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1. Introduction

A (m,u,k,)) relative difference set (RDS) in a group G of order mu relative to a normal
subgroup U of order u is a k-element subset R of G such that the number of elements in the
set {(r1,m2) |r,m2 € R, mry =g} forevery g€ G, g#1 is\ifgeG\Uor0ifgeU.
If k = u), we call R a semiregular RDS and its parameters are given by (uX,u,ul,}).
Semiregular RDS’s in abelian groups have been studied intensively in [1], [7], [8], [10],
[11]. Recently, J.A. Davis, J. Jedwab and M. Mowbray made two constructions of abelian
semiregular RDS’s in [3]. In one of their constructions, they considered (a,m,t)-building
sets(BS) on abelian groups and by applying group characters, they were able to construct
new sets of semiregular RDS’s in groups of non-prime power order.

In this article, we study semiregular RDS’s in some nonabelian groups, especially groups
G containing an abelian subgroup A of index 2 inverted by an element of G — A, say ¢. If
G has a semiregular RDS R relative to a normal subgroup U contained in A, then we can
represent R in the form R = S U Tt for some subsets S and T -of A. We may also show
that {S, T} is an (a,m,2)BS when 4 fo(t) for some suitable a € N and m € R.

In Section 3, we focus on (a,m,t)BS in a cyclic p-group where p is a prime and show
that

Theorem 3.9 Let {Si,...,S:} be an (a,m,t)BS in a cyclic p-group G relative to U. Then
U] > p".

As an application of this theorem, we show that for t = 2 we have
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Theorem 5.1 There is no semiregular RDS in Dypn.

As corollaries, we show that for a generalized quaternion or semidihedral group G, the order
of the forbidden subgroup U is at most 2 as stated in Corollaries 5.2 and 5.3 of Section 5.
In addition, we show in Theorem 5.4 that every generalized quaternion group G of order
27+ always contains a (27,2, 2",2" 1) RDS relative to U = Z(G), (U & Zs).

2. Preliminaries

In this séction, we define a semiregular RDS in a group and provide some basic concepts
essential to prove the main results.

Definition 2.1 A (m,u, k,\) RDS in a group G of order mu relative to a normal subgroup
U of order u is a k-element subset R of G such that the number of elements in the set
{(r1,72) | ri,m2 €R, Tir5 =g} foreveryg€ G, g#1isXifge G\U or0 ifge U.

We note that when k = ul, we call R a semireqular RDS. In this case, R has parameters
of the form (u),u,uX,A). f U =1, R is called a trivial semiregular RDS.

The next result about abelian RDS’s is well-known. A proof can be found in Pott’s book
[1], for example.

Result 2.2 Let G be an abelian group and f € C[G]. If x(f) = 0 for every non-principal
character x of G, then f = kG for some k € C.

Result 2.3 R is a (m,u,k,\) RDS in a group G relative to a normal subgroup U if and
only if Uz N R| =1 for every z € G.

Proof. Assume 01z, a2z € R, (¢1,a2 € U, a; # a3) and set 7y = a1z, r3 = azz. Then
rir3’ = aiaz' € U, a contradiction. Hence Uz N R| < 1. By semiregularity, R has
- parameters (uA,u,u), ). As |G : U| = |R| = u), we have [Uz N R| = 1 for every z € G.

ConVersely, if [UzNR| =1 then |G : U| = m = k. But R satisfies RR™! = k-1+XG-U)
and so k = Au, k > 1. Thus R is semiregular.

The following result due to Elliot and Butson[4] is basic in the study of relative difference
sets. '

Result 2.4 Let R be a (m,u,k,)\) RDS in a group G relative to a normal subgroup U
and let Uy be a normal subgroup of G contained in U. Set G = G/U,. Then R is a
(m,u/u1, k,u1)) RDS in G relative to U.

The next result is called the product construction for RDS’s in an abelian group. For a
proof, see [2] and [11]. ‘
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Result 2.5 ([2] , [11]) Let G be a group of order ukik;. Let Gy be a normal subgroup
of G and G, a subgroup of G such that G > U = G1 NG, with U] = u, |G1| = v*k,, and
|G2| = u?ky. If Ry is a (uky,u,uky, k1) RDS in Gy relative to U and R is a (ukz, u, uks, ks)
RDS in G, relative to U then R = R1R; is a (vPkiks,u, u?kika, uk1k2) RDS in G relative
toU.

For ease of computations, we dlstmgulsh a group 1 ring element from a set. If X =
{z1,%2,...,Za} is a given set, then by X we mean X = Y0, i, z; € X. Also, X~ X1 =
pIFIPE i for z; € X.

3. An (a,m,t)-Building Set in Zp.

In this section, we define building blocks and building sets of an abelian group as given
by Davis and Jedwab [2]. We then consider building sets in a cyclic p-group.

" Definition 3.1 A building block in an abelian group G with modulus m is a subset S of G
such that x(S) € {0,m} for every non-principal character x of G.

Definition 3.2 An (a,m,t)BS (t > 1) on an abelian group G relative to a subgroup U
is a collection {S1,...,S:} of building blocks in G with modulus m, |S;| = a for each
i€ {l,...,t} and

(i.) There exists a unique i € {1,...,t} such that x(S;) # 0 if x is non-principal on U,
and

(ii.) x(S:) =0 for e'véry i € {1,...,t} if x is principal on U.

We neXt define the m-th cyclotomic polynomial. For a more detailed discussion about
this topic, consult the book by Ireland and Rosen [5].

Definition 3.3 Let m be a positive integer and (, = €*"*/™, a m-th root of unity. We call
Fu(z)= ][ (z—¢) where1 < a <m, the mth cyclotomic polynomial.

(a,;m)=1
Throughout the rest of this section, we use the following hypothesis.

Hypothesis 3.4 Let G = (g) & Z,» and U be a subgroup of G of order p". Assume the
existence of {S1,...,St}, an (a,m,t)BS in G relative to U.

Notation 8.5 For ease of computations, we define the following:

Sii= Y, axg® and fi(z) = ) apz®, ay €{0,1}.

0<k<pn 0<k<p"

Remark 3.6 Let x € G* and set { = x(g). Then x(’S\,) = fi({).
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Lemma 3.7 X(S’:) =0 if and only if Fpa(z) | fi(z).
Proof. By Remark 3.6, we have the lenma. |

Theorem 3.8 Under Hypothesis 3.4, the following hold:

(i) for every d > n —r, there exists a unique j € {1,2,...,1} such that F(z) ) fi(z),
and :

(ii.) Fp(z)Fp(z) - Fpn—r(z) | fi(z) for every i € {1,2,...,1}.

Proof. Let { be a primitive p?-th root of unity, 1 < d < n. Then (*""" = 1 if and only if
p"" > p?if and only if n — r > d. Let x € G* such that x(g) = {. Then x;u = Xo if and
only if n—r > d and therefore x|y # Xo if and only if n —r < d. We consider the following
cases: | ,

(i.) Assume d > n —r so that x|y # Xo. By the definition of a BS, there exists a unique
j such that |[x(S;)| = m # 0. Now |£;({)| = m and so by Lemma 3.7, Fyu(z) } f;().

(ii.) Assume n —r > d so that x;y = xo. By the definition of a BS, x(S;) = 0 for every
i€ {1,2,...,t}. Now f;(¢) = 0if and only if Fja(z) | fi(z) foreveryd = 1,2,...,n—r. Since
Fy(z), Fpa (), - -+ , Fyn—r(z) are relatively prime, we have Fy(z) Fpa(z) - - - Fyn—r (z) | fi(z) for
every i € {1,2,...,t}.

The next theorem is of great importance to prove the results in the proceeding sections.
It establishes that the order of the forbidden subgroup U of an RDS in a cyclic p-group must
be greater than or equal to p*, where ¢ is the number of building blocks in the corresponding
building set contained in the given cyclic p-group relative to U. :

‘Theorem 3.9 Let {Si,...,S:} be an (a,m,t)BS in a cyclic p-group G relative to U. Then
U} > p*.

Proof. Set F(z) = Fp(z)Fp(z)--- Fpnr(z) and I = {n — 7+ 1,...,n}. Then there exist
sid € {0,1} for 1 <i <t, d € I and ¢;(z) such that ’

@) = F@)(T] Fs(e)sia) (o)

el :
For a fixed d € I, we have s14+ s0a+ ...+ 8.4 = t — 1 by Theorem 3.8(i). Assume
Sim—rl = Sip_r42 = **+ = 8in = 1 for some 1. Then F,(z)Fz(z)--- Fpn(z) | fi(z) and
so x(8;) = 0 for every x € G*, x # Xo. By Result 2.2 S; = G, a contradiction. Thus

Y sa<r—1.
del i i
We next compute 3 1<iciderSia  in two ways. First, we have

> sig = 3 O si) Str—1)=tr—t.

1<i<t,del 1<i<t del
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On the other hand,
Yo o su=Y(> sa)=) t-)=rt-1)=tr—r
1<i<t,del del 1<ist der

Thus t < r and so |U| = p" > p'.
4. RDS in Dihedral Groups

Lemma 4.1 Let G be a group containing an abelian subgroup A of index 2 inverted by an
element t € G . Assume that a Sylow 2-subgroup of A is cyclic. If U(# G) is a normal
subgroup of G, then either U < A or |G : U|=2.

Proof. We suppose U £ A and show that |G : U| =
(Step 1) We may assume that t € U:

Let w € U — A. Then w = at for some a € A and so wlzw = ta zat = t~ 't for
any z € A. Hence w inverts A and G = (w)A.

(Step 2) We may assume that o(t) = 2 or 4:

Set P = 03(4), Q = O(A) and s = t%, where o(t) = 2°-d (2 Jd). Then G = (s)A and s
inverts A. As s is an element of order 2¢ and inverts A( s?), we have s? = s71s%s = (s%)71.
Hence s* = 1.

(Step 3) Z(G) = Ca(t) or G = Zy:

Assume Z(G) £ A. Then G = Z(G)A and so A is abelian. Hence, for any z € A,
z =ttt = 7! and so 22 = 1. Thus A & Z, by assumption. Hence G = Z;. Assume
Z(G) < A. Then Z(G) < ANCg(t) = Ca(t). Clearly Ca(t) < Cg({4,1)) = Z(G). Thus
Z(G) = Calt)-

By steps 1-3, we may assume that ¢ € U and o(t) = 2 or 4.

First assume that 2 f|A]. Then Cg(t) = (t)Ca(t) = (t). Hence
|G : Cg(t) = |G|/2 and so [U| > 1+ {t* | z € G} =1+ |G|/2. Thus U = G, a
contradiction. '

Assume that 2 | JA|. Then |Cg(t)] = |(t) - Ca(t)] = 4. Hence |{t* |z € G}| = |G :
Cqa(t)| = 1|G| and so |U| > ;|G| + 1. In particular, |G : U] < 3. Let z be any element of
G of odd order. Then, as t 'zt = ! and t22t> = z, we have z~ltz = z 12t at)t ™! =
712214 = £~2¢. Thus t, 2%t € U. From this we have, 2? € U and so z € U. Therefore
we have U > O(G). Thus |G :U| =

Remark 4.2 Under the hypothesis of Lemma 4.1, we may assume that
o(t) =2 or4.

Throughout the rest of this section, we assume following:
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Hypothesis 4.3 Let G be a group having a normal subgroup A of index 2 inverted by an
elementt € G — A of order 2 or 4. Assume that G has a (Au 4, u,A) RDS R relative to
U and that G % Z,.

Lemma 44 U<A

Proof. Suppose false. Then |G : U| = 2 by Lemma 4.1. Hence u\ = 2 and so G & Z,,
contrary to Hypothesis 4.3. :

 Lemma 4.5 Set S = RN A and T = Rt-'N A. Then
(i) S,T CAand R=SUTt

() |S| = |T| = J)u

(iti) ST(1+ %) =

(iv) 8SD + FTED = ud + A(A - D).

Proof. By Result 2.3, each coset Uz (z € G) contains exactly one element of R. Hence we
have |S| = |A/U| = 3)\u and |T't| = |At|/|U]| = 1\u. Moreover, SUTt C R. Thus (i) and
(ii) hold.
By (i), READ = (S + Tt) (S( D+ t‘lT(-l))
= SS‘-D + TSCD 4 17D 4 PTCD,
On the other hand, Tt = T2(-1§CDt)t1 = T428t-1 = STt as A is abelian and
t2 € A. Similarly, ST = §T4! = (8Tt*)t. Hence we have RR™) = 35D 4
PreY 4 (1+ t2)§Ti. Since
REOD = du+ A(G = 0) = M+ A(A - T) + \At,
we have 3§D + TTD = \u + XA —U) and (1 + #)8T = AA. Therefore (iii) and (iv)
hold.

For the rest of this section, we consider the case o(t) = 2.
Coroilary 4.6 Ifo(t) = 2, then 2 | A.
Proof. Since t* = 1, we have by Lemma 4.5, ST = 1\A. Thus 2 | \.

Theorem 4.7 Assume that o(t) = 2 and let S and T' be as defined in Lemma 4.5. Then
{S,T} is a (FuX,Vu),2)BS in A relative to U.

Proof. As we have seen in the proof of Corollay 4.6, ST = %)\E Let x be a non-principal
character of A. Then ‘ »

x(S)x(T) =0 (4.7.1)
Assume that x|y is non-principal. By Lemma 4.5 (iv),
IX@)P + IX(D)P = c-ur

where ¢ = 0 or 1 depending on whether x|y is principal or non-principal.
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This fact together with (4.7.1) gives the proof of the theorem.

Theorem 4.8 Let S; and T} be a (a,m,2) BS with m? = 2a in an abelian group A, relative
to a subgroup U;. Let G1 = (t1)A; be a semidirect product of A, with (t1), where t; is the
automorphism of A, that inverts A;. Then R, = S; UTity is a semiregular RDS in G,
relative to U;.

Proof. Set uy = |Uy|. By assumption, x(5;)x(T}) = 0 and

— - 2
x(SlSl(”’l)) -+ X(Tlﬂ('_l)) —m? -+ %X(U]) = 0.

By Result 2.1, .
5T, = aA; (4.8.1)
and . ’
5.8V + Y —m? 4 T—Z—I’fl = BA; (4.8.2)
1

for some a, 8 € C. By (4.8.1), a is a positive integer and
a? = a|4,|. (4.8.3)

By (4.8.2), we have
’ 2

% —m? + %— =f and  2a%=BlAi|. (4.8.4)
) 1

Hence f = 2a and %‘—1% = f3 as m? = 2a. In particular u;a = @. By a similar argument as in
the proof of Lemma 4.5 (iii) (iv), we have
REY = (8 +Tn)S + 1)
= 5800+ BRItV + 95T
= 2a+ ZaA\l — 2aff1 + 2a;1\1t
= 2a+ 20(@1 - ff;)

Therefore R; is a (21%1_1, 41, 2a,2¢) RDS relative to U;. Since 2a - u; = 2a, we have shown
that R is a semiregular RDS relative to U;.

5. Applications

In this section, we consider the group G = (t)A & Dyyn. Note that G is a dihedral group
satisfying ¢ = 1 and A = (z), a cyclic group generated by z € G of order p” where p is
any prime.

Theorem 5.1 There is no semiregular RDS in Dyp.
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Proof. Let R be a semiregular RDS in G = (t)A relative to U. Then t inverts A where
A= Zpmand U & Zyr, v > 1. Let Uy be a maximal subgroup of U, ie., |Up] = p™!
Consider G = G/Up. Then R is a semiregular RDS in G = (})4 & Dypn-rs1 relative to
U = Z, by Result 2.4. By Theorem 4.7, there exist subsets S and T of 4 such that {3, T}
is a (a,m,2) BS. Applying Theorem 3.9, we have [U| > ¢, a contradiction.

Now We consider the generalized quaternion group

on— -1

Q= (z,y|7*> =9 y'=1 9y ay=2"1) (n>2)

of order 2**! and the semidihedral group
SE™) = gy =g =1, 2=, yry=a712) (022

of order 2**1. We then apply Theorem 5.1 to show existence or non-existence of semiregular
RDS’s in these groups.

Corollary 5.2 Let R be a semiregular RDS in Qan+1 relative to a normal subgroup U. Then
Ul <2.

Proof. Assume |U| > 4. Then there exists 1 # U < U such that |U : Us| = 2. Consider
G = G/U,. Then G is a dihedral 2-group and R is a semiregular RDS in @ relative to T
as Up < U by applying Result 2.4. By the above theorem, [U| > 4, a contradiction. Thus
there exists no (uA, «, UM ,A) RDS in Qgn+1 when u > 2.

The next result is also a consequence of the a,bove-theorem. The proof of the next corollary
is similar to the proof of Corollary 5.2

Corollary 5.3 Let R be a semiregular RDS in S(2"+1) relative to U. Then |U| < 2.

The next theorem provides an infinite sequence of RDS’s in the non-abelian group Qgn+1,
n 2> 2. The proof is done by induction using the product construction of RDS as basis.

Theorem 5.4 There exist (2%,2,2",2"1) RDS in Qni1 relative to
Z(Qan+1) (22 Zs) for everyn > 2.

Proof. We prove by induction on n.

It is well known and easy to verify that R = {1,z,y,zy} isa (4,2,4,2) RDSin Qg = (z,y)
relative to Z(Qs) = (2®)(See Jungnickel[6], Examples 2.4(ii)). Thus the theorem is true for
n=2.

Assume the existence of a (2*71,2,2"~1,2"2) RDS in @~ relative to (z) where z is the
unique involution in Qgn. Let

G=Qpu=(z,y|s* =1 y* =1, yloy =271,
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Consider Gy = {22,y) and Gz = (zy). Then G & Qon and G2 & Zy. Set U = (y?) = Zs.

By the induction hypothesis, let Ry be a (2°7%,2,2°71,2%%) RDS in G} relative to U.
On the other hand, it is easy to check that R, = {1,zy} is a (2,2,2,1) RDS is G relative
to U. Applying Result 2.5 , it follows that Ry R, is a (2",2,2",2""1) RDS in G relative to
U. Thus the theorem holds.

Example 5.5 Let A be an abelian subgroup of G of index 2. Let Rg be a (2X,2,2),))
RDS in an abelian group A relative to a subgroup U(2! Z;). Assume that an element ¢ € G
inverts A and (t2) = U. Then R = Ry U Rt is a (4),2,4A,2)) RDS in G relative to U.

Proof. See Jungnickel ([6]).

Remark 5.6 Among the examples of Theorem 5.4, one is given by R C G such that

2n—-2

B=Q1+2")(1+9)Q+2" "y +2" y) x -+ x Q1+ 22y) (1 + zy).

Remark 5.7 There is no semiregqular RDS in S(2%).

Proof. Using Corollary 5.3, it suffices to consider the case (m,u,k,A) = (8,2,8,4). By a
computer search, we have Remark 5.7.

It is conceivable that there is no semiregular RDS in S(2"+1).
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