of G on the equations of Lemma 2.2.

LEMMA 2.3. Letn +1< 7:, 7 < 3n. Then Zn+1$j$3n MMy g
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n if i=1,
= 0 'Lf {i7i’} € {{'n'J" 1’2n+ 1}1{n+ 212n+ 2}1"':{2"'13”}},

%n otherwise.

LEMMA 24. i) l; j=00r1 for0<4,5 <2n-—1.
G)If0<i<2n-1,0<j<n—1land (5,)) ¢ {(k+n-1)0<k<n—1}
then l; j+ l; jyn—1 = 1.

(i) If 0<i<n—1,0<j<2n—1and(i,j) ¢ {(kk+n—-1)0 <k <n—1}
thenl; j+liyn-1 ;=1

Proof. (i) follows from Lemma 2.3. Since G is an elation group with the
center P and the axis [y, we get (ii) and (iii).

We may assume that lpo =lp1 = =lpp-1=landljg=lo= =
l.-10 = 1 by changing the labels of P;’s and L;’s appropriately. Therefore
lon=lopr1 =+ =lpom1=0and l,g=1Ilpy10=""=logs_10 = 0. Set

N = (i jhigijsn-1-
LEMMA 2.5. Let n = 0(mod 4). Setk = in—1and A= in —1. Then
N'N=(k—XNI+)\

,where I is the identity matriz and J s the all 1 matriz.

Proof. Let 1 <1 < n — 1. By considering the inner product of the 0 th row
1---10---0 -0 of L and the i therow of L, we get {1 < k<n -1, =1} =
%nn—— 1 by Lemma 2.3. Therefore the number of 1’s contained in each row of
N is n - 1.

Next let 1 <i<j<n-—1. Then we want to show that the inner product
of the i th row of N and j th row of N is in — 1. By changing the labels of
P,’s we may assume that the ¢ th row of N is uo -0 and the j th row

211 1 2n

of Nis 1- 10 01 10 -+0. Then thesthrowof Lis1---10--:0
\....\,..-_/ H/—"\W—/

1 - 7‘2 1 —_
211 1 -7y FN—T2

Nh—‘

1---1 and the jthrowof Lisl.--1 0---0 1---1 0---0 1- 1 0---0
L - - N i W R R — \—\/—/\-v—’

n ritl In-l-ry 72 In—rotldry fn—l-rp T2

[Sled

92



1---1. By the above argument, we have

[

51&—1’2
1
() ri+re= -Q—n— 1.

By considering the inner product of the 7 th row of L and j th row of L, we
get 14+ 7 4 3n —rg = In. Therefore

(%) 71— 1y = —1.

From (xx) and (x), we have r; = in — 1. Therefore
(li i lz 2" lz 'n—l) t(lj 1 lj 9" 'lj n—l) =T = %’Il — 1. Thus the lemma holds.

EXAMPLE 2.6. If n = 8, then for example

~——
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—

Lemma 2.5 yields the following theorem.

THEOREM 2.7. Let I1 be a projective plane of order n(> 8). Ifn = 0(mod 4)
and I1 has an elation group G of order %n with a common center Py and a
common axis lo, then there ezists a Hadamard design with parameters (n —
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1
1,3n—1,in —1).

Ko and Ray-Chaudhuri [4] and Arasu and Jungnickel [1] gave some cor-
respondences from affine difference sets of order n with n = 0(mod 4) to
Hadamard designs with parameters (n—1, -;-n -1, %'n —1). But the correspon-
dence used in the proof of Theorem 2.7 is differ from these correspondences.
Since translation planes of even order satisfy the assumption of Theorem 2.7,
we get the following result. |

COROLLARY 28. Let § = {W;] — 1 < i < n — 1} be a spread of a 2m
dimensional vector space V over GF'(q)(that is, S be a set of ¢™ + 1 mutually
disjoint m-dimensional subspaces of V'), where ¢ = 26, me > 3 and n = q™.
Let U be a subgroup of (W_1,+) of order in. Then N = (I; j)1<ij<n—1 15 an
incidence matriz of a Hadamard design with parameters (n—1, %n— 1, %n —1),

where Iy ;= | * fveUtWs (i 1<ij<n—1.
0 otherwise

3. n=12

In this section we consider the converse statement of Theorem 2.7. We get
the following theorem from section 2.

THEOREM 3.1. Let n = 0(mod 4)(n > 8), G be a group of order 3n and

N = (lij)1<ij<n—1 be an incidence matriz of a Hadamard design with pa-
rameters (n - 1, %n - ]., %n - 1) Set S = (Si j)OSi,jS'n—la where 845 = lz j
fori,5,1 < i,7 <m—1andsg; = si0 =1 fori,0 < i <n-—1 Set

S" = (8i {Josijsn—1 where s; j+ s; 5 =1 for1,5,0 <4,j <n—1 and
. S s
L= ( s g ) = (L j)o<i,j<on—1-

If

{{gij}fOT some g ;€G  if i j=1,
Dz’j:

10) otherwise

satisfy the condition

*) > Dij'Dy;=G

0<j<2n~1
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fori,i’ such that0 <i#i <2n—1and {i,i'} ¢ {{0,n},{l,n+1},---,{n—
1,2n — 1}} , then there exists a projective plane I1 of order n such that G in-
duces an elation group of I1 of order %n with a common center and a common
azis.

In the rest of this section, we consider the case n = 12. Suppose that there

s s .
g g ) = (I; j)ogij<os and D; 5 (0 < 4,5 <
23) satisfying the conditions of Theorem 3.1(see [3]). Since the Hadamard
design with parameters (11,5, 2) exists only one, we may assume that

exist a group G, a matrix L = (

(1 11111111111)
1010111000010
100101110001
110010111000
101001011100
g_|100100101110
1000100101711
110001001011
1110001007101
111100010010
101110001001
\110111000°100)

We consider the case that G is abelian. Then (G, -) & (Zg,+). We want to
determine D; ;’s (0 <4 < 7,0 < j < 23). By changing the base points and the
base lines and the generator of G, if necessary, we can write (D; j)o<i<70<j<03=

o o o0 © o o0 o0 O0 0o o ©0 0
0 ap ay; a3 a3 aq 0 0 0 0 o}
0 bg by by by by b5 O 0 bg by
0 <o 1 ez €3 <4 5 <3 0 er
0 dg dq dg dg dy dg dg dy 0

0 eqQ ey ey eg eq es eg er eg eg

0 fo f1 Fo . f3 fa 5 fe fr fg fo f10

0 a0 4] 92 93 94 95 96 97 98 99 910

, where a9 € {1,2,3}. Here we omit entries D; ;’s if they are empty sets and
the notation { } of each set D; ; = {*}. For example, ¥ o< <23 D;}lli\ ;=0
means {0, ag — by, a3 — by, —bs, —bg, —b7} = Zg. But it follows that there is no
{a:}, (b},

{e;},{d;},{e;}, {fi} and {g;} satisfying the condition (x) of Theorem 3.1, us-
ing programs of sortings. Therefore we have the following theorem.

cg
dg

95

cg
dg
€10



96

THEOREM 3.2. There is no projective plane of order 12 with an elation of
order 6.

4. The Homology Type
Throught this section we assume the following.

HYPOTHESIS 4.1. Let IT = (P, L) be a projective plane of odd order n(> 7).
Let G be a homology group of I of order 1(n — 1) with a common center By
and a common axis ly.

Let (lo) = {Pl,Pg, cee, Pn+1} and l.,, = PQPz (]. S 3 S 'l’l+1) Let P(),Ph e ,P3n+3
be G-orbits on P and Ly, L4, -+, L3,43 G-orbits on £. Then we may assume
the following:

Pi={F}, Li={L} (0<i<n+1),
[Pl = L] = %(n—- 1) n+2<i<3n+3).

(Li) = Poyiv1 U Pantive, (B) = Lpyir1 U Loprire (1<i<n+1).

If © is a point orbit and A is a line orbit of G, set (2 A) = |QN (1)], where
l is a line in A.

Set m; ; = (P; L;) for 4,5,0 < 4,5 < 3n+ 3, M = (m; ;)o<i j<ants and
L = (my j)nt2<ij<ants = (L j)o<ij<ant+1. Choose a point P; € P; and a line
li € Lifori, n+2 <1 <3n+4+3. Set D;; = {u € GIP# € (I;)} for
1, n+2 <4 < 3n+ 3. Clearly |D; ;| = m; ;. We get the following three
lemmas by the similar arguments as in section2.

LEMMA 4.2. Let n+2 < 4,7 < 3n+ 3. Then S 0c;cansabi 5 Di 5
(0 if =1,

=0 0 i {i,f}e{{n+2,2m+3},{n+3,2n+4},---, {20+ 2 3n+3}},
| G otherwise.

LEMMA 4.3. Letn +2 <4,%' <3n+3. Then ¥, o< jcani3Mi jMi
( n if i=17,
0 i {i,7'te{{n+2,2n+ 3}, {n+3,2n + 4},
-, {2n+2,3n + 3}},
| i(n—1)  otherwise.




LEMMA 44. i) l; j=00r1 for0<i4,j<2n+1.

(i) o=l 1="+=lant1 2241 =0,
lonri=lino=" =1y ony1 =0,
biyvio=Ilypo1 = =lopy1 n =0

() FO<i<2n+1, 0<j<nand(i,5) ¢ {(k, k),
(k+n+1,k')}0§ kgn} thenlz-j+lij+n+1 = 1.
(iv) If0<i<n,0<j<2n+1and (s,5) ¢ {(k, k),
(k,E+n+1)[0<k<n}thenl j+liny ;=1

We may assume that Iy = lpa =+ =y, =1landljg=lyg= -+ =
lno = 1 by changing the labels of P;’s and L;’s appropriately. Therefore
lontt =lonta = =loonp1 =0and lpy10 = lppa0 = -+- = lppy10- Set
N = (; j)i<i j<n- Then we have the following lemma by the similar argument
as in the proof of Lemma 2.5.

LEMMA 4.5. Let n = 3(mod 4). Set k = 3(n —1) and A = }(n — 3). Then
NN = (k- \I+XL

, where I is the identity matriz and J is the all 1 matriz.

Lemmas 4.3, 4.4 and 4.5 yield the following lemma.

(n+1I (n—1)1

(n—1D)I (n+1)1 ) “here
J is the all 1 matriz of degree 2n + 2 and I is the identity matriz of degree
n+ 1. :

LEMMA 46. (xx%) L*L = }(n —1)J + } (
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EXAMPLE 4.7. Ifn =7, then for example

\
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Lemma 4.5 yields the following theorem.

THEOREM 4.8. Let I be a projective plane of order n(> 7). If n = 3(mod 4)
and 11 has a homology group G of order 3(n — 1) with a common center Py
and a common axis ly, then there exists a Hadamard design with parameters

(n, %(n - 1), }L(n - 3)).

Nearfield planes of order n(> 7) with n = 3(mod 4) satisfy the assumtion
of Theorem 4.8. Therefore we have the following corollary.

COROLLARY 4.9(cf. [2, p.97]). Let R = {ai,aq,--,a,} be a nearfield of
order q(> 7) with ¢ = 3 (mod 4) and S a subgroup of (R — {0},:) of or-

1 if a; — Z'ES, .. ..
der %(q - 1) Set mg 5 = { Zfa] . Jori,5,1 <14,7 < q. Then

0 otherwise
M = (my; j)1<ij<q 1 an incidence matriz of a Hadamard design with parame-

ters (q, (g — 1), (¢ —3)) .

Especially, when R is a finite field, the Hadamard design defined in Corol-
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lary 4.9 is known as Paley type. Thus we have the following corollary.

COROLLARY 4.10. The Hadamard design corresponding to Desarguesian
plane of order q with q =3 (mod 4) is Paley type with parameters (q, %(q -
1)1 i(q - 3))'

5. n=11

In this section we consider the converse statement of Theorem 4.8. We get
the following theorem from section 4.

THEOREM 5.1. Let n = 3(mod 4)(n > 7), G be a group of order 1(n—1) and
N = (I; j)1<i,j<n be an incidence matriz of a Hadamard design with parameters
(n, %(n -1), i—(n —3)) such thatl; ; =0 fori,1 <i <n. Set S = (s; j)o<i j<n,
where s; ; = l; ; for 1,5,1 < 4,5 < n, 90 = 0 and sp; = sjg = 1 for
i,1 <i < n. it Set S = (s; ;")o<i j<n wheres; j+s; / =1 fori,5,0<i#j7<n

and s; j/ =0 fori,0 <i < n. Suppose that the equation (* x x) of Lemma 4.6.

Then if
p. .| g} for somegi;eG if li;=1,
- ¢ otherewise
(0<4,5 <2n+1)

satisfy the condition

(*) ZOﬁjS?‘I’H—lDi j—‘lDi/ §= G

for 4,7 such that 0 < i # ¢ < 2n+1 and {i,i'} ¢ {{O,n+ 1},{1,n +
2},---,{n,2n+1}}, then there exists a projective plane Il of order n such that
G induces a homology group of I1 of order %(n —1) with a common center and
a COmmon axis.

In the rest of this section, we consider the case n = 11. Suppose that there

S g

g g ) = (& j)oci,j<os and
D; (0 < ¢,j < 23) satisfying the conditions of Theorem 5.2. Then there is
only one possibility for .S up to equivalence.

exist a group (G,-) & (Zs,+), a matrix L = (
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(011111111111 )
101111100000
100110011100
100001111010
100101000111
g_ 101000110101
101010001011
110010100110
110011010001
110100101001
111001001100
\11 1100010010}

We want to determine D; ;’s satisfying the condition (x) of Theorem 5.2. By
changing the base points, the base lines and the generator of &, we may
assume that D; ¢ = Dy = Dijy110 = Doiynn = {0} for 2,1 <12 < 11,
Digs = Di19 = Dyzq = {0} and Dy 3 = {1}. Using a computer, we get
exactly one possibility for (D; j)o<i j<2s. Therefore we have the following the-
orem.

THEOREM 5.3. The projective plane of order 11 with a homology of order
5 is desarguesian.
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