An introduction to Leonard pairs and Leonard systems

Paul Terwilliger*
May 11, 1999

Abstract

Let \mathcal{F} denote a field, and let V denote a finite dimensional vector space over \mathcal{F} . We consider an ordered pair (A, A^*) , where A and A^* are \mathcal{F} -linear transformations from V to V that satisfy conditions (i), (ii) below:

- (i) There exists a basis for V with respect to which the matrix representing A is diagonal, and the matrix representing A^* is irreducible tridiagonal.
- (ii) There exists a basis for V with respect to which the matrix representing A^* is diagonal, and the matrix representing A is irreducible tridiagonal.

We call such a pair a Leonard pair on V. We present a classification of Leonard pairs. We obtain Leonard pairs from irreducible representations of the quantum Lie algebra $U_q(sl_2)$. We show any Leonard pair satisfy two polynomial relations called the Askey-Wilson relations. We obtain Leonard pairs from five families of classical posets.

1 Introduction

Throughout this talk, \mathcal{F} will denote an arbitrary field.

Definition 1.1 Let V denote a finite dimensional vector space over \mathcal{F} . By a Leonard pair on V, we mean an ordered pair (A, A^*) , where A and A^* are \mathcal{F} -linear transformations from V to V satisfying (i), (ii) below.

- (i) There exists a basis for V with respect to which the matrix representing A^* is diagonal, and the matrix representing A is irreducible tridiagonal.
- (ii) There exists a basis for V with respect to which the matrix representing A is diagonal, and the matrix representing A^* is irreducible tridiagonal.

^{*}Mathematics Department University of Wisconsin 480 Lincoln Drive Madison, WI 53706 Email:terwilli@math.wisc.edu

(A tridiagonal matrix is said to be irreducible whenever all entries immediately above and below the main diagonal are nonzero).

Here is an example of a Leonard pair. Set $V = \mathcal{F}^4$ (column vectors), set

$$A = \begin{pmatrix} 0 & 3 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{pmatrix}, \qquad A^* = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix},$$

and view A and A^* as linear transformations on V. We assume the characteristic of \mathcal{F} is not 2 or 3, to insure A is irreducible. Then (A, A^*) is a Leonard pair on V. Indeed, condition (i) of Definition 1.1 is satisfied by the basis for V consisting of the columns of the 4 by 4 identity matrix. To verify condition (ii), we display an invertible matrix P such that $P^{-1}AP$ is diagonal, and such that $P^{-1}A^*P$ is irreducible tridiagonal. Put

$$P = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}.$$

By matrix multiplication $P^2 = 8I$, so P^{-1} exists. Also by matrix multiplication,

$$AP = PA^*$$
.

Apparently $P^{-1}AP$ equals A^* , and is therefor diagonal. By the above line, and since P^{-1} is a scalar multiple of P, we find $P^{-1}A^*P$ equals A, and is therefor irreducible tridiagonal. Now condition (ii) of Definition 1.1 is satisfied by the basis for V consisting of the columns of P.

Referring to the above example, apparently the eigenvalues of A^* (and A) are 3, 1, -1, -3, and we observe these are distinct. This will always be the case. In fact, it is an easy exercise to show the following.

Lemma 1.2 With reference to Definition 1.1, let (A, A^*) denote a Leonard pair on V. Then the eigenvalues of A are distinct, and contained in \mathcal{F} . Moreover, the eigenvalues of A^* are distinct, and contained in \mathcal{F} .

When studying Leonard pairs, it is often convenient to consider a related and somewhat more abstract object, which we call a Leonard system. To define this, we need a few terms. Let d denote a nonnegative integer, and let $\operatorname{Mat}_{d+1}(\mathcal{F})$ denote the \mathcal{F} -algebra consisting of all d+1 by d+1 matrices with entries in \mathcal{F} . We view the rows and columns as indexed by $0,1,\ldots,d$. For the rest of this talk, \mathcal{A} will denote an \mathcal{F} -algebra isomorphic to $\operatorname{Mat}_{d+1}(\mathcal{F})$. An element $A \in \mathcal{A}$ will be called multiplicity-free whenever it has d+1 distinct eigenvalues, all of which are in \mathcal{F} . Assume A is multiplicity free, and let \mathcal{D} denote the subalgebra of \mathcal{A} generated by A. Then \mathcal{D} has a basis E_0, E_1, \ldots, E_d such that

$$E_{i}E_{j} = \delta_{ij}E_{i} \qquad (0 \le i, j \le d),$$
$$\sum_{i=0}^{d} E_{i} = I.$$

The elements E_0, E_1, \ldots, E_d are unique up to permutation, and are called the *primitive idempotents* of A.

Definition 1.3 Let d denote a nonnegative integer, let \mathcal{F} denote a field, and let \mathcal{A} denote an \mathcal{F} -algebra isomorphic to $Mat_{d+1}(\mathcal{F})$. By a Leonard System in \mathcal{A} , we mean a sequence

$$\Phi = (A; E_0, E_1, \dots, E_d; A^*; E_0^*, E_1^*, \dots, E_d^*)$$
(1)

that satisfies (i)-(v) below.

- (i) A, A^* are both multiplicity-free elements in A.
- (ii) E_0, E_1, \ldots, E_d is an ordering of the primitive idempotents of A.
- (iii) E_0^* , E_1^* , ..., E_d^* is an ordering of the primitive idempotents of A^* .

(iv)
$$E_i A^* E_j = \begin{cases} 0, & \text{if } |i-j| > 1; \\ \neq 0, & \text{if } |i-j| = 1 \end{cases}$$
 $(0 \le i, j \le d).$

(v)
$$E_i^* A E_j^* = \begin{cases} 0, & \text{if } |i-j| > 1; \\ \neq 0, & \text{if } |i-j| = 1 \end{cases}$$
 $(0 \le i, j \le d).$

We refer to d as the diameter of Φ , and say Φ is over \mathcal{F} .

To see the connection between Leonard pairs and Leonard systems, observe conditions (ii), (iv) above assert that with respect to an appropriate basis consisting of eigenvectors for A, the matrix representing A^* is irreducible tridiagonal. Similarly, conditions (iii), (v) assert that with respect to an appropriate basis consisting of eigenvectors for A^* , the matrix representing A is irreducible tridiagonal.

Definition 1.4 Let the Leonard system Φ be as in (1). We let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) associated with E_i (resp. E_i^*), for $0 \le i \le d$. We call $\theta_0, \theta_1, \ldots, \theta_d$ the eigenvalue sequence of Φ . We call $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ the dual eigenvalue sequence of Φ .

Given a Leonard system

$$\Phi = (A; E_0, E_1, \dots, E_d; A^*; E_0^*, E_1^*, \dots, E_d^*),$$

we can get more Leonard systems. For example

$$\Phi^* := (A^*; E_0^*, E_1^*, \dots, E_d^*; A; E_0, E_1, \dots, E_d),
\Phi^{\downarrow} := (A; E_0, E_1, \dots, E_d; A^*; E_d^*, E_{d-1}^*, \dots, E_0^*),
\Phi^{\downarrow\downarrow} := (A; E_d, E_{d-1}, \dots, E_0; A^*; E_0^*, E_1^*, \dots, E_d^*)$$

are Leonard systems. Viewing *, ↓, ↓ as permutations on the set of all Leonard systems,

$$*^2 = \downarrow^2 = \downarrow^2 = 1,$$

$$\downarrow * = * \downarrow, \qquad \downarrow \downarrow = \downarrow \downarrow.$$

The group generated by symbols *, \downarrow , \Downarrow subject to the above relations is the dihedral group D_4 . We recall D_4 is the group of symmetries of a square, and has 8 elements. Apparently *, \downarrow , \Downarrow induce an action of D_4 on the set of all Leonard systems. We say two Leonard systems are relatives whenever they are in the same orbit of this D_4 action.

In view of our above comments, when we discuss Leonard systems, we are often not interested in the orderings of the primitive idempotents involved; we just care how A and A^* interact. This brings us back to the notion of a Leonard pair.

Definition 1.5 Let d denote a nonnegative integer, let \mathcal{F} denote a field, and let \mathcal{A} denote an \mathcal{F} -algebra isomorphic to $Mat_{d+1}(\mathcal{F})$. By a Leonard pair in \mathcal{A} , we mean an ordered pair (A, A^*) such that

- (i) A, A^* are both multiplicity free elements of A, and
- (ii) There exists an ordering E_0, E_1, \ldots, E_d of the primitive idempotents of A, and there exists an ordering $E_0^*, E_1^*, \ldots, E_d^*$ of the primitive idempotents of A^* , such that $(A; E_0, E_1, \ldots, E_d; A^*; E_0^*, E_1^*, \ldots, E_d^*)$ is a Leonard System.

2 A classification of Leonard systems

When studying a Leonard system Φ , it is often useful to examine a second Leonard system that is isomorphic to Φ but in a particularily nice form. We present such a 'canonical form'. To describe it, we use the following notation. Let

$$\Phi = (A; E_0, E_1, \dots, E_d; A^*; E_0^*, E_1^*, \dots, E_d^*)$$

denote a Leonard system in \mathcal{A} , and let $\sigma: \mathcal{A} \to \mathcal{A}'$ denote an isomorphism of \mathcal{F} -algebras. Then we write

$$\Phi^{\sigma} := (A^{\sigma}; E_0^{\sigma}, E_1^{\sigma}, \dots, E_d^{\sigma}; A^{*\sigma}; E_0^{*\sigma}, E_1^{*\sigma}, \dots, E_d^{*\sigma}),$$

and observe Φ^{σ} is a Leonard system in \mathcal{A}' .

Let us say a matrix $X \in \operatorname{Mat}_{d+1}(\mathcal{F})$ is lower di-diagonal whenever

$$X_{ij} \neq 0 \quad \rightarrow \quad i-j \in \{0,1\}$$
 $(0 \le i, j \le d).$

That is, X is lower di-diagonal whenever each nonzero entry lies either on or immediately below the main diagonal. We say X is upper di-diagonal whenever the transpose X^t is lower di-diagonal.

Let Φ denote the Leonard system in (1). We say Φ is in *split canonical form* whenever (i)-(iii) hold below.

- (i) $A = \operatorname{Mat}_{d+1}(\mathcal{F})$.
- (ii) A is lower di-diagonal, with $A_{i,i-1} = 1$ for $1 \le i \le d$, and $A_{ii} = \theta_i$ for $0 \le i \le d$, where θ_i denotes the eigenvalue of A associated with E_i .

(iii) A^* is upper di-diagonal, with $A^*_{ii} = \theta^*_i$ for $0 \le i \le d$, where θ^*_i denotes the eigenvalue of A^* associated with E^*_i .

We show there exists a unique isomorphism of \mathcal{F} -algebras $\heartsuit : \mathcal{A} \to \operatorname{Mat}_{d+1}(\mathcal{F})$ such that Φ^{\heartsuit} is in split canonical form. Apparently

$$A^{\heartsuit} = \begin{pmatrix} \theta_0 & & & & 0 \\ 1 & \theta_1 & & & \\ & 1 & \theta_2 & & \\ & & \cdot & \cdot & \\ 0 & & & 1 & \theta_d \end{pmatrix}, \qquad A^{*\heartsuit} = \begin{pmatrix} \theta_0^* & \varphi_1 & & & 0 \\ & \theta_1^* & \varphi_2 & & \\ & & \theta_2^* & \cdot & \\ & & & \cdot & \cdot \\ & & & & \cdot & \varphi_d \\ 0 & & & & \theta_d^* \end{pmatrix},$$

where $\varphi_1, \varphi_2, \ldots, \varphi_d$ are appropriate scalars in \mathcal{F} . We call $\varphi_1, \varphi_2, \ldots, \varphi_d$ the φ -sequence of Φ . Let $\phi_1, \phi_2, \ldots, \phi_d$ denote the φ -sequence for Φ^{\Downarrow} . Then abbreviating $\diamondsuit := \heartsuit(\Phi^{\Downarrow})$, we have

We call $\phi_1, \phi_2, \ldots, \phi_d$ the ϕ -sequence of Φ .

We obtain the following classification of Leonard systems.

Theorem 2.1 [7] Let d denote a nonnegative integer, let \mathcal{F} denote a field, and let

$$\theta_0, \theta_1, \dots, \theta_d;$$
 $\theta_0^*, \theta_1^*, \dots, \theta_d^*;$ $\varphi_1, \varphi_2, \dots, \varphi_d;$ $\phi_1, \phi_2, \dots, \phi_d$

denote scalars in \mathcal{F} . Then there exists a Leonard System Φ over \mathcal{F} with eigenvalue sequence $\theta_0, \theta_1, \ldots, \theta_d$, dual eigenvalue sequence $\theta_0^*, \theta_1^*, \ldots, \theta_d^*, \varphi$ -sequence $\varphi_1, \varphi_2, \ldots, \varphi_d$, and φ -sequence $\varphi_1, \varphi_2, \ldots, \varphi_d$ if and only if (i)-(v) hold below.

(i)
$$\varphi_{i} \neq 0$$
, $\varphi_{i} \neq 0$ $(1 \leq i \leq d)$,
(ii) $\theta_{i} \neq \theta_{j}$, $\theta_{i}^{*} \neq \theta_{j}^{*}$ if $i \neq j$, $(0 \leq i, j \leq d)$,
(iii) $\varphi_{i} = \varphi_{1} \sum_{h=0}^{i-1} \frac{\theta_{h} - \theta_{d-h}}{\theta_{0} - \theta_{d}} + (\theta_{i}^{*} - \theta_{0}^{*})(\theta_{i-1} - \theta_{d})$ $(1 \leq i \leq d)$,
(iv) $\varphi_{i} = \varphi_{1} \sum_{h=0}^{i-1} \frac{\theta_{h} - \theta_{d-h}}{\theta_{0} - \theta_{d}} + (\theta_{i}^{*} - \theta_{0}^{*})(\theta_{d-i+1} - \theta_{0})$ $(1 \leq i \leq d)$,

(v) The expressions

$$\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \qquad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*} \tag{2}$$

are equal and independent of i, for $2 \le i \le d-1$.

Moreover, if (i)-(v) hold above then Φ is unique up to isomorphism of Leonard Systems.

From the above theorem, we routinely obtain the following corollary.

Corollary 2.2 [7] Let d denote a nonnegative integer, and let \mathcal{F} denote a field. Let A and A^* denote any matrices in $Mat_{d+1}(\mathcal{F})$ of the form

Then the following are equivalent.

- (i) (A, A^*) is a Leonard pair.
- (ii) There exist scalars $\phi_1, \phi_2, \ldots, \phi_d$ in \mathcal{F} such that conditions (i)-(v) hold in Theorem 2.1.

3 The quantum Lie algebra $U_q(sl_2)$

In this section, we obtain Leonard pairs from irreducible representations of the quantum Lie algebra $U_q(sl_2)$. Throughout this section, we assume our ground field \mathcal{F} is algebraically closed with characteristic zero. We let q denote a nonzero element in \mathcal{F} , and assume q is not a root of 1.

Recall $U_q(sl_2)$ is the associative \mathcal{F} -algebra with 1 generated by symbols e, f, k, k^{-1} subject to the relations

$$kk^{-1} = k^{-1}k = 1, (3)$$

$$ke = q^2 e k, kf = q^{-2} f k, (4)$$

$$ef - fe = \frac{k - k^{-1}}{q - q^{-1}}. (5)$$

Let d denote a nonnegative integer, and put

$$E = \left(\begin{array}{cccc} 0 & [d] & & & & \mathbf{0} \\ & 0 & [d-1] & & & \\ & & 0 & \ddots & \\ & & & \ddots & \\ & & & & \cdot & [1] \\ \mathbf{0} & & & & 0 \end{array} \right), \qquad F = \left(\begin{array}{cccc} 0 & & & & \mathbf{0} \\ [1] & 0 & & & \\ & [2] & 0 & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & \ddots & \\ \mathbf{0} & & & [d] & 0 \end{array} \right),$$

where

$$[i] = \frac{q^i - q^{-i}}{q - q^{-1}} \qquad (\forall i \in \mathbb{Z}).$$

Also put

$$K = \text{diag}(q^d, q^{d-2}, q^{d-4}, \dots, q^{-d}).$$

Then K is invertible, and E, F, K satisfy the equations (4), (5), so they support a representation of $U_q(sl_2)$. It can be shown the representation is irreducible.

Let α and α^* denote nonzero elements in $\mathcal F$ such that $\alpha\alpha^*$ is not a power of q, and put

$$A = \alpha F + \frac{K}{q - q^{-1}},$$

$$A^* = \alpha^* E + \frac{K^{-1}}{q - q^{-1}}.$$

We claim (A, A^*) is a Leonard pair. To see this, let σ denote the automorphism of $Mat_{d+1}(\mathcal{F})$ satisfying

$$X^{\sigma} = D^{-1}XD$$
 $(\forall X \in \operatorname{Mat}_{d+1}(\mathcal{F})),$

where D is the diagonal matrix in $Mat_{d+1}(\mathcal{F})$ with entries

$$D_{ii} = [1][2] \cdots [i] \alpha^i \qquad (0 \le i \le d).$$

Then

where

$$\theta_{i} = \frac{q^{d-2i}}{q - q^{-1}}, \qquad (0 \le i \le d),$$

$$\theta_{i}^{*} = \frac{q^{2i-d}}{q - q^{-1}}, \qquad (0 \le i \le d),$$

$$\varphi_{i} = [i][d - i + 1]\alpha\alpha^{*} \qquad (1 \le i \le d).$$
(6)

$$\theta_i^* = \frac{q^{2i-d}}{q - q^{-1}}, \qquad (0 \le i \le d), \tag{7}$$

$$\varphi_i = [i][d - i + 1]\alpha\alpha^* \qquad (1 \le i \le d). \tag{8}$$

Set

$$\phi_{i} = \varphi_{1} \sum_{h=0}^{i-1} \frac{\theta_{h} - \theta_{d-h}}{\theta_{0} - \theta_{d}} + (\theta_{i}^{*} - \theta_{0}^{*})(\theta_{d-i+1} - \theta_{0}) \qquad (1 \le i \le d).$$

Evaluating this using (6)–(8), we obtain

$$\phi_i = [i][d - i + 1](\alpha \alpha^* - q^{2i - d - 1}) \qquad (1 \le i \le d).$$

One readily checks the above scalars θ_i , θ_i^* , φ_i , ϕ_i satisfy the conditions of Theorem 2.1, so $(A^{\sigma}, A^{*\sigma})$ is a Leonard pair by Corollary 2.2. Applying σ^{-1} , we find (A, A^*) is a Leonard pair. For this example, it turns out

$$A^{2}A^{*} - (q^{2} + q^{-2})AA^{*}A + A^{*}A^{2} = \omega A + \eta I,$$

$$A^{*2}A - (q^{2} + q^{-2})A^{*}AA^{*} + AA^{*2} = \omega A^{*} + \eta^{*}I,$$

where

$$\eta = \alpha \alpha^* \frac{q + q^{-1}}{q - q^{-1}}, \qquad \eta^* = \alpha \alpha^* \frac{q + q^{-1}}{q - q^{-1}},
\omega = -1 - \alpha \alpha^* (q^{-d-1} + q^{d+1}).$$
(9)

We comment there is a second Leonard pair associated with $U_q(sl_2)$. Let α, α^* be as above, and put

$$B = \alpha K - (1 - q^{-2})KE,$$

$$B^* = \alpha^* K^{-1} - (1 - q^{-2})K^{-1}F.$$

Then (B, B^*) is a Leonard pair. The proof is similar, and omitted.

4 The Askey-Wilson relations

In the previous section, we obtained a Leonard pair whose elements A, A^* satisfied two polynomial equations. It turns out every Leonard pair satisfies a similar pair of equations.

Theorem 4.1 [6] Let d denote a nonnegative integer, let \mathcal{F} denote any field, and let \mathcal{A} denote an \mathcal{F} -algebra isomorphic to $Mat_{d+1}(\mathcal{F})$. Let (A, A^*) denote a Leonard pair in \mathcal{A} . Then there exists a sequence of scalars $\beta, \gamma, \gamma^*, \varrho, \varrho^*, \omega, \eta, \eta^*$ from \mathcal{F} such that

$$A^{2}A^{*} - \beta AA^{*}A + A^{*}A^{2} - \gamma (AA^{*} + A^{*}A) - \varrho A^{*} = \gamma^{*}A^{2} + \omega A + \eta I,$$

$$A^{*2}A - \beta A^{*}AA^{*} + AA^{*2} - \gamma^{*}(A^{*}A + AA^{*}) - \varrho^{*}A = \gamma A^{*2} + \omega A^{*} + \eta^{*}I.$$

The sequence is unique if $d \geq 3$.

The above equations are known as the Askey-Wilson relations [1], [2], [3], [4], [5], [9], [10], [11].

Concerning the converse to the above theorem, we have the following.

Theorem 4.2 [6] Let d denote a nonnegative integer, let \mathcal{F} denote any field, and let \mathcal{A} denote an \mathcal{F} -algebra isomorphic to $Mat_{d+1}(\mathcal{F})$. Let A, A^* denote multiplicity free elements in \mathcal{A} , and assume the irreducible \mathcal{A} -module is irreducible as an (A, A^*) -module. Pick any scalars $\beta, \gamma, \gamma^*, \varrho, \varrho^*, \omega, \eta, \eta^*$ from \mathcal{F} , and assume A, A^* satisfy the corresponding Askey-Wilson relations. Assume further that none of the following (i)-(iii) occur:

(i) q is a primitive $d+1^{st}$ root of 1, where $q+q^{-1}=\beta$.

(ii)
$$\beta = 2$$
 and $d+1 = char(\mathcal{F})$.

(iii)
$$\beta = -2$$
 and $d+1 = 2 \operatorname{char}(\mathcal{F})$.

Then (A, A^*) is a Leonard pair in A.

5 Leonard pairs from the classical posets

There is a way to obtain Leonard pairs from the following classical posets: (i) the subset lattice, (ii) the subspace lattice, (iii) the Hamming semi-lattice, (iv) the attenuated spaces, (v) the classical polar spaces. For the definitions of these posets, see [8]. The argument in each case is similar. To illustrate it, we will consider the attenuated spaces in some detail.

Definition 5.1 Let \mathcal{F} denote any field, let V denote a finite dimensional vector space over \mathcal{F} , and let A and A^* denote \mathcal{F} -linear transformations from V to V. We say (A, A^*) is a generalized Leonard pair on V whenever there exists a decomposition

$$V = V_1 + V_2 + \dots + V_n$$
 (direct sum),

such that

$$AV_i \subseteq V_i, \qquad A^*V_i \subseteq V_i, \qquad (1 \le i \le n)$$

and such that

$$(A|_{V_i}, A^*|_{V_i})$$
 is a Leonard Pair $(1 \le i \le n)$.

The posets mentioned above all support generalized Leonard pairs. In each case, the underlying vector space V has the following form. Let X denote a finite set. By $\mathcal{F}X$, we mean the vector space over \mathcal{F} consisting of all formal sums

$$\sum_{x \in X} \alpha_x x,$$

where $\alpha_x \in \mathcal{F}$ for all $x \in X$.

We will be discussing posets, so let us recall some terms. let P denote a poset. For all $x, y \in P$, we say y covers x whenever x < y, and there does not exist $z \in P$ such that x < z < y. In this case, we write $x \prec y$. Let L denote the matrix in $Mat_P(\mathbb{C})$ with entries

$$L_{xy} = \begin{cases} 1, & \text{if } x \prec y; \\ 0, & \text{if } x \not\prec y \end{cases} \quad (\forall x, y \in P).$$

Viewing L as a linear transformation on $\mathbb{C}P$,

$$Lx = \sum_{\substack{y \in P \\ y \prec x}} y \qquad (\forall x \in P).$$

We call L the lowering matrix on P. Let R denote the matrix in $Mat_P(\mathbb{C})$ with entries

$$R_{xy} = \begin{cases} 1, & \text{if } y \prec x; \\ 0, & \text{if } y \not\prec x \end{cases} \quad (\forall x, y \in P).$$

Viewing R as a linear transformation on $\mathbb{C}P$,

$$Rx = \sum_{\substack{y \in P \\ x \prec y}} y \qquad (\forall x \in P).$$

We call R the raising matrix on P. Now assume P is ranked, with rank denoted N. For $0 \le i \le N$, let F_i denote the diagonal matrix in $\mathrm{Mat}_P(\mathbb{C})$ with yy entry

$$(F_i)_{yy} = \begin{cases} 1, & \text{if } \operatorname{rank}(y) = i; \\ 0, & \text{if } \operatorname{rank}(y) \neq i \end{cases} \quad (\forall y \in P).$$

We refer to F_i as the *i*th projection matrix of P. We observe

$$F_iF_j = \delta_{ij}F_i$$
 $(0 \le i, j \le N),$
 $F_0 + F_1 + \cdots + F_N = I.$

Moreover,

$$F_i V = \operatorname{Span}\{x \in P \mid \operatorname{rank}(x) = i\}$$
 $(0 \le i \le N),$

where $V = \mathbb{C}P$.

For each of the five families of classical posets we mentioned at the outset, we obtain generalized Leonard pairs on $V = \mathbb{C}P$ of the form

$$A = \alpha R + \sum_{i=0}^{N} \theta_i F_i, \tag{10}$$

$$A^* = \alpha^* L + \sum_{i=0}^{N} \theta_i^* F_i,$$
 (11)

where the $\alpha, \alpha^*, \theta_i, \theta_i^*$ are complex scalars.

To illustrate, we now restrict our attention to the attenuated space poset $A_q(N, M)$. This poset is defined as follows. Let M and N denote nonnegative integers, let H denote a vector space of dimension M + N over GF(q), and fix a subspace $h \subseteq H$ of dimension M. Let P denote the poset consisting of all subspaces x of H such that $x \cap h = 0$. The partial order on P is

$$x \le y$$
 whenever $x \subseteq y$ $(\forall x, y \in P)$.

The poset P is ranked, with

$$rank(x) = \dim(x) \qquad (\forall x \in P).$$

Apparently, P has rank N. For $0 \le i \le N$, each rank i element of P covers exactly

$$\frac{q^i-1}{q-1}$$

elements of P, and is covered by exactly

$$\frac{q^{N+M-i}-q^M}{q-1}$$

elements in P. Moreover, it is shown in [8] that

$$\frac{q}{q+1}RL^2 - LRL + \frac{1}{q+1}L^2R + f_iL \tag{12}$$

vanishes on F_iV , where R and L are the raising and lowering matrices, where $V = \mathbb{C}P$, and where

$$f_i = q^{N+M-i}. (13)$$

Put

$$A = R + \sum_{i=0}^{N} \frac{q^{i}}{q-1} F_{i}, \tag{14}$$

$$A^* = \alpha^* L + \sum_{i=0}^{N} \frac{q^{-i}}{q-1} F_i, \tag{15}$$

where α^* is any scalar in \mathbb{C} that is not one of $q^{-M-1}, q^{-M-2}, \ldots, q^{-M-N}$. We show (A, A^*) is a generalized Leonard pair on V. Let T denote the subalgebra of $\operatorname{Mat}_P(\mathbb{C})$ generated by $R, L, F_0, F_1, \ldots, F_N$. Observe $R^t = L$, and each of F_0, F_1, \ldots, F_N is symmetric, so T is closed under the conjugate-transpose map. It follows T is semi-simple, so V is a direct sum of irreducible T-submodules. Let W denote an irreducible T-submodule of V. The matrices A and A^* are contained in T by (14), (15), so

$$AW \subseteq W$$
, $A^*W \subseteq W$.

It remains to show that

$$(A|_W, A^*|_W)$$

is a Leonard pair on W. We do this as follows. Using (12), one can show there exists integers r, p ($0 \le r \le p \le N$) and a basis $w_r, w_{r+1}, \ldots, w_p$ for W such that

(i)
$$w_i \in F_i V$$
 $(r \le i \le p),$

(ii)
$$Rw_i = w_{i+1}$$
 $(r \le i < p), Rw_p = 0,$

(iii)
$$Lw_i = x_i(r, p)w_{i-1}$$
 $(r < i \le p), Lw_r = 0$

where

$$x_i(r,p) = \frac{q^{M+N-r-p-i+1}(q^i - q^r)(q^p - q^{i-1})}{(q-1)^2}$$
(16)

for $r < i \le p$. Let B (resp. B^*) denote the matrix representing A (resp. A^*) with respect to the basis $w_r, w_{r+1}, \ldots, w_p$. Apparently

where d = p - r, and where

$$\theta_{i} = \frac{q^{r+i}}{q-1}, \qquad \theta_{i}^{*} = \frac{q^{-r-i}}{q-1} \qquad (0 \le i \le d),$$

$$\varphi_{i} = \alpha^{*} x_{r+i}(r, p) \qquad (1 \le i \le d).$$
(17)

Set

$$\phi_{i} = \varphi_{1} \sum_{h=0}^{i-1} \frac{\theta_{h} - \theta_{d-h}}{\theta_{0} - \theta_{d}} + (\theta_{i}^{*} - \theta_{0}^{*})(\theta_{d-i+1} - \theta_{0}) \qquad (1 \le i \le d).$$

Evaluating this using (16), (17), and (18) we obtain

$$\phi_i = -\frac{(1 - q^i)(1 - q^{d-i+1})(1 - \alpha^* q^{M+N+i-r-d})}{(q-1)^2 q^i} \qquad (1 \le i \le d).$$

One readily checks the above scalars $\theta_i, \theta_i^*, \varphi_i, \phi_i$ satisfy the conditions of Theorem 2.1, so (B, B^*) is a Leonard pair in $\operatorname{Mat}_{d+1}(\mathcal{F})$ by Corollary 2.2. It follows

$$(A|_W, A^*|_W)$$

is a Leonard pair on W. We have now shown (A, A^*) is a generalized Leonard pair on V. We remark that by (12), (14), (15), we have

$$[A, A^2A^* - (q+q^{-1})AA^*A + A^*A^2] = 0,$$

$$[A^*, A^{*2}A - (q+q^{-1})A^*AA^* + AA^{*2}] = 0$$

for this example.

References

- [1] Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov. Mutual integrability, quadratic algebras, and dynamical symmetry. *Ann. Physics*, 217(1):1–20, 1992.
- [2] Ya. I. Granovskiĭ and A. S. Zhedanov. "Twisted" Clebsch-Gordan coefficients for $su_q(2)$. J. Phys. A, 25(17):L1029–L1032, 1992.
- [3] Ya. I. Granovskii, A. S. Zhedanov, and I. M. Lutsenko. Quadratic algebras and dynamical symmetry of the Schrödinger equation. *Soviet Phys. JETP*, 72(2):205–209, 1991.
- [4] Vyacheslav Spiridonov, Luc Vinet, and Alexei Zhedanov. Periodic reduction of the factorization chain and the Hahn polynomials. J. Phys. A, 27(18):L669–L675, 1994.
- [5] Vyacheslav Spiridonov and Alexei Zhedanov. Discrete reflectionless potentials, quantum algebras, and q-orthogonal polynomials. Ann. Physics, 237(1):126–146, 1995.
- [6] P. Terwilliger. Leonard systems; an algebraic approach to the q-Racah polynomials. A book in progress.
- [7] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis for the other. *preprint*.
- [8] P. Terwilliger. The incidence algebra of a uniform poset. In D. Ray-Chaudhuri, editor, Coding Theory and Design Theory part I: Coding Theory, volume 20 of IMA volumes in Mathematics and its applications, pages 193-212, New York, 1990. Springer-Verlag.
- [9] A. S. Zhedanov. "Hidden symmetry" of Askey-Wilson polynomials. *Teoret. Mat. Fiz.*, 89(2):190–204, 1991.
- [10] A. S. Zhedanov. The "Higgs algebra" as a "quantum" deformation of su(2). *Modern Phys. Lett. A*, 7(6):507–512, 1992.
- [11] A. S. Zhedanov. Quantum $su_q(2)$ algebra: "Cartesian" version and overlaps. *Modern Phys. Lett. A*, 7(18):1589–1593, 1992.