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General Form of Non-Symmetric Spin Models

AW B Takuya Ikuta
MEERLFERE

B4 fIlE  Kazumasa Nomura,
FORERERICE: B

Abstract. A spin model (for link invariants) is a square matrix W with non-zero complex
entries which satisfies certain axioms. Recently [6] it was shown that *WW ™! is a permutation
matrix (the order of this permutation matrix is called the “index” of W), and a general form
was given for spin models of index 2. In the present paper, we generalize this general form to
an arbitrary index m. In particular, we give a simple form of W when m is a prime number.

1 Introduction

Spin models were introduced by Vaughan Jones [7] to construct invariants of knots and
links. A spin model is essentially a square matrix W with nonzero entries which satis-
fies two conditions (type II and type IIT conditions). In his definition of a spin model,
Jones considered only symmetric matrices. It was generalized to non-symmetric case by
Kawagoe-Munemasa-Watatani [8]. |

Recently, Francois Jaeger and the second author [6] introduced the notion of “index”
of a spin model. For every spin model W, the transpose W is obtained from W by a
permutation of rows. Let o denote the corresponding permutation of X = {1,...,n} (n
is the size of W). Then the index m is the order of . In [6], it was shown that X is
partitioned into m subsets Xo, X1, ..., Xp-1 such that W(z,y) = n"/W(y, z) holds for
all z € X;, y € X;. Moreover, the case of m = 2 was deeply investigated, and a general
form of spin models of index 2 was given.

In the present paper, we investigate the structure of spin models of an arbitrary index
m. In Section 4, we show that W is decomposed into blocks W;;, and W;; splits into
Kronecker product of two matrices S;; and T;; (Proposition 4.3). In Section 5, we give
conditions on T;; (Propositions 5.1 and 5.5). In Section 6, we apply this general form to
some special cases (Propositions 6.1 and 6.2). In particular, we give a simple form of W
when the index m is a prime number (Corollary 6.3).

2 Preliminaries

In this section, we give some basic materials concerning spin models and association
schemes. For more details the reader can refer to [3,7, 5, 6].

Let X be a finite non-empty set with n elements. We denote by Matx(C) the set of
square matrices with complex entries whose rows and columns are indexed by X. For
W € Matx(C) and z, y € X, the (z,y)-entry of W is denoted by W (z, y). ‘ '
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A type II matriz on X is a matrix W € Matx(C) with nonzero entries which satisfies
the type II condition:

W(a,x)
———r =nf,, for all a, b € X).
:eé; W(b2) b ( )

Let W~ € Matx(C) be defined by W~ (z,y) = W(y,z)~!. Then type II condition is
written as WW = = nl (I denotes the identity matrix). Hence, if W is a type II matrix,
then W is non-singular with W—! = n~'W~. It is clear that W~! and *W are also type
IT matrices.

A type II matrix W is called a spin model on X if W satisfies type III condition:
Z W(a,, ilz)VV(b; *’1") - D W(CL, b)
= Wiz T W(e,gW(cb)

(for all a, b, c € X) (1)

for some nonzero complex number D. The number D is called the loop variable of W.
Setting b = ¢ in (1), Yeex W(a,z) = DW(b,b)"! holds, so that the diagonal entries
W (b,b) is a constant, which is called the modulus of W.

For a spin model W with loop variable D, any nonzero scalar multiple AW is a spin
model with loop variable A\2D. Usually W is normalized so that D? = n, but we allow
any nonzero value of D in this paper to simplify our arguments.

Observe that, for any spin models W; on X; with loop variable D; (i = 1, 2), their tensor
(Kronecker) product Wi ® W, is a spin model with loop variable D = D, D,. Conversely,
it is not difficult to show that, if W; ® W, and W; are spin models, then W, must be a
spin model.

A (class d) association scheme on X is a partitioﬁ of X x X with nonempty relations
Ry, Ry, ..., Ry, where Ry = {(z,z) |z € X} which satisfy the following conditions:

(i) For every i in {0,1,...,d}, there exists ¢’ in {0,1,...,d} such that
Ry ={(y,2)|(z,y) € R:}.

(ii) There exist integers pf; (4, 4, k € {0,1,...,d}) such that for every (z,y) € Ry, there
are precisely pf; elements z such that (z,2) € R; and (2,y) € R;.

(iil) pf; = p¥ for every ¢, j in {0,1,...,d}.

Let A; denote the adjacency matrix of the relation R;, so A; € Matx(C) is a {0, 1}-matrix
whose (z,y)-entry is equal to 1 if and only if (z,y) € R;. Clearly Ag = I, A;0 Aj = 6; ;A;
(entry-wise product), Y4, A; = J (all I's matrix), and A;A; = Yo PX;Ax hold. The
linear span A of {Ag, Ay,...,As} becomes a subalgebra of Matx(C), called the Bose-
Mesner algebra of the association scheme. Observe that A is closed under entry-wise

product, A is closed under transposition A — ‘A, and A contains I, J.

3 Associated Permutation

Let W be a spin model on X. Then there exists an association scheme Ry, ..., RBqon X
such that the corresponding Bose-Mesner algebra A contains W ([5] Theorem 11). In [6], it
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was shown that *WW =1 = A, (the adjacency matrix of R,) for some s € {0,1,...,d}, and
moreover A, is a permutation matrix ([6] Proposition 2). Let o denote the corresponding
permutation on X, so that A,(z,y) = 1if y = o(z) and A,(z,y) = 0 otherwise. The
order m of o is called the index of W. ,

Observe that m = 1 if and only if W is symmetric. Also observe that, for two spin
models W; of index m; (i = 1,2), the index of W; ® W, is equal to the least common
multiple of m; and my. In particular, tensor product of a spin model of index m with any
symmetric spin model has index m.

Lemma 3.1 (i) W(z,0(z)) = W(y,o(y)) (z,y€ X).
(1) W(y,z) =W(o(z),y) (z,y€X).
(iit) Every orbit of o has length m.

Lemma 3.2 There is a partition X = XoU- - -UXp,—1 such that (for alli, j € {0,...,m—

1}) » |
W(z,y) =n""W(y,z) (foralzeX,;, ye X;),

where 1) denotes a primitive m-root of unity. Moreover, for every i, o(X;) = X, holds for
some j.

We fix a primitive m-root of unity 1, and let Xq, ..., X;—1 be the partition of X given
in Lemma 3. 2. We identify the index set {0,1,...,m~1} with Z,, = Z/m Z. By Lemma
3.2, there is a permutation m on Z, such that o(X;) = Xy (i € Zy,). Let t denote the
order of 7, and set k = m/t. v

Lemma 3.3 #(i) —i=n(j) —j for alli, j € Zp,.

Lemma 3.4 There ezists an automorphism ¢ of the additive group Zy, such that
m(p(i)) = (i + k) for all i € Zp,. Moreover, W(z,y) = (n*WY~iW(y,z) for every
T € Xo(i)s Y € Xy(j)-

Thus, by reordering the indices {0,1,...,m — 1} by ¢, and by replacing n with (1,
we may assume that
(i) =i+k (i € Zp).

4 General Form of W

We use the notation of the previous section. We also use the notation:

(£,7) = /D) -
Proposition 4.1 Leti, j € Z,, and z € X;, y € X;. Then for{, ¥' € Z,

W(o*(z), 0% (y)) = m(E~ €, i = j) W(z,y). 3)

Lemma 4.2 Ifm is even, then k is even.
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For i € Zp, set
-1

A = U Xithk-

h=0
Observe that |A;| = t(n/m) = tn/(kt) = n/k, and that
k-1
X = A,

1=0

Since o(A;) = A, A; is partitioned into o-orbits Y
Ai-—_—UYOZ; ('I:ZO,...,k'—l),

where r = |A;]/m = n/(mk). Observe that [Yi| = m and |Y: N X;| = k. We choose
representative elements :

wevYinX,; (=0,...,k—1, a=1,...,7).

Then '
X ={d*)]i=0,....k—1,a=1,...,m, £=0,...,m— 1},

and
W (o' (yL), 0% () = (£ — £,i— ) W (¥, )
for 6,0 € Zpn, 3, j=0,...,k—land o, =1, ..., 7.
We define square matrices Tj; of size r and S;; of size m (4,5 =0,...,k—1) by

ﬂj(aug) :W(yza)y%) (CY,,B:].,...,'I"),

Sij(f,fl) :'yk(ﬂ—é’,i—j) (E,ZIIO,...,TI’LW].).

For subsets A, B of X, let W|axp denote the restriction (submatrix) of W on A x B.
For two matrices S, T', we denote the Kronecker product by S® T'.

Proposition 4.3 Fori, j=0,...k—1,
WlYéng :T:ij(aiﬁ) Sij (Ol,ﬂ: 17"'1T)>

and -
W!AiXAJ' = S'I.J ® T'zj

Thus W decomposes into blocks W;; = Wla,xa,; (4,5 = 0,...,k — 1), and each block
has the form W;; = S;; ® T35 (4,7 =0,...,k = 1).



39

5 Type II and Type III conditions

Let m, k, ¢, r be positive integers with m = kt. }
Let T3 (3,7 = 0,...,k — 1) be any matrices of size r with nonzero entries, and let Sj;
(4,7 =0,...,k — 1) be the matrix of size m defined by

S":j(&e,):fyk(zmgl)i_j) (Z,EI:O,,,,,m——l),
where 7 is defined by (2) for a primitive m-root of unity 5. Now set
VVijZS.,;j®nj (’i,j:O,...,k}—-l),

and let W be the matrix of size n = kmr whose (4,4) block is Wi; (4,5 = 0,...,k — 1).
We index the rows and the columns of W by the set:

X={[£,a|0<i<k-1,0<l<m~1,1<a<r]}

so that '
W([i, 4,0, [5,£,8]) = Si;(£, £)Ti5(cx, B).

Proposition 5.1 W is a type II matriz if and only if Ti; 1s a type II matriz for all i,
jeA{0,...,k—1}. o

Lemma 5.2 Assume k is even when m is even. Then the matrizx W satisfies the type
11T condition (1) if and only if the following equation holds for all4,, iy, s € {0,... k— 1}
and for all aq, aq, a3 € {1,...,7}:

Iil (mi N (8,1 — 4y — iy + 13)) <2r: Tualtt, Mo, 0‘))

i=0 \ =0 a=1 Ty i(as, o)

— D ) 71%'1,2'2(0‘1}“2)
Til,ia (al; a3)Ti3,iz(a3: a2) .

Lemma 5.3 Forallu,s(0<u<t—-1,0<s<k-1),
Ye(u+ st, 3) = ((=1)7'979) v (u, ).

Lemma 5.4 . (i) Ift is odd, then

t—1

=l . k “uwimku(ui)/2 4r i =0 (mod k),
> 07wt 5) = { uZ:%n | & ( )

£=0 0 otherwise.



40
(ii) Ift and k are even, then

=0

m~1 : . k'
_ . k t:l —uj—ku(ut+1)/2 = —
> H () = { 20l fj=g (modk),
0 otherwise.

Proposition 5.5 Assume k is even when m is even. Then the matriz W satisfies

the type IIT condition (1) if and only if the following equation holds for all i1, i3, i3 €
{0,...,k—1} and for all oy, oy, as € {1,...,7}:

(§ ,r’—u(i——%)——ku(u+1)/2> (zr: Tihi(ah a)Tiz,‘i(a?a Ot)) — (D/k) Til,‘iz (0[1, O‘2)

u=0 a=1 Tia,i(a?n a) T'im's (al’ 013)Tia,iz (a3’ a2),

where 1 = i, + iy — i3, and i denotes the integer in {0,...,k — 1} such that

. ¢ (mod k) if t is odd,
=1is -g (mod k)  ift is even.

6 Some Special Cases
We use the notation in Section 4.
Proposition 6.1 Suppose k = 1. Then m is odd, and
W=5®T,
where S is a spin model of size m and index m which is given by
S(0,0) =y~ WA= (g =0,1,...,m—1),
and T is a symmetric spin model of size n/m.
Proposition 6.2 Suppose k =m. Then
| Wiex, = S5 ® Ty (7 =0,1,...,m=1),

and ' o
Sy(6,0) =D (@ ¢ =0,...,m~1).
The matrices T;; are type II matrices of size r = n/m?. Moreover the followi'rig equation

holds for all i1, iy, i3 € {0,...,m — 1} and for all oy, a2, o3 € {1,...,r}:

XT: T’h,i(al) O‘)Tia,i(am C\{) —_ (D/m) nl,":?(al) a2)

a=1 T"is,i(a3’ a) Til,is(alv a3)Ti3{i2(a37 012) ’

where i denotes the integer in {0,...,m — 1} such that i =i, + i3 — 43 (mod m).
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Corollary 6.3 Let W be a spin model on X of prime index m. Then one of the following
holds, where n denotes a primitive m-root of unity.

(i) W =5QT, where S is a spin model of size m with
S(e, 0 = g~ WA= -1) 4,0 =0,1,...,m-1),
and T' is a symmetric spin model of size | X|/m.

(i) W decomposes into m? blocks Wi; (i, =0,...,m — 1) with Wi = Si; ® Ti;, where
Si;j -are matrices of size m defined by ‘

Sy(6,0) =y &6 (g0 =0,1,...,m~1),

and T;; are type II matrices of size 1 = n/m? which satisfy the following equation
for all iy, ig, i3 € {0,...,m — 1} and for all &1, a2, a3 € {1,...,7}:

i T'im'(al, a)Tiz,i(a% Oé) - (D/m) Til,iz(ah 0‘2)

a=1 Tigi(as, @) T3y ig (o, @3) Tig i (03, 02)
where i denotes the integer in {0,...,m — 1} such that i = 4; + 43 — i3 (mod m).
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