On Nonabelian Semiregular Relative Difference Sets

Dominic ELVIRA (ドミニク エルヴィラ) and Yutaka HIRAMINE (平峰 豊)

Department of Mathematics, Faculty of Education Kumamoto University Kurokami, Kumamoto, Japan

1. Introduction

A (m, u, k, λ) relative difference set (RDS) in a group G of order mu relative to a normal subgroup U of order u is a k-element subset R of G such that the number of elements in the set $\{(r_1, r_2) \mid r_1, r_2 \in R, r_1r_2^{-1} = g\}$ for every $g \in G$, $g \neq 1$ is λ if $g \in G \setminus U$ or 0 if $g \in U$. If $k = u\lambda$, we call R a semiregular RDS and its parameters are given by $(u\lambda, u, u\lambda, \lambda)$. Semiregular RDS's in abelian groups have been studied intensively in [1], [7], [8], [10], [11]. Recently, J.A. Davis, J. Jedwab and M. Mowbray made two constructions of abelian semiregular RDS's in [3]. In one of their constructions, they considered (a, m, t)-building sets(BS) on abelian groups and by applying group characters, they were able to construct new sets of semiregular RDS's in groups of non-prime power order.

In this article, we study semiregular RDS's in some *nonabelian* groups, especially groups G containing an abelian subgroup A of index 2 inverted by an element of G-A, say t. If G has a semiregular RDS R relative to a normal subgroup U contained in A, then we can represent R in the form $R = S \cup Tt$ for some subsets S and T of A. We may also show that $\{S,T\}$ is an (a,m,2)BS when $A \not \mid o(t)$ for some suitable $a \in \mathbb{N}$ and $m \in \mathbb{R}$.

In Section 3, we focus on (a, m, t)BS in a cyclic p-group where p is a prime and show that

Theorem 3.9 Let $\{S_1, \ldots, S_t\}$ be an (a, m, t)BS in a cyclic p-group G relative to U. Then $|U| \geq p^t$.

As an application of this theorem, we show that for t=2 we have

Theorem 5.1 There is no semiregular RDS in D_{2p^n} .

As corollaries, we show that for a generalized quaternion or semidihedral group G, the order of the forbidden subgroup U is at most 2 as stated in Corollaries 5.2 and 5.3 of Section 5. In addition, we show in Theorem 5.4 that every generalized quaternion group G of order 2^{n+1} always contains a $(2^n, 2, 2^n, 2^{n-1})$ RDS relative to U = Z(G), $(U \cong Z_2)$.

2. Preliminaries

In this section, we define a semiregular RDS in a group and provide some basic concepts essential to prove the main results.

Definition 2.1 A (m, u, k, λ) RDS in a group G of order mu relative to a normal subgroup U of order u is a k-element subset R of G such that the number of elements in the set $\{(r_1, r_2) \mid r_1, r_2 \in R, \ r_1r_2^{-1} = g\}$ for every $g \in G$, $g \neq 1$ is λ if $g \in G \setminus U$ or 0 if $g \in U$.

We note that when $k = u\lambda$, we call R a semiregular RDS. In this case, R has parameters of the form $(u\lambda, u, u\lambda, \lambda)$. If U = 1, R is called a trivial semiregular RDS.

The next result about abelian RDS's is well-known. A proof can be found in Pott's book [1], for example.

Result 2.2 Let G be an abelian group and $f \in \mathbb{C}[G]$. If $\chi(f) = 0$ for every non-principal character χ of G, then $f = k\widehat{G}$ for some $k \in \mathbb{C}$.

Result 2.3 R is a (m, u, k, λ) RDS in a group G relative to a normal subgroup U if and only if $|Ux \cap R| = 1$ for every $x \in G$.

Proof. Assume a_1x , $a_2x \in R$, $(a_1, a_2 \in U, a_1 \neq a_2)$ and set $r_1 = a_1x$, $r_2 = a_2x$. Then $r_1r_2^{-1} = a_1a_2^{-1} \in U$, a contradiction. Hence $|Ux \cap R| \leq 1$. By semiregularity, R has parameters $(u\lambda, u, u\lambda, \lambda)$. As $|G:U| = |R| = u\lambda$, we have $|Ux \cap R| = 1$ for every $x \in G$.

Conversely, if $|Ux \cap R| = 1$ then |G:U| = m = k. But R satisfies $RR^{-1} = k \cdot 1 + \lambda(G - U)$ and so $k = \lambda u$, k > 1. Thus R is semiregular.

The following result due to Elliot and Butson[4] is basic in the study of relative difference sets.

Result 2.4 Let R be a (m, u, k, λ) RDS in a group G relative to a normal subgroup U and let U_1 be a normal subgroup of G contained in U. Set $\overline{G} = G/U_1$. Then \overline{R} is a $(m, u/u_1, k, u_1\lambda)$ RDS in \overline{G} relative to \overline{U} .

The next result is called the product construction for RDS's in an abelian group. For a proof, see [2] and [11].

Result 2.5 ([2], [11]) Let G be a group of order $u^3k_1k_2$. Let G_1 be a normal subgroup of G and G_2 a subgroup of G such that $G \triangleright U = G_1 \cap G_2$ with |U| = u, $|G_1| = u^2k_1$, and $|G_2| = u^2k_2$. If R_1 is a (uk_1, u, uk_1, k_1) RDS in G_1 relative to U and R_2 is a (uk_2, u, uk_2, k_2) RDS in G_2 relative to U then $R = R_1R_2$ is a $(u^2k_1k_2, u, u^2k_1k_2, uk_1k_2)$ RDS in G relative to U.

For ease of computations, we distinguish a group ring element from a set. If $X = \{x_1, x_2, \ldots, x_n\}$ is a given set, then by \widehat{X} we mean $\widehat{X} = \sum_{i=1}^n x_i$, $x_i \in X$. Also, $\widehat{X}^{-1} = \sum_{i=1}^n x_i^{-1}$ for $x_i \in X$.

3. An
$$(a, m, t)$$
-Building Set in \mathbb{Z}_{p^n}

In this section, we define building blocks and building sets of an abelian group as given by Davis and Jedwab [2]. We then consider building sets in a cyclic *p*-group.

Definition 3.1 A building block in an abelian group G with modulus m is a subset S of G such that $\chi(S) \in \{0, m\}$ for every non-principal character χ of G.

Definition 3.2 An (a, m, t)BS (t > 1) on an abelian group G relative to a subgroup U is a collection $\{S_1, \ldots, S_t\}$ of building blocks in G with modulus m, $|S_i| = a$ for each $i \in \{1, \ldots, t\}$ and

- (i.) There exists a unique $i \in \{1, ..., t\}$ such that $\chi(S_i) \neq 0$ if χ is non-principal on U, and
- (ii.) $\chi(S_i) = 0$ for every $i \in \{1, ..., t\}$ if χ is principal on U.

We next define the m-th cyclotomic polynomial. For a more detailed discussion about this topic, consult the book by Ireland and Rosen [5].

Definition 3.3 Let m be a positive integer and $\zeta_m = e^{2\pi i/m}$, a m-th root of unity. We call $F_m(x) = \prod_{(a,m)=1} (x - \zeta_m^a)$ where $1 \le a < m$, the mth cyclotomic polynomial.

Throughout the rest of this section, we use the following hypothesis.

Hypothesis 3.4 Let $G = \langle g \rangle \cong Z_{p^n}$ and U be a subgroup of G of order p^r . Assume the existence of $\{S_1, \ldots, S_t\}$, an (a, m, t)BS in G relative to U.

Notation 3.5 For ease of computations, we define the following:

$$\widehat{S}_i := \sum_{0 \le k < p^n} a_{ik} g^k$$
 and $f_i(x) := \sum_{0 \le k < p^n} a_{ik} x^k$, $a_{ik} \in \{0, 1\}$.

Remark 3.6 Let $\chi \in G^*$ and set $\zeta = \chi(g)$. Then $\chi(\widehat{S_i}) = f_i(\zeta)$.

Lemma 3.7 $\chi(\widehat{S}_i) = 0$ if and only if $F_{p^d}(x) \mid f_i(x)$.

Proof. By Remark 3.6, we have the lemma.

Theorem 3.8 Under Hypothesis 3.4, the following hold:

- (i.) for every d > n r, there exists a unique $j \in \{1, 2, ..., t\}$ such that $F_{p^d}(x) \not\mid f_j(x)$, and
- (ii.) $F_p(x)F_{p^2}(x)\cdots F_{p^{n-r}}(x) \mid f_i(x) \text{ for every } i \in \{1, 2, \dots, t\}.$

Proof. Let ζ be a primitive p^d -th root of unity, $1 \leq d \leq n$. Then $\zeta^{p^{n-r}} = 1$ if and only if $p^{n-r} \geq p^d$ if and only if $n-r \geq d$. Let $\chi \in G^*$ such that $\chi(g) = \zeta$. Then $\chi_{|U} = \chi_0$ if and only if $n-r \geq d$ and therefore $\chi_{|U} \neq \chi_0$ if and only if n-r < d. We consider the following cases:

- (i.) Assume d > n r so that $\chi_{|U} \neq \chi_0$. By the definition of a BS, there exists a unique j such that $|\chi(S_j)| = m \neq 0$. Now $|f_j(\zeta)| = m$ and so by Lemma 3.7, $F_{v^d}(x) \not| f_j(x)$.
- (ii.) Assume $n-r \geq d$ so that $\chi_{|U} = \chi_0$. By the definition of a BS, $\chi(S_i) = 0$ for every $i \in \{1, 2, ..., t\}$. Now $f_i(\zeta) = 0$ if and only if $F_{p^d}(x) \mid f_i(x)$ for every d = 1, 2, ..., n-r. Since $F_p(x), F_{p^2}(x), \cdots, F_{p^{n-r}}(x)$ are relatively prime, we have $F_p(x)F_{p^2}(x)\cdots F_{p^{n-r}}(x) \mid f_i(x)$ for every $i \in \{1, 2, ..., t\}$.

The next theorem is of great importance to prove the results in the proceeding sections. It establishes that the order of the forbidden subgroup U of an RDS in a cyclic p-group must be greater than or equal to p^t , where t is the number of building blocks in the corresponding building set contained in the given cyclic p-group relative to U.

Theorem 3.9 Let $\{S_1, \ldots, S_t\}$ be an (a, m, t)BS in a cyclic p-group G relative to U. Then $|U| \geq p^t$.

Proof. Set $F(x) = F_p(x)F_{p^2}(x)\cdots F_{p^{n-r}}(x)$ and $I = \{n-r+1,\ldots,n\}$. Then there exist $s_{id} \in \{0,1\}$ for $1 \le i \le t$, $d \in I$ and $q_i(x)$ such that

$$f_i(x) = F(x) \Big(\prod_{d \in I} F_{p^d}(x) s_{i,d}\Big) q_i(x).$$

For a fixed $d \in I$, we have $s_{1d} + s_{2d} + \ldots + s_{td} = t - 1$ by Theorem 3.8(i). Assume $s_{i,n-r+1} = s_{i,n-r+2} = \cdots = s_{i,n} = 1$ for some i. Then $F_p(x)F_{p^2}(x)\cdots F_{p^n}(x) \mid f_i(x)$ and so $\chi(\widehat{S}_i) = 0$ for every $\chi \in G^*$, $\chi \neq \chi_0$. By Result 2.2 $S_i = G$, a contradiction. Thus $\sum_{d \in I} s_{id} \leq r - 1$.

We next compute $\sum_{1 \leq i \leq t, d \in I} s_{id}$ in two ways. First, we have

$$\sum_{1 \leq i \leq t, d \in I} s_{id} = \sum_{1 \leq i \leq t} \left(\sum_{d \in I} s_{id} \right) \leq t(r-1) = tr - t.$$

On the other hand,

$$\sum_{1\leq i\leq t, d\in I} s_{id} = \sum_{d\in I} (\sum_{1\leq i\leq t} s_{id}) = \sum_{d\in I} (t-1) = r(t-1) = tr - r.$$

Thus $t \leq r$ and so $|U| = p^r \geq p^t$.

4. RDS in Dihedral Groups

Lemma 4.1 Let G be a group containing an abelian subgroup A of index 2 inverted by an element $t \in G$. Assume that a Sylow 2-subgroup of A is cyclic. If $U(\neq G)$ is a normal subgroup of G, then either $U \leq A$ or |G:U| = 2.

Proof. We suppose $U \not\leq A$ and show that |G:U|=2.

(Step 1) We may assume that $t \in U$:

Let $w \in U - A$. Then w = at for some $a \in A$ and so $w^{-1}xw = t^{-1}a^{-1}xat = t^{-1}xt$ for any $x \in A$. Hence w inverts A and $G = \langle w \rangle A$.

(Step 2) We may assume that o(t) = 2 or 4:

Set $P = O_2(A)$, Q = O(A) and $s = t^d$, where $o(t) = 2^c \cdot d$ (2 $\not\mid d$). Then $G = \langle s \rangle A$ and s inverts A. As s is an element of order 2^c and inverts $A(\ni s^2)$, we have $s^2 = s^{-1}s^2s = (s^2)^{-1}$. Hence $s^4 = 1$.

(Step 3) $Z(G) = C_A(t)$ or $G \cong Z_4$:

Assume $Z(G) \not\leq A$. Then G = Z(G)A and so A is abelian. Hence, for any $x \in A$, $x = t^{-1}xt = x^{-1}$ and so $x^2 = 1$. Thus $A \cong Z_2$ by assumption. Hence $G \cong Z_4$. Assume $Z(G) \leq A$. Then $Z(G) \leq A \cap C_G(t) = C_A(t)$. Clearly $C_A(t) \leq C_G(\langle A, t \rangle) = Z(G)$. Thus $Z(G) = C_A(t)$.

By steps 1-3, we may assume that $t \in U$ and o(t) = 2 or 4.

First assume that $2 \not| A|$. Then $C_G(t) = \langle t \rangle C_A(t) = \langle t \rangle$. Hence

 $|G:C_G(t)|=|G|/2$ and so $|U|\geq 1+|\{t^x\mid x\in G\}|=1+|G|/2$. Thus U=G, a contradiction.

Assume that $2 \mid |A|$. Then $|C_G(t)| = |\langle t \rangle \cdot C_A(t)| = 4$. Hence $|\{t^x \mid x \in G\}| = |G|$: $C_G(t)| = \frac{1}{4}|G|$ and so $|U| \geq \frac{1}{4}|G| + 1$. In particular, $|G| : U| \leq 3$. Let x be any element of G of odd order. Then, as $t^{-1}xt = x^{-1}$ and $t^{-2}xt^2 = x$, we have $x^{-1}tx = x^{-1}t^2(t^{-1}xt)t^{-1} = x^{-1}t^2x^{-1}t^{-1} = x^{-2}t$. Thus $t, x^{-2}t \in U$. From this we have, $x^2 \in U$ and so $x \in U$. Therefore we have $U \geq O(G)$. Thus |G| : U| = 2.

Remark 4.2 Under the hypothesis of Lemma 4.1, we may assume that o(t) = 2 or 4.

Throughout the rest of this section, we assume following:

Hypothesis 4.3 Let G be a group having a normal subgroup A of index 2 inverted by an element $t \in G - A$ of order 2 or 4. Assume that G has a $(\lambda u, u, \lambda u, \lambda)$ RDS R relative to U and that $G \not\cong Z_4$.

Lemma 4.4 $U \leq A$

Proof. Suppose false. Then |G:U|=2 by Lemma 4.1. Hence $u\lambda=2$ and so $G\cong Z_4$, contrary to Hypothesis 4.3.

Lemma 4.5 Set $S = R \cap A$ and $T = Rt^{-1} \cap A$. Then

(i)
$$S, T \subset A$$
 and $R = S \cup Tt$

(ii)
$$|S| = |T| = \frac{1}{2}\lambda u$$

(iii)
$$\widehat{S}\widehat{T}(1+t^2)=\lambda\widehat{A}$$

(iv)
$$\widehat{S}\widehat{S^{(-1)}} + \widehat{T}\widehat{T^{(-1)}} = u\lambda + \lambda(\widehat{A} - \widehat{U}).$$

Proof. By Result 2.3, each coset Ux $(x \in G)$ contains exactly one element of R. Hence we have $|S| = |A/U| = \frac{1}{2}\lambda u$ and $|Tt| = |At|/|U| = \frac{1}{2}\lambda u$. Moreover, $S \cup Tt \subset R$. Thus (i) and (ii) hold.

By (i),
$$\widehat{R}\widehat{R^{(-1)}} = (\widehat{S} + \widehat{T}t)(\widehat{S^{(-1)}} + t^{-1}\widehat{T^{(-1)}})$$

= $\widehat{S}\widehat{S^{(-1)}} + \widehat{T}t\widehat{S^{(-1)}} + \widehat{S}t^{-1}\widehat{T^{(-1)}} + \widehat{T}\widehat{T^{(-1)}}$.

On the other hand, $\widehat{T}t\widehat{S^{(-1)}} = \widehat{T}t^2(t^{-1}\widehat{S^{(-1)}}t)t^{-1} = \widehat{T}t^2\widehat{S}t^{-1} = \widehat{S}\widehat{T}t$ as A is abelian and $t^2 \in A$. Similarly, $\widehat{S}t^{-1}\widehat{T^{(-1)}} = \widehat{S}\widehat{T}t^{-1} = (\widehat{S}\widehat{T}t^2)t$. Hence we have $\widehat{R}\widehat{R^{(-1)}} = \widehat{S}\widehat{S^{(-1)}} + \widehat{T}\widehat{T^{(-1)}} + (1+t^2)\widehat{S}\widehat{T}t$. Since

$$\widehat{R}\widehat{R^{(-1)}} = \lambda u + \lambda(\widehat{G} - \widehat{U}) = \lambda u + \lambda(\widehat{A} - \widehat{U}) + \lambda \widehat{A}t,$$

we have $\widehat{S}\widehat{S^{(-1)}} + \widehat{T}\widehat{T^{(-1)}} = \lambda u + \lambda(\widehat{A} - \widehat{U})$ and $(1 + t^2)\widehat{S}\widehat{T} = \lambda \widehat{A}$. Therefore (iii) and (iv) hold.

For the rest of this section, we consider the case o(t) = 2.

Corollary 4.6 If o(t) = 2, then $2 \mid \lambda$.

Proof. Since $t^2 = 1$, we have by Lemma 4.5, $\widehat{ST} = \frac{1}{2}\lambda \widehat{A}$. Thus $2 \mid \lambda$.

Theorem 4.7 Assume that o(t) = 2 and let S and T be as defined in Lemma 4.5. Then $\{S,T\}$ is a $(\frac{1}{2}u\lambda, \sqrt{u\lambda}, 2)BS$ in A relative to U.

Proof. As we have seen in the proof of Corollay 4.6, $\widehat{ST} = \frac{1}{2}\lambda \widehat{A}$. Let χ be a non-principal character of A. Then

$$\chi(\widehat{S})\chi(\widehat{T}) = 0 \tag{4.7.1}$$

Assume that $\chi_{|U}$ is non-principal. By Lemma 4.5 (iv),

$$|\chi(\widehat{S})|^2 + |\chi(\widehat{T})|^2 = c \cdot u\lambda$$

where c = 0 or 1 depending on whether $\chi_{|U}$ is principal or non-principal.

This fact together with (4.7.1) gives the proof of the theorem.

Theorem 4.8 Let S_1 and T_1 be a (a, m, 2)BS with $m^2 = 2a$ in an abelian group A_1 relative to a subgroup U_1 . Let $G_1 = \langle t_1 \rangle A_1$ be a semidirect product of A_1 with $\langle t_1 \rangle$, where t_1 is the automorphism of A_1 that inverts A_1 . Then $R_1 = S_1 \cup T_1 t_1$ is a semiregular RDS in G_1 relative to U_1 .

Proof. Set $u_1 = |U_1|$. By assumption, $\chi(\widehat{S_1})\chi(\widehat{T_1}) = 0$ and

$$\chi(\widehat{S_1}\widehat{S_1}^{(-1)}) + \chi(\widehat{T_1}\widehat{T_1}^{(-1)}) - m^2 + \frac{m^2}{u_1}\chi(U_1) = 0.$$

By Result 2.1,

$$\widehat{S}_1\widehat{T}_1 = \alpha \widehat{A}_1 \tag{4.8.1}$$

and

$$\widehat{S_1}\widehat{S_1}^{(-1)} + \widehat{T_1}\widehat{T_1}^{(-1)} - m^2 + \frac{m^2}{u_1}\widehat{U_1} = \beta \widehat{A_1}$$
 (4.8.2)

for some $\alpha, \beta \in \mathbb{C}$. By (4.8.1), α is a positive integer and

$$a^2 = \alpha |A_1|. \tag{4.8.3}$$

By (4.8.2), we have

$$2a - m^2 + \frac{m^2}{u_1} = \beta$$
 and $2a^2 = \beta |A_1|$. (4.8.4)

Hence $\beta = 2\alpha$ and $\frac{m^2}{u_1} = \beta$ as $m^2 = 2a$. In particular $u_1\alpha = a$. By a similar argument as in the proof of Lemma 4.5 (iii) (iv), we have

$$\widehat{R}_{1}\widehat{R}_{1}^{(-1)} = (\widehat{S}_{1} + \widehat{T}_{1}t_{1})(\widehat{S}_{1}^{(-1)} + t_{1}^{-1}\widehat{T}_{1}^{(-1)})
= \widehat{S}_{1}\widehat{S}_{1}^{(-1)} + \widehat{T}_{1}\widehat{T}_{1}^{(-1)} + 2\widehat{S}_{1}\widehat{T}_{1}t
= 2a + 2\alpha\widehat{A}_{1} - 2\alpha\widehat{U}_{1} + 2\alpha\widehat{A}_{1}t
= 2a + 2\alpha(\widehat{G}_{1} - \widehat{U}_{1}).$$

Therefore R_1 is a $(\frac{2|A_1|}{u_1}, u_1, 2a, 2\alpha)$ RDS relative to U_1 . Since $2\alpha \cdot u_1 = 2a$, we have shown that R is a semiregular RDS relative to U_1 .

5. Applications

In this section, we consider the group $G = \langle t \rangle A \cong D_{2p^n}$. Note that G is a dihedral group satisfying $t^2 = 1$ and $A = \langle x \rangle$, a cyclic group generated by $x \in G$ of order p^n where p is any prime.

Theorem 5.1 There is no semiregular RDS in D_{2p^n} .

Proof. Let R be a semiregular RDS in $G = \langle t \rangle A$ relative to U. Then t inverts A where $A \cong Z_{p^n}$ and $U \cong Z_{p^r}$, $r \geq 1$. Let U_0 be a maximal subgroup of U, i.e., $|U_0| = p^{r-1}$. Consider $\overline{G} = G/U_0$. Then \overline{R} is a semiregular RDS in $\overline{G} = \langle \overline{t} \rangle \overline{A} \cong D_{2p^{n-r+1}}$ relative to $\overline{U} \cong Z_p$ by Result 2.4. By Theorem 4.7, there exist subsets \overline{S} and \overline{T} of \overline{A} such that $\{\overline{S}, \overline{T}\}$ is a (a, m, 2) BS. Applying Theorem 3.9, we have $|\overline{U}| \geq p^2$, a contradiction.

Now we consider the generalized quaternion group

$$Q_{2^{n+1}} = \langle x, y \mid x^{2^{n-1}} = y^2, \ y^4 = 1, \ y^{-1}xy = x^{-1} \rangle \quad (n \ge 2)$$

of order 2^{n+1} and the semidihedral group

$$S(2^{n+1}) = \langle x, y \mid x^{2^n} = y^2 = 1, \ z = x^{2^{n-1}}, \ yxy = x^{-1}z \rangle \quad (n \ge 2)$$

of order 2^{n+1} . We then apply Theorem 5.1 to show existence or non-existence of semiregular RDS's in these groups.

Corollary 5.2 Let R be a semiregular RDS in $Q_{2^{n+1}}$ relative to a normal subgroup U. Then $|U| \leq 2$.

Proof. Assume $|U| \geq 4$. Then there exists $1 \neq U_0 \leq U$ such that $|U:U_0| = 2$. Consider $\overline{G} = G/U_0$. Then \overline{G} is a dihedral 2-group and \overline{R} is a semiregular RDS in \overline{G} relative to \overline{U} as $U_0 \leq U$ by applying Result 2.4. By the above theorem, $|\overline{U}| \geq 4$, a contradiction. Thus there exists no $(u\lambda, u, u\lambda, \lambda)$ RDS in $Q_{2^{n+1}}$ when u > 2.

The next result is also a consequence of the above theorem. The proof of the next corollary is similar to the proof of Corollary 5.2

Corollary 5.3 Let R be a semiregular RDS in $S(2^{n+1})$ relative to U. Then $|U| \leq 2$.

The next theorem provides an infinite sequence of RDS's in the non-abelian group $Q_{2^{n+1}}$, $n \geq 2$. The proof is done by induction using the product construction of RDS as basis.

Theorem 5.4 There exist $(2^n, 2, 2^n, 2^{n-1})$ RDS in $Q_{2^{n+1}}$ relative to $Z(Q_{2^{n+1}}) (\cong Z_2)$ for every $n \geq 2$.

Proof. We prove by induction on n.

It is well known and easy to verify that $R = \{1, x, y, xy\}$ is a (4, 2, 4, 2) RDS in $Q_8 = \langle x, y \rangle$ relative to $Z(Q_8) = \langle x^2 \rangle$ (See Jungnickel[6], Examples 2.4(ii)). Thus the theorem is true for n = 2.

Assume the existence of a $(2^{n-1}, 2, 2^{n-1}, 2^{n-2})$ RDS in Q_{2^n} relative to $\langle z \rangle$ where z is the unique involution in Q_{2^n} . Let

$$G = Q_{2^{n+1}} = \langle x, y \mid x^{2^{n-1}} = y^2, y^4 = 1, y^{-1}xy = x^{-1} \rangle.$$

Consider $G_1 = \langle x^2, y \rangle$ and $G_2 = \langle xy \rangle$. Then $G_1 \cong Q_{2^n}$ and $G_2 \cong Z_4$. Set $U = \langle y^2 \rangle \cong Z_2$. By the induction hypothesis, let R_1 be a $(2^{n-1}, 2, 2^{n-1}, 2^{n-2})$ RDS in G_1 relative to U. On the other hand, it is easy to check that $R_2 = \{1, xy\}$ is a (2, 2, 2, 1) RDS is G_2 relative to U. Applying Result 2.5, it follows that R_1R_2 is a $(2^n, 2, 2^n, 2^{n-1})$ RDS in G relative to U. Thus the theorem holds.

Example 5.5 Let A be an abelian subgroup of G of index 2. Let R_0 be a $(2\lambda, 2, 2\lambda, \lambda)$ RDS in an abelian group A relative to a subgroup $U(\cong Z_2)$. Assume that an element $t \in G$ inverts A and $\langle t^2 \rangle = U$. Then $R = R_0 \cup R_0 t$ is a $(4\lambda, 2, 4\lambda, 2\lambda)$ RDS in G relative to G.

Proof. See Jungnickel ([6]).

Remark 5.6 Among the examples of Theorem 5.4, one is given by $R \subset G$ such that

$$\widehat{R} = (1 + x^{2^{n-2}})(1+y)(1+x^{2^{n-3}}y)(1+x^{n-4}y) \times \cdots \times (1+x^2y)(1+xy).$$

Remark 5.7 There is no semiregular RDS in $S(2^4)$.

Proof. Using Corollary 5.3, it suffices to consider the case $(m, u, k, \lambda) = (8, 2, 8, 4)$. By a computer search, we have Remark 5.7.

It is conceivable that there is no semiregular RDS in $S(2^{n+1})$.

References

- 1. J.A. Davis, Constructions of Relative Difference Sets in p-Groups, Discrete Math. 103 (1992), 7-15.
- J.A. Davis and J. Jedwab, A Unifying Construction for Difference Sets, J. Comb. Th. (A) 80 (1997), 13-78.
- 3. J.A. Davis, J. Jedwab and M. Mowbray, New Families of Semi-Regular Relative Difference Sets, Designs, Codes and Cryptography 13 (1998), 131-146.
- 4. J.E.H. Elliot and A.T. Butson, *Relative Difference Sets*, Illinois J. Math. 10 (1966), 517 531.
- 5. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (2nd ed.), Springer-Verlag, New York/Berlin/Heidelberg, (1990).
- 6. D. Jungnickel, On Automorphism Groups of Divisible Designs, Can. J. Math. 34 (1982), 257-297.
- S.L. Ma and A. Pott, Relative Difference Sets, Planar Functions and Generalized Hadamard Matrices, J. Algebra 175 (1995), 505-525.
- 8. S.L. Ma and B. Schmidt, $On(p^a, p, p^a, p^{a-1})$ Relative Difference Sets, Designs, Codes and Cryptography 6 (1995), 57-71.
- 9. A. Pott, *Finite Geometry and Character Theory*, Lecture Notes in Mathemaics 1601, Springer-Verlag, Berlin (1995).
- 10. A. Pott, A Survey of Relative Difference Sets in Groups, Difference Sets and the Monster (K.T.Arasu, et.al., eds.), de Gruyter, Berlin-New York (1996), 195-232.
- 11. B. Schmidt, $On\ (p^a, p^b, p^a, p^{a-b})$ Relative Difference Sets, J. Algebraic Combin. 6 (1997), 279-297.