General Form of Non-Symmetric Spin Models

生田 卓也 Takuya Ikuta

神戸学院女子短期大学

野村和正 Kazumasa Nomura

東京医科歯科大学 教養部

Abstract. A spin model (for link invariants) is a square matrix W with non-zero complex entries which satisfies certain axioms. Recently [6] it was shown that ${}^tWW^{-1}$ is a permutation matrix (the order of this permutation matrix is called the "index" of W), and a general form was given for spin models of index 2. In the present paper, we generalize this general form to an arbitrary index m. In particular, we give a simple form of W when m is a prime number.

1 Introduction

Spin models were introduced by Vaughan Jones [7] to construct invariants of knots and links. A spin model is essentially a square matrix W with nonzero entries which satisfies two conditions (type II and type III conditions). In his definition of a spin model, Jones considered only symmetric matrices. It was generalized to non-symmetric case by Kawagoe-Munemasa-Watatani [8].

Recently, François Jaeger and the second author [6] introduced the notion of "index" of a spin model. For every spin model W, the transpose tW is obtained from W by a permutation of rows. Let σ denote the corresponding permutation of $X = \{1, \ldots, n\}$ (n is the size of W). Then the index m is the order of σ . In [6], it was shown that X is partitioned into m subsets $X_0, X_1, \ldots, X_{m-1}$ such that $W(x, y) = \eta^{i-j}W(y, x)$ holds for all $x \in X_i$, $y \in X_j$. Moreover, the case of m = 2 was deeply investigated, and a general form of spin models of index 2 was given.

In the present paper, we investigate the structure of spin models of an arbitrary index m. In Section 4, we show that W is decomposed into blocks W_{ij} , and W_{ij} splits into Kronecker product of two matrices S_{ij} and T_{ij} (Proposition 4.3). In Section 5, we give conditions on T_{ij} (Propositions 5.1 and 5.5). In Section 6, we apply this general form to some special cases (Propositions 6.1 and 6.2). In particular, we give a simple form of W when the index m is a prime number (Corollary 6.3).

2 Preliminaries

In this section, we give some basic materials concerning spin models and association schemes. For more details the reader can refer to [3, 7, 5, 6].

Let X be a finite non-empty set with n elements. We denote by $\operatorname{Mat}_X(\mathbf{C})$ the set of square matrices with complex entries whose rows and columns are indexed by X. For $W \in \operatorname{Mat}_X(\mathbf{C})$ and $x, y \in X$, the (x, y)-entry of W is denoted by W(x, y).

A type II matrix on X is a matrix $W \in \text{Mat}_X(\mathbb{C})$ with nonzero entries which satisfies the type II condition:

$$\sum_{x \in X} \frac{W(a, x)}{W(b, x)} = n\delta_{a, b} \qquad \text{(for all } a, b \in X\text{)}.$$

Let $W^- \in \operatorname{Mat}_X(\mathbb{C})$ be defined by $W^-(x,y) = W(y,x)^{-1}$. Then type II condition is written as $WW^- = nI$ (I denotes the identity matrix). Hence, if W is a type II matrix, then W is non-singular with $W^{-1} = n^{-1}W^-$. It is clear that W^{-1} and W^- are also type II matrices.

A type II matrix W is called a spin model on X if W satisfies type III condition:

$$\sum_{x \in X} \frac{W(a, x)W(b, x)}{W(c, x)} = D \frac{W(a, b)}{W(a, c)W(c, b)} \qquad \text{(for all } a, b, c \in X)$$

for some nonzero complex number D. The number D is called the *loop variable* of W. Setting b = c in (1), $\sum_{x \in X} W(a, x) = DW(b, b)^{-1}$ holds, so that the diagonal entries W(b, b) is a constant, which is called the *modulus* of W.

For a spin model W with loop variable D, any nonzero scalar multiple λW is a spin model with loop variable $\lambda^2 D$. Usually W is normalized so that $D^2 = n$, but we allow any nonzero value of D in this paper to simplify our arguments.

Observe that, for any spin models W_i on X_i with loop variable D_i (i = 1, 2), their tensor (Kronecker) product $W_1 \otimes W_2$ is a spin model with loop variable $D = D_1D_2$. Conversely, it is not difficult to show that, if $W_1 \otimes W_2$ and W_1 are spin models, then W_2 must be a spin model.

A (class d) association scheme on X is a partition of $X \times X$ with nonempty relations R_0, R_1, \ldots, R_d , where $R_0 = \{(x, x) \mid x \in X\}$ which satisfy the following conditions:

- (i) For every i in $\{0, 1, \ldots, d\}$, there exists i' in $\{0, 1, \ldots, d\}$ such that $R_{i'} = \{(y, x) \mid (x, y) \in R_i\}$.
- (ii) There exist integers p_{ij}^k $(i, j, k \in \{0, 1, ..., d\})$ such that for every $(x, y) \in R_k$, there are precisely p_{ij}^k elements z such that $(x, z) \in R_i$ and $(z, y) \in R_j$.
- (iii) $p_{ij}^k = p_{ji}^k$ for every i, j in $\{0, 1, ..., d\}$.

Let A_i denote the adjacency matrix of the relation R_i , so $A_i \in \operatorname{Mat}_X(\mathbb{C})$ is a $\{0,1\}$ -matrix whose (x,y)-entry is equal to 1 if and only if $(x,y) \in R_i$. Clearly $A_0 = I$, $A_i \circ A_j = \delta_{i,j}A_i$ (entry-wise product), $\sum_{i=0}^d A_i = J$ (all 1's matrix), and $A_iA_j = \sum_{k=0}^d p_{ij}^k A_k$ hold. The linear span A of $\{A_0, A_1, \ldots, A_d\}$ becomes a subalgebra of $\operatorname{Mat}_X(\mathbb{C})$, called the Bose-Mesner algebra of the association scheme. Observe that A is closed under entry-wise product, A is closed under transposition $A \mapsto {}^t A$, and A contains I, J.

3 Associated Permutation

Let W be a spin model on X. Then there exists an association scheme R_0, \ldots, R_d on X such that the corresponding Bose-Mesner algebra A contains W ([5] Theorem 11). In [6], it

was shown that ${}^tWW^{-1} = A_s$ (the adjacency matrix of R_s) for some $s \in \{0, 1, ..., d\}$, and moreover A_s is a permutation matrix ([6] Proposition 2). Let σ denote the corresponding permutation on X, so that $A_s(x, y) = 1$ if $y = \sigma(x)$ and $A_s(x, y) = 0$ otherwise. The order m of σ is called the *index* of W.

Observe that m=1 if and only if W is symmetric. Also observe that, for two spin models W_i of index m_i (i=1,2), the index of $W_1 \otimes W_2$ is equal to the least common multiple of m_1 and m_2 . In particular, tensor product of a spin model of index m with any symmetric spin model has index m.

Lemma 3. 1 (i) $W(x, \sigma(x)) = W(y, \sigma(y))$ $(x, y \in X)$.

- (ii) $W(y,x) = W(\sigma(x),y)$ $(x, y \in X)$.
- (iii) Every orbit of σ has length m.

Lemma 3.2 There is a partition $X = X_0 \cup \cdots \cup X_{m-1}$ such that (for all $i, j \in \{0, \ldots, m-1\}$)

$$W(x,y) = \eta^{i-j}W(y,x)$$
 (for all $x \in X_i, y \in X_j$),

where η denotes a primitive m-root of unity. Moreover, for every i, $\sigma(X_i) = X_j$ holds for some j.

We fix a primitive m-root of unity η , and let X_0, \ldots, X_{m-1} be the partition of X given in Lemma 3. 2. We identify the index set $\{0,1,\ldots,m-1\}$ with $\mathbf{Z}_m=\mathbf{Z}/m$ Z. By Lemma 3. 2, there is a permutation π on \mathbf{Z}_m such that $\sigma(X_i)=X_{\pi(i)}$ $(i\in\mathbf{Z}_m)$. Let t denote the order of π , and set k=m/t.

Lemma 3.3 $\pi(i) - i = \pi(j) - j$ for all $i, j \in \mathbf{Z}_m$.

Lemma 3. 4 There exists an automorphism φ of the additive group \mathbf{Z}_m such that $\pi(\varphi(i)) = \varphi(i+k)$ for all $i \in \mathbf{Z}_m$. Moreover, $W(x,y) = (\eta^{\varphi(1)})^{i-j}W(y,x)$ for every $x \in X_{\varphi(i)}, y \in X_{\varphi(j)}$.

Thus, by reordering the indices $\{0, 1, ..., m-1\}$ by φ , and by replacing η with $\eta^{\varphi(1)}$, we may assume that

$$\pi(i) = i + k \qquad (i \in \mathbf{Z}_m).$$

4 General Form of W

We use the notation of the previous section. We also use the notation:

$$\gamma_k(\ell, i) = \eta^{-\ell i - (k/2)\ell(\ell-1)}. \tag{2}$$

Proposition 4.1 Let $i, j \in \mathbb{Z}_m$ and $x \in X_i, y \in X_j$. Then for $\ell, \ell' \in \mathbb{Z}$,

$$W(\sigma^{\ell}(x), \sigma^{\ell'}(y)) = \gamma_k(\ell - \ell', i - j) W(x, y). \tag{3}$$

Lemma 4. 2 If m is even, then k is even.

For $i \in \mathbf{Z}_m$, set

$$\Delta_i = \bigcup_{h=0}^{t-1} X_{i+hk}.$$

Observe that $|\Delta_i| = t(n/m) = tn/(kt) = n/k$, and that

$$X = \bigcup_{i=0}^{k-1} \Delta_i,$$

Since $\sigma(\Delta_i) = \Delta_i$, Δ_i is partitioned into σ -orbits Y_{α}^i :

$$\Delta_i = \bigcup_{\alpha=1}^r Y_{\alpha}^i \qquad (i=0,\ldots,k-1),$$

where $r = |\Delta_i|/m = n/(mk)$. Observe that $|Y_{\alpha}^i| = m$ and $|Y_{\alpha}^i \cap X_i| = k$. We choose representative elements

$$y_{\alpha}^{i} \in Y_{\alpha}^{i} \cap X_{i}$$
 $(i = 0, \dots, k-1, \alpha = 1, \dots, r).$

Then

$$X = \{ \sigma^{\ell}(y_{\alpha}^{i}) \mid i = 0, \dots, k-1, \ \alpha = 1, \dots, r, \ \ell = 0, \dots, m-1 \},$$

and

$$W(\sigma^{\ell}(y_{\alpha}^{i}), \sigma^{\ell'}(y_{\beta}^{j})) = \gamma_{k}(\ell - \ell', i - j) W(y_{\alpha}^{i}, y_{\beta}^{j})$$

for ℓ , $\ell' \in \mathbf{Z}_m$, i, $j = 0, \ldots, k-1$ and α , $\beta = 1, \ldots, r$.

We define square matrices T_{ij} of size r and S_{ij} of size m (i, j = 0, ..., k-1) by

$$T_{ij}(lpha,eta)=W(y^i_lpha,y^j_eta) \qquad (lpha,eta=1,\ldots,r),$$

$$S_{ij}(\ell,\ell') = \gamma_k(\ell-\ell',i-j) \qquad (\ell,\ell'=0,\ldots,m-1).$$

For subsets A, B of X, let $W|_{A\times B}$ denote the restriction (submatrix) of W on $A\times B$. For two matrices S, T, we denote the Kronecker product by $S\otimes T$.

Proposition 4.3 For i, j = 0, ...k - 1,

$$W|_{Y_{\alpha}^{i}\times Y_{\beta}^{j}}=T_{ij}(\alpha,\beta)\,S_{ij}\qquad (\alpha,\beta=1,\ldots,r),$$

and

$$W|_{\Delta_i \times \Delta_j} = S_{ij} \otimes T_{ij}.$$

Thus W decomposes into blocks $W_{ij} = W|_{\Delta_i \times \Delta_j}$ (i, j = 0, ..., k - 1), and each block has the form $W_{ij} = S_{ij} \otimes T_{ij}$ (i, j = 0, ..., k - 1).

5 Type II and Type III conditions

Let m, k, t, r be positive integers with m = kt.

Let T_{ij} (i, j = 0, ..., k-1) be any matrices of size r with nonzero entries, and let S_{ij} (i, j = 0, ..., k-1) be the matrix of size m defined by

$$S_{ij}(\ell,\ell') = \gamma_k(\ell-\ell',i-j) \qquad (\ell,\ell'=0,\ldots,m-1),$$

where γ_k is defined by (2) for a primitive m-root of unity η . Now set

$$W_{ij} = S_{ij} \otimes T_{ij} \qquad (i, j = 0, \dots, k-1),$$

and let W be the matrix of size n = kmr whose (i, j) block is W_{ij} (i, j = 0, ..., k - 1). We index the rows and the columns of W by the set:

$$X = \{[i, \ell, \alpha] \mid 0 \le i \le k - 1, \ 0 \le \ell \le m - 1, \ 1 \le \alpha \le r\},\$$

so that

$$W([i,\ell,\alpha], [j,\ell',\beta]) = S_{ij}(\ell,\ell')T_{ij}(\alpha,\beta).$$

Proposition 5.1 W is a type II matrix if and only if T_{ij} is a type II matrix for all i, $j \in \{0, ..., k-1\}$.

Lemma 5. 2 Assume k is even when m is even. Then the matrix W satisfies the type III condition (1) if and only if the following equation holds for all $i_1, i_2, i_3 \in \{0, ..., k-1\}$ and for all $\alpha_1, \alpha_2, \alpha_3 \in \{1, ..., r\}$:

$$\sum_{i=0}^{k-1} \left(\sum_{\ell=0}^{m-1} \eta^{-k\ell} \gamma_k(\ell, i - i_1 - i_2 + i_3) \right) \left(\sum_{\alpha=1}^r \frac{T_{i_1,i}(\alpha_1, \alpha) T_{i_2,i}(\alpha_2, \alpha)}{T_{i_3,i}(\alpha_3, \alpha)} \right)$$

$$= D \frac{T_{i_1,i_2}(\alpha_1, \alpha_2)}{T_{i_1,i_3}(\alpha_1, \alpha_3) T_{i_3,i_2}(\alpha_3, \alpha_2)}.$$

Lemma 5.3 For all u, s $(0 \le u \le t - 1, 0 \le s \le k - 1)$,

$$\gamma_k(u+st,j) = ((-1)^{t-1}\eta^{-tj})^s \gamma_k(u,j).$$

Lemma 5.4 (i) If t is odd, then

$$\sum_{\ell=0}^{m-1} \eta^{-k\ell} \gamma_k(\ell,j) = \begin{cases} k \sum_{u=0}^{t-1} \eta^{-uj-ku(u+1)/2} & \text{if } j \equiv 0 \pmod{k}, \\ 0 & \text{otherwise.} \end{cases}$$

(ii) If t and k are even, then

$$\sum_{\ell=0}^{m-1} \eta^{-k\ell} \gamma_k(\ell,j) = \begin{cases} k \sum_{u=0}^{t-1} \eta^{-uj-ku(u+1)/2} & \text{if } j \equiv \frac{k}{2} \pmod{k}, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 5.5 Assume k is even when m is even. Then the matrix W satisfies the type III condition (1) if and only if the following equation holds for all i_1 , i_2 , $i_3 \in \{0, \ldots, k-1\}$ and for all α_1 , α_2 , $\alpha_3 \in \{1, \ldots, r\}$:

$$\left(\sum_{u=0}^{t-1} \eta^{-u(i-\hat{i})-ku(u+1)/2}\right) \left(\sum_{\alpha=1}^{r} \frac{T_{i_1,i}(\alpha_1,\alpha)T_{i_2,i}(\alpha_2,\alpha)}{T_{i_3,i}(\alpha_3,\alpha)}\right) = (D/k) \frac{T_{i_1,i_2}(\alpha_1,\alpha_2)}{T_{i_1,i_3}(\alpha_1,\alpha_3)T_{i_3,i_2}(\alpha_3,\alpha_2)},$$

where $\hat{i} = i_1 + i_2 - i_3$, and i denotes the integer in $\{0, \ldots, k-1\}$ such that

$$i \equiv \left\{ egin{array}{ll} \hat{i} \pmod{k} & \textit{if t is odd,} \\ \hat{i} + rac{k}{2} \pmod{k} & \textit{if t is even.} \end{array}
ight.$$

6 Some Special Cases

We use the notation in Section 4.

Proposition 6.1 Suppose k = 1. Then m is odd, and

$$W = S \otimes T$$

where S is a spin model of size m and index m which is given by

$$S(\ell, \ell') = \eta^{-(1/2)(\ell-\ell')(\ell-\ell'-1)}$$
 $(\ell, \ell' = 0, 1, \dots, m-1),$

and T is a symmetric spin model of size n/m.

Proposition 6.2 Suppose k = m. Then

$$W|_{X_i \times X_j} = S_{ij} \otimes T_{ij} \qquad (i, j = 0, 1, \dots, m-1),$$

and

$$S_{ij}(\ell,\ell') = \eta^{-(\ell-\ell')(i-j)}$$
 $(\ell,\ell'=0,\ldots,m-1).$

The matrices T_{ij} are type II matrices of size $r = n/m^2$. Moreover the following equation holds for all $i_1, i_2, i_3 \in \{0, ..., m-1\}$ and for all $\alpha_1, \alpha_2, \alpha_3 \in \{1, ..., r\}$:

$$\sum_{\alpha=1}^{r} \frac{T_{i_1,i}(\alpha_1,\alpha)T_{i_2,i}(\alpha_2,\alpha)}{T_{i_3,i}(\alpha_3,\alpha)} = (D/m) \frac{T_{i_1,i_2}(\alpha_1,\alpha_2)}{T_{i_1,i_3}(\alpha_1,\alpha_3)T_{i_3,i_2}(\alpha_3,\alpha_2)},$$

where i denotes the integer in $\{0, \ldots, m-1\}$ such that $i \equiv i_1 + i_2 - i_3 \pmod{m}$.

Corollary 6.3 Let W be a spin model on X of prime index m. Then one of the following holds, where η denotes a primitive m-root of unity.

(i) $W = S \otimes T$, where S is a spin model of size m with

$$S(\ell, \ell') = \eta^{-(1/2)(\ell-\ell')(\ell-\ell'-1)}$$
 $(\ell, \ell' = 0, 1, \dots, m-1),$

and T is a symmetric spin model of size |X|/m.

(ii) W decomposes into m^2 blocks W_{ij} (i, j = 0, ..., m-1) with $W_{ij} = S_{ij} \otimes T_{ij}$, where S_{ij} are matrices of size m defined by

$$S_{ij}(\ell,\ell') = \eta^{-(\ell-\ell')(i-j)}$$
 $(\ell,\ell'=0,1,\ldots,m-1),$

and T_{ij} are type II matrices of size $r = n/m^2$ which satisfy the following equation for all $i_1, i_2, i_3 \in \{0, ..., m-1\}$ and for all $\alpha_1, \alpha_2, \alpha_3 \in \{1, ..., r\}$:

$$\sum_{\alpha=1}^{r} \frac{T_{i_1,i}(\alpha_1,\alpha)T_{i_2,i}(\alpha_2,\alpha)}{T_{i_3,i}(\alpha_3,\alpha)} = (D/m) \frac{T_{i_1,i_2}(\alpha_1,\alpha_2)}{T_{i_1,i_3}(\alpha_1,\alpha_3)T_{i_3,i_2}(\alpha_3,\alpha_2)},$$

where i denotes the integer in $\{0, \ldots, m-1\}$ such that $i \equiv i_1 + i_2 - i_3 \pmod{m}$.

References

- [1] E. Bannai, "Modular invariance property and spin models attached to cyclic group association schemes," J. Stat. Plann. and Inference, 51 (1996), 107–124.
- [2] E. Bannai and Et. Bannai, "Spin models on finite cyclic groups," J. Alg. Combin. 3 (1994), 243–259.
- [3] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
- [4] E. Bannai, Et. Bannai, and F. Jaeger, "On spin models, modular invariance, and duality," J. Alg. Combin. 6 (1997), 203-228.
- [5] F. Jaeger, M. Matsumoto, and K. Nomura, "Bose-Mesner algebras related to type II matrices and spin models," J. Alg. Combin. 8 (1998), 39–72.
- [6] F. Jaeger and K. Nomura, "Symmetric versus non-symmetric spin models for link invariants," J. Alg. Combin., to appear.
- [7] V.F.R. Jones, "On knot invariants related to some statistical mechanical models," *Pac. J. Math.* 137 (1989), 311–336.
- [8] K. Kawagoe, A. Munemasa, and Y. Watatani, "Generalized spin models," J. of Knot Theory and its Ramifications 3 (1994), 465–475.