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Abstract

Let F denote a field, and let V' denote a finite dimensional vector space over F.
We consider an ordered pair (A, A*), where A and A* are F-linear transformations
from V to V that satisfy conditions (i), (ii) below:

(i) There exists a basis for V' with respect to which the matrix representing A
is diagonal, and the matrix representing A* is irreducible tridiagonal.

(ii) There exists a basis for V' with respect to which the matrix representing A*
is diagonal, and the matrix representing A is irreducible tridiagonal.

We call such a pair a Leonard pair on V. We present a classification of Leonard

pairs. We obtain Leonard pairs from irreducible representations of the quantum -

Lie algebra Uy(sla). We show any Leonard pair satisfy two polynomial relations
called the Askey-Wilson relations. We obtain Leonard pairs from five families of
classical posets.

Introduction

Throughout this talk, F will denote an arbitrary field.
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Definition 1.1 Let V denote a finite dimensional vector space over F. By a Leonard
pair on V, we mean an ordered pair (A, A*), where A and A* are F-linear transforma-
tions from V to V satisfying (%), (i) below.

“diagonal, and the matriz representing A is irreducible tridiagonal.

(i) There ezists a basis for V with respect to which the matriz representing A* is

(i) There ezists a basis for V' with respect to which the matriz representing A is diag-

onal, and the matriz representing A* is irreducible tridiagonal.
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(A tridiagonal matriz is said to be irreducible whenever all entries immediately above
and below the main diagonal are nonzero).

Here is an example of a Leonard pair. Set V = F* (column vectors), set

0300 30 0 0
1020 ., o1 0 o0
A=lo201]° 4 =loo -1 0 |

0030 00 0 -3

and view A and A* as linear transformations on V. We assume the characteristic of F
is not 2 or 3, to insure A is irreducible. Then (A, A*) is a Leonard pair on V. Indeed,
condition (i) of Definition 1.1 is satisfied by the basis for V' consisting of the columns of
the 4 by 4 identity matrix. To verify condition (ii), we display an invertible matrix P
such that P~1AP is diagonal, and such that P~1A*P is irreducible tridiagonal. Put

1 3 3 1
1 -1 -1
-1 -1 1
-3 3 -1

P =

poed et et

By matrix multiplication P2 = 81, so P! exists. Also by matrix multiplication,
AP = PA*.

Apparently P~1AP equals A*, and is therefor diagonal. By the above line, and since
P! is a scalar multiple of P, we find P 'A*P equals A, and is therefor irreducible
tridiagonal. Now condition (ii) of Definition 1.1 is satisfied by the basis for V' consisting
of the columns of P.

Referring to the above example, apparently the eigenvalues of A* (and A) are 3,1, —1, —3,
and we observe these are distinct. This will always be the case. In fact, it is an easy
exercise to show the following.

Lemma 1.2 With reference to Definition 1.1, let (A, A*) denote a Leonard pair on V.
Then the eigenvalues of A are distinct, and contained in F. Moreover, the eigenvalues
of A* are distinct, and contained in F.

When studying Leonard pairs, it is often convenient to consider a related and somewhat
more abstract object, which we call a Leonard system. To define this, we need a few
terms. Let d denote a nonnegative integer, and let Matgy1(F) denote the F-algebra
consisting of all d+1 by d+ 1 matrices with entries in F. We view the rows and
columns as indexed by 0,1,...,d. For the rest of this talk, .4 will denote an F-algebra
isomorphic to Maty1(F). An element A € A will be called multiplicity-free whenever
it has d+ 1 distinct eigenvalues, all of which are in F. Assume A is multiplicity free,
and let D denote the subalgebra of 4 generated by A. Then D has a basis Fy, F1, ..., E4
such that

d
S E =1

1=0



The elements Ey, Fy, ..., E4 are unique up to permutation, and are called the primitive
idempotents of A.

Definition 1.3 Let d denote a nonnegative integer, let F denote a field, and let A
denote an F-algebra isomorphic to Maty1(F). By a Leonard System in A, we mean a
sequence

® = (4; Ey, By, ..., Es; A% E, EY, ..., E3) | (1)
that satisfies (i)~(v) below.
(i) A, A* are both multiplicity-free elements in A.
(ii) Eo, Ex, ..., Eq is an ordering of the primitive idempotents of A.
(iii) Eg, Ef, ..., E} is an ordering of the primitive idempotents of A*.

O) 'Lf li—'jl>1;

B eame [0, if li—j]>1; .
(’U) EtAEJ"'{#O’ Zf lz_]l_____l (OSZ)JSd)

We refer to d as the diameter of @, and say @ is over F.

To see the connection between Leonard pairs and Leonard systems, observe conditions
(ii), (iv) above assert that with respect to an appropriate basis consisting of eigenvectors
for A, the matrix representing A* is irreducible tridiagonal. Similarily, conditions (iii),
(v) assert that with respect to an appropriate basis consisting of eigenvectors for A*, the
maftrix representing A is irreducible tridiagonal.

Definition 1.4 Let the Leonard system ® be as in (1). We let 0; (resp. 60}) denote
the eigenvalue of A (resp. A*) associated with E; (resp. E}), for 0 < i < d. We
call 6,0y, ...,04 the eigenvalue sequence of ®. We call 65,05, . . .,05 the dual eigenvalue
sequence of P.

Given a Leonard system
¢ = (A Eo, B, ..., Eq; A% By EY, ... ES),
we can get more Leonard systems. For example

o* :=. (A% Ej, Fy, .oy B3 A; By, B, ..., By),
Pt = (A, Ey, By, ..., Eg; A, B} B, ..., Ey),
®Y = (A; Ey, Eq, ..., Ey; A% Es, By, ..., E})

are Leonard systems. Viewing x, |, | as permutations on the set of all Leonard systems,

*2 :~L2=U’2= 1,
d* = *{, H={!.
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The group generated by symbols %, |, { subject to the above relations is the dihedral
group Dy. We recall Dy is the group of symmetries of a square, and has 8 elements.
Apparently #,}, | induce an action of D, on the set of all Leonard systems. We say two
Leonard systems are relatives whenever they are in the same orbit of this D, action.

In view of our above comments, when we discuss Leonard systems, we are often not
interested in the orderings of the primitive idempotents involved; we just care how A
and A* interact. This brings us back to the notion of a Leonard pair.

Definition 1.5 Let d denote a nonnegative integer, let F denote a field, and let A
denote an F-algebra isomorphic to Matyyy(F). By a Leonard pair in A, we mean an
ordered pair (A, A*) such that

(i) A, A* are both multiplicity free elements of A, and

(i) There exists an ordering Ey, Ey, ..., E4 of the primitive idempotents of A, and
there exists an ordering Ej, B3, ..., E; of the primitive idempotents of A*, such
that (A; Ey, En, ..., Eg; A% E§, EY, ..., E}) is a Leonard System.

2 A classification of Leonard systems

When studying a Leonard system @, it is often useful to examine a second Leonard
system that is isomorphic to ® but in a particularily nice form. We present such a
‘canonical form’. To describe it, we use the following notation. Let

¢ = (A Ey, Er,...,Eq; A* B EY, ... E))

denote a Leonard system in A, and let o : 4 — A’ denote an isomorphism of F-algebras.
Then we write

®° = (A% E§,EY,...,E]; A", E;° EY°,...,E}"),
and observe @7 is a Leonard system in A’ |
Let us say a matrix X € Maty,.1(F) is lower di-diagonal whenever
Xij#0 — i-j€e{0,1} (0<4,j<d).

That is, X is lower di-diagonal whenever each nonzero entry lies either on or immediately
below the main diagonal. We say X is upper di-diagonal whenever the transpose X* is
lower di-diagonal.

Let ® denote the Leonard system in (1). We say ® is in split canonical form whenever
(i)—(iii) hold below.

(i) A= Matgy:(F).

(ii) A is lower di-diagonal, with A;; 1 =1for1 <i<d, and A; =6; for 0 < < d,
where 0; denotes the eigenvalue of A associated with F;.
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(ili) A* is upper di-diagonal, with A} = 6} for 0 < i < d, where 6} denotes the
eigenvalue of A* associated with EJ.

We show there there exists a unique isomorphism of F-algebras © : A — Matgy;(F)
such that ®7 is in split canonical form. Apparently

90 0 98 w1 0

1 6 07 2
A9 = 1 6, A= 0 ’
.o L _—y
0 .1 6y 0 g
where ¢y, @3, ..., pq are appropriate scalars in F. We call ¢y, 9, ..., ¢4 the @-sequence

of ®. Let ¢y, s, ..., ¢q denote the p-sequence for ®¥. Then abbreviating { := Q(dY),
we have

Hd 0 93 ¢1 O

1 041 07 oo

49 = 1 i Ao 05
o . ¢a
0 1 6 0 6

We call ¢y, ¢a, ..., ¢q the ¢-sequence of .

We obtain the following classification of Leonard systems.

Theorem 2.1 [7] Let d denote a nonnegative integer, let F denote a field, and let

60,617”-’0(1; 0;761(7 *
P1,P25 - -+ Pd; ¢1,¢2,-—-,¢d
denote scalars in F. Then there exists a Leonard System ® over F with eigenvalue
sequence Oy, 0y, . . .,04, dual eigenvalue sequence 65,07, . ..,03, w-sequence ¢, P2, Pay
and ¢-sequence ¢y, P, ..., ¢4 if and only if (i)-(v) hold below
(i) pi #0,  ¢i#0 (1<i<d),
(it) 0; # 6;, 07 #1065 if ©# 7 (0<4,5 <d),

Hd_

(iii) i = z b O -0 —0)  (1<i<d),

) Und O/ M
(iv) ¢i=801z—u*"l

h=0

+ (07 — 05)(0a-i+1 — o) - (1 Li<Ld),
0o — 64
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(v) The ezpressions

0‘i~2 - 9’i+1 :—-2 - :+1
b1 —6; or, — 6 @)

are equal and independent of ¢, for 2<i1<d—1.
Moreover, if (i)—(v) hold above then ® is unique up to isomorphism of Leonard Systems.

From the above theorem, we routinely obtain the following corollary.

Corollary 2.2 [7] Let d denote a nonnegative integer, and let F denote a field. Let A
and A* denote any matrices in Matyy,(F) of the form

90 0 08 Y1 0

1 91 0? ©Y2

A = 1 9.2 ) ’ A* = 0;
‘ T Pd
0 1 6y 0 0

Then the following are equivalent.
(i) (A, A*) is a Leonard pair.

(i) There exist scalars i, da, . .., ¢a in F such that conditions (i)-(v) hold in Theorem
2.1.

3 The quantum Lie algebra U,(sly)

In this section, we obtain Leonard pairs from irreducible representations of the quantum
Lie algebra U,(sly). Throughout this section, we assume our ground field F is alge-
braically closed with characteristic zero. We let ¢ denote a nonzero element in F, and
assume ¢ is not a root of 1.

Recall U,(sls) is the associative F-algebra with 1 generated by symbols e, f, k, k~! sub-
ject to the relations

k' =k k=1, (3)

ke = gPek, kf =gk, | (4)
)

ef — fe= (5)

q—q
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Let d denote a nonnegative integer, and put

0 [d] 0 0 ’ 0
0 [d-1) 1] o
E= 0 . ., Fe [2] © ,
(1]
0 0 0 [d 0
where
¢—-q* :
7| = Vi e Z).
[1] P ( )
Also put

K =diag(¢%,¢* %, ¢*™*,...,¢79).
Then K is invertible, and E, F', K satisfy the equations (4), (5), so they support a
‘representation of U,(slz). It can be shown the representation is irreducible.
Let o and o* denote nonzero elements in F such that ac* is not a power of ¢, and put
K
g—q"
-1
A* = o'FE+

A = aoF +

| g—qt
“We claim (A, A*) is a Leonard pair. To see this, let o denote the automorphism of
Matg41(F) satisfying

X° =D'XD (VX € Matq,1(F)),

where D is the diagonal matrix in Matg, (F) with entries
Di; = [1][2]-- - [i]e (0<i<a).
Then
90 0 95 %1 0
1 01 0{ P2
A% = 1 9.2 , A*a — 9; ,
Pd
0 1 6, 0 0
where
g2
0; = 3 0<i<d 3 6
— ©0si<d ®
. g%d .
Hz"q___qup (0<7’Sd)’ (7)



74

Set
Bd._

'—%Z

Evaluating this using (6)—(8), we obtain

+ (6 — 65)(Ba—is1 — bo) (1<i<d).

gi=[lld—i+1U(ea’ g (1<i<d)

One readily checks the above scalars 6;, 05, @;, ¢; satisfy the conditions of Theorem 2.1,
so (A%, A*) is a Leonard pair by Corollary 2.2. Applying o~ !, we find (4, A4*) is a
Leonard pair. For this example, it turns out

A2A* — (P + ¢ HAA A+ A*A* = wA+1l,
A2A — (P + ¢ DA AL + AAY? = wA*+ '],

where

Lg+gt \ La+at
— Nt = aot——,
g—q q—q

w=—1—ac*(g"%? +¢*). 9)

We comment there is a second Leonard pair associated with Uy(sly). Let o, a* be as
above, and put

B = aK-(1-q¢?KE,
B* = o*)K'=(1-¢ %K 'F.

Then (B, B*) is a Leonard pair. The proof is similar, and omitted.

‘4 The Askey-Wilson relations

In the previous section, we obtained a Leonard pair whose elements A, A* satisfied

two polynomial equations. It turns out every Leonard pair satisfies a similar pair of
equations.

Theorem 4.1 [6] Let d denote a nonnegative integer, let F denote any field, and let A
denote an F-algebra isomorphic to Maty1(F). Let (A, A*) denote a Leonard pair in A.
Then there ezists a sequence of scalars B3,v,7*, 0, 0*,w,n,n* from F such that
A%A* — BAA*A + A*A? — y(AA* + A*A) — pA* = YA’ +wA+ql,
A A — BA*AA* + A‘A*2 — Y (A*A+ AA*) — *A = yA? +wA* + 'l

The sequence is unique if d > 3.
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The above equations are known as the Askey- Wilson relations [1], [2], [3], [4], [5], [9],
10}, [11],

Concerning the converse to the above theorem, we have the following.

Theorem 4.2 [6] Let d denote a nonnegative integer, let F denote any field, and let
A denote an F-algebra isomorphic to Maty.1(F). Let A, A* denote multiplicity free el-
ements in A, and assume the irreducible A-module is irreducible as an (A, A*)-module.
Pick any scalars B,v,7*, 0, 0*,w,n,n* from F, and assume A, A* satisfy the correspond-
ing Askey- Wilson relations. Assume further that none of the following (i)-(ii) occur:

(i) q is a primitive d + 15 root of 1, where qg+q7! = B.
(iis) B=-2 and d+1=2char(F).

Then (A, A*) is a Leonard pair in A.

5 Leonard pairs from the classical posets

There is a way to obtain Leonard pairs from the following classical posets: (i) the subset
lattice, (ii) the subspace lattice, (iii) the Hamming semi-lattice, (iv) the attenuated
spaces, (v) the classical polar spaces. For the definitions of these posets, see [8]. The
argument in each case is similar. To illustrate it, we will consider the attenuated spaces
in some detail.

Definition 5.1 Let F denote any field, let V' denote a finite dimensional vector space
over F, and let A and A* denote F-linear transformations from'V to V. We say (A, A*)
15 a generalized Leonard pair on V whenever there exists a decomposition

V=Wi+tVe+t - --+V, (direct sum),
such that
AV; C Y, AV, CV, (1<i<n)
and such that
(Aly;, A*lv;)  is a Leonard Pair (1 <4< n).

The posets mentioned above all support generalized Leonard pairs. In each case, the
underlying vector space V' has the following form. Let X denote a finite set. By FX,
we mean the vector space over F consisting of all formal sums

Z QT

z€X
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where o, € F for all z € X.

- We will be discussing posets, so let us recall some terms. let P denote a poset. For all

z,y € P, we say y covers z whenever z < g, and there does not exist z € P such that

z < z < y. In this case, we write z < y. Let L denote the matrix in Matp(C) with
entries

_ L, ifz=<y;
Lwym{o’ if Ay (Vz,y € P).
Viewing L as a linear transformation on CP,
Lz=)y (Vz € P).
yeEP

y<z

‘We call L the lowering matriz on P. Let R denote the matrix in Matp(C) with entries

(1, if y<um
R,,.y_{o, e (Vz,y € P).
Viewing R as a linear transformation on CP,
Rz=>"y (Vz € P).
yeEP

<y

We call R the raising matriz on P. Now assume P is ranked, with rank denoted N. For
0 < i < N, let F; denote the diagonal matrix in Matp(C) with yy entry

N _ [ 1, if rank(y) =4;
(Fi)yy = {0, if rank(y) # 4 (Vy € P).

We refer to F; as the ith projection matriz of P. We observe

FiFj = 6;;F; (0<4,j < N),
Fo+F+--+Fy=1
Moreover,
F;V = Span{z € P | rank(z) = i} (0 < i< N),
where V =CP.

For each of the five families of classical posets we mentioned at the outset, we obtain
generalized Leonard pairs on V' =CP of the form

N .

A = aR+)> 4;F, (10)
1=0
N

A* = o’L+) 6'F, (11)

1=0
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where the o, a*, 0;, 07 are complex scalars.
b) 1V Y

To illustrate, we now restrict our attention to the attenuated space poset A,(N, M). This
poset is defined as follows. Let M and N denote nonnegative integers, let H denote a

vector space of dimension M + N over GF(q), and fix a subspace h C H of dimension
M. Let P denote the poset consisting of all subspaces z of H such that zNh = 0. The

partial order on P is
| z <y whenever zCy (Vz,y € P).
The posef P is ranked, with
rank(z) = dim(z) (Vz € P).
Apparently, P has rank N. For 0 < i < N, each rank i element of P covers exactly

¢ -1
qg—1

elements of P, and is covered by exactly

N+M—i M

q —4q

g—1
elements in P. Moreover, it is shown in [8] that

aq 2 I .,
——RL* — LRL + ——L*R+ f;L 12
g+1 g+1 +fi (12)
vanishes on F;V, where R and L are the raising and lowering matrices, where V =CP,
and where

o= gV M—i (13)
Put
N qz
4= R+Yy Lok (14)
=0 q- v
N q -3
A* = o'L + Y ——F, (15)
i=0 9~ 1
where o* is any scalar in € that is not one of g=~1,g~M=2 | g=M~N_ We show (4, A*)

is a generalized Leonard pair on V. Let T' denote the subalgebra of Matp(C) generated
by R,L,Fy, Fy,...,Fy. Observe R* = L, and each of Fy, Fy,..., Fy is symmetric, so
T is closed under the conjugate-transpose map. It follows 7" is semi-simple, so V is a
direct sum of irreducible T-submodules. Let W denote an irreducible 7-submodule of
V. The matrices A and A* are contained in T" by (14), (15), so

AW C W, AW CW.



78

It remains to show that

(Alw, A%|w)

is a Leonard pair on W. We do this as follows. Using (12), one can show there exists

- integers r,p (0 <7 < p < N) and a basis w,, Wry1,...,w, for W such that

(i) w; € BV (r<i<p),
(11) Rw; = Wit1 (’f‘ <1< p), pr =0,

(iii) Lw; = z;(r,p)wi—1  (r<i<p), Lw, =0,

where
M+N—r—p—i+1( i ™\{ P i—1
g (¢ - —¢)
x;\T, = 16
(r,p) (q—1)2 (16)
for r < i < p. Let B (resp. B*) denote the matrix representing A (resp. A*) with
respect to the basis w,, Wy41,...,Ww, . Apparently _
0() 0 95 ©1 0
1 91 HI P2
B = 1 0.2 ? B* = 0; ]
. . . . (pd
0 1 6, 0 0%
where d = p — r, and where
q1'+i . q—-r—i '
J— i 0<2<
6; T 6; P (0<i<d), (17)
0 = &*Tpyi(r, D) (1<i<d). (18)
Set
1 oh - Hd—h * ® }
¢i=p1) o —o. T (07 — 65) (Oa—iv1 — 6o) (1<i<d).
h=0 Y0 YVd
Evaluating this using (16), (17), and (18) we obtain
— (1 — %) (1 — o* M+N+i—r—d
¢¢=~(1 )1 - ¢~ ~a’g ) (1<i<ad).

(¢ —1)%¢°
One readily checks the above scalars 8;, 07, ¢;, ¢; satisfy the conditions of Theorem 2.1,
so (B, B*) is a Leonard pair in Matg,(F) by Corollary 2.2. It follows

(Alw, A*|w)

is a Leonard pair on W. We have now shown (4, A*) is a generalized Leonard pair on
V. We remark that by (12), (14), (15), we have

[4, A2A* — (g + ") AAA + A*A%) = 0,
[A*, A2 A — (g + ¢V A"AA" + AA?] =0

for this example.
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