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1 Introduction

The Assmus—Mattson theorem is a method to find designs in linear codes
over a finite field. The theorem can find 5-designs in the extended binary
Golay code, the extended ternary Golay code, and so on. The theorem is
shown by using combinatorial method and MacWilliams identity in [1] (or
see [6]).

Let us consider Z4-codes in this note. It is shown that the lifted Golay
code over Z4 contains 5-designs in [5], [8], and [9]. Hence it is a natural
problem to find an analogue of the Assmus-Mattson theorem for Z4-codes
and to show those facts by the theorem.

Recently, Bachoc [2] gave a new proof of the Assmus-Mattson theorem
for linear binary codes. She introduced the harmonic weight enumerators
for a binary linear code and showed a MacWilliams type identity for the
weight enumerators. The Assmus-Mattson theorem for linear binary codes
is shown by using this identity and the characterization of designs in terms
of the harmonic spaces by Delsarte. _

In this note we modify her method and apply it to Z4-codes. In section
2, we introduce Z4-codes and designs. In section 3, we give an identity in
Theorem 2. But it is not quite MacWilliams type. We have an analogue of
the Assmus—-Mattson theorem for Z4-codes by using this identity in Theorem
3. In section 4, we apply this theorem to the lifted Golay code over Z4 and
show that this code contains 5-designs on some Lee compositions with help
of computer. 4

2 Notations and Preliminary

Throughout this note, we use the following notations:



n,t,k : positive integers such that ¢,k < n,

Z4 = Z/4Z,
V =173
C : a Zg4-code,

X : The set of all subset of {1,2,...,n},
X; : The set of all subset of {1,2,...,n}
of cardinality 7 (i = 0,...,n),
RX, RX;,RV : The free real vector spaces spanned by
respectively the elements of X, X;, and V.

For u = (ug,...,up),v = (v1,...,0,) € V,
so(u) = {ie{l,...,n}|w =0},
s1(u) {te{l,...,n} | ui=1or 3},
s2(u) {ie{l,...,n} | w =2},
supp(u) = {i€{1,...,n}|w #0},

(no(u), n1(u), na(u))

wi(u)
Vij

Vi

u % 5;(v)

uv

(#s0(u), #s1(u), #s2 (w);

The Lee composition of u,

#supp(u); The Hamming weight of u,
{u € V| ni(v) = i and ny(u) = j},
fueViutw =3},

#(supp(u) N s:(v)), (i = 1,2),

E U V5.

i=1

Definition 1 By a Z4-code of length n we shall mean an addxtlve subgroup
of V. For a Zy-code C, define C*+ := {u € V | wv = 0, for any v € C‘} and
the symmetrized weight enumerator of C:

Z x3°(“)m;‘1(“)x32(“).
ueC

A Z4-code C is said to be self-dual if C' = CL. We call an element of
{(no(u),ny(u),na(u)) | w € C} a Lee composition of C and an element of
{wt(u) | v € C} a Hamming weight of C.

An element of RX} is denoted by

f=3 flaa

a€Xy
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We denote an element of RV similarly. For f = 3° ¢ x, f(2)2 € RX, define

f = Z ( Z f(z))uERX,

ueX ZEXk

z2Cu
(resp. f = Z ( Z f(supp(z)))u € RV)-,

ue€V 2EVy

supp(z)Csupp(u)
Fld) = Z ( Z f(supp(u)))‘v € RV.

veV uEVk
uxsy (v)=i
uxsy (v)=j

for non-negative integers ¢ and j. Note that 3% fE=id () = f (v) and
f6d) = 0 if i 4+ 5 > k by the definition. It is shown that f(u) = 0, if
wt(u) < k or wi(u) > n — k in [2]. The differentiation v is the operator
defined by linearity from

)= ), oy

yGXk—-lv yCz

for all z € Xi and for all k =0,1,...,n, and Harmy is the kernel of ~:
Harmy = Ker(ﬂRXk), k=0,1,...,n.

We introduce the definition of designs and the characterization of designs
in terms of the harmonic spaces.

Definition 2 Let 7 be an integer with ¢ < 7 and A be a positive integer.
Let B C X;. We say B is a t-(n,4,A) design (or t-design simply) if #{U €
B|TcU}=Aforal T e X,

Theorem 1 [7] Let i be an integer with t <4 and B C X;. B is a t-design
if and only if Y cp f(b) =0, for any f € Harmy, and for any k (1 < k < t).

3 An identity and the main theorem

The following identity is essential in Theorem 3.
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Theorem 2 ([11] Theorem 2) Let C be a Z4-code and f ¢Harmy. Then

Z f(u) (:I:o + 2z + xz)n-—m(u)—m(u)—k(mo _ x2)m(u)($0 -2z + w2)n2(u)
ueCt

_1Ykgn—k k '
( 1I)CT T plmikom) ()= ()= (0) ks (0)=m ma (o) =ktm
vEC m=0
X(.’L‘o — 21)m (230 - {Ez)k‘m.

Corollary 1 ([11] Corollary 1) Let C be a Z4-code and f €Harmy. Then

Z f(u) (2o + 3$1)""‘w‘(“)“k($0 — ml)’wt(u)—k
ueCt

_1\Ykan—k ~
( 1I)C‘I1 Zf(v)wg—wt(v)—-kwviut(v)—k.

veC

Remark. This corollary is an analogue result of Theorem 2.1 in [2] for
Z4-codes.

For a Z4-code C' we denote by I'(C) the set of all Lee compositions
(mo,m1, n2) of C satisfying one of the following conditions:

1. nl':()_ ‘
2. n;y > 0 and there is no pair of Lee compositions of C
((ae, a1,a2), (bo, by, b2)) such that

(1) a1=0b1=0, ag >0, by >0, and ay + by = ny, or
(2) a; =b =2(n1—a2—-b2) andn22n1~a2-—b2>0.

3. m1 > 0 and there is no pair of Lee compositions of C of type (1)
and there are pairs of Lee compositions of C of type (2) in 2. For
any Lee composition of C' of type (2) in 2, (n—ny—a3 —by, ny, no—
ny + ag + bz) is not a Lee composition of C.

Let (ng,n1,n2) € T'(C). By the definition of T'(C), two codewords of C
with the Lee composition (ng,ny,7;), which have the same support must
be scalar multiples of each other. This is the reason of the introduction of
I'(C). We can use Theorem 1 in Theorem 3 by this property of I'(C).



For non-negative integers 1, j,a, b, and [, define
l , .
(n~2k); . 1—k n—k—1 l—m(_qym
Ao = 3 (F) (M ) e
; the Krawtchouk polynomials,

Qk(i,j;a,b) = Z (n_k 'n,...k;_i_j

r,s,t>0

’l: ] _1\rt+s
X(r)(j—-s~t,s,t,)( ™,

) . 'l!
i""jl "‘j2,j1,j2 . (i'—jl“j2)!j1!j2!.

Pl(n_%) (i — k) is the coefficient of mg"‘zk“lmll in (zo+ 3xi)“‘k‘i(mo — )ik

where

and Q* (4, ; a,b)2® is the coefficient of el k080 in (wo+221422)" " I R (2o

23)* (2o — 221 + z2)7.
Now we state the main theorem.

Theorem 3 Let C be a Z4-code. For 1 < k Lt, define

0<a+b<n—kand
a > ny(v) or b > na(v) for anyv € C+

A(k) = {(a,b).e{l,...,n}2

Aq(k) = {c € {0,...,n — 2k} l c+k is not a Hamming weight ofC’L},
Az(k) = {(nl(u),ng(u)) l ueC andk < wt(u) <n— k}

Define matriz:

My(k) = (Qk(i,j; a,b))(a’b), (i’j)EMatAl(k)an(k)(R),
My(k) = (POMG+i-)
M) = lﬁ;g’;ﬂ

Suppose that the rank of M (k) is equal to its column length (= #As(k))
for any k (1 < k < t). Then, the support of the codewords with Lee compo-
sition (no, n1,n2) € I'(C) with t £ ny + ng < n —t forms a t-design.

i) € Matp, (k) xas (k) (R)

—f—j—a—-b+r+s+t,a—s, b—r—t

b

)
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Proof: For k (1 <k <t) and f €Harmy, define

A= Y f(w), Bij:= Y fv)

ueC veC+t
nl(u)=1: ny (v)=i
ng(u)=j ng (v)=j
k—m,m —-m,m
BT = 3 flkemm) ()

veCt

ny (v)=i

nz(v)=j

By Theorem 1 and the remark after the definition of I'(C), it is sufficient
to show that A;; = 0 for any (¢, ) € As(k). By Theorem 2 and its corollary
we have two kinds of equations:

Z Aij(zo + 221 + wz)""k“‘i‘j(mo — 29)* (2o — 221 + 5)?
i.20
(1)t

(k-) k—i-j j—k+
G X 3 ptrmagiiamagoben

1,720 m=0

X(zo — 21)™(zo — wg)k‘m,

n—k 1
Y0 Aigi(mo+ 3z1)"F (mg — z,)!
I=k i=0
(=1)%4n-* 1)kgn—k 20 n—k—j_j—k
- e Z%ZB q-i%o  ®]
=k 1=0

Comparing the coefficients, we have

Y AiQFG, 5y a,b)2°

§,7>0
a+bn—k k -m o
(- l)Cl? ¥ Z B(m k—m ( o ) ( k’ ) (—1)i+,

1,20 m=0 ng
for any (a,b) (0 <a+b<n-k), and
Con-k 1 (—1)kgn—k Ttk

ZZA: I—i P(n 2k)(l k) = AT Z
I=k % ‘C l

=0 1=0

Bi,m+k-—i1



for any m (0 < m < n — 2k).
By the definitions of A;(k) and Aq(k),

, Z Ai;QF(i,7; a,b) = 0, for any (a,b) € Ay(k),
1,§20
n—-k |1 :

SOY AP - k) = 0, for any ¢ € As(k).
l=k 1=0

Hence we have

M(k)| Aij | = |
: 0
We have that A;; = 0 for any (4,j) € Az(k) because of the assumption of
the rank of M(k) (1 <k <t). O

4 An Application to the Lifted Golay Code

The lifted Golay code G4 over Zy is defined in [4]. Ga4 is constructed from
the cyclic code with generator polynomial z'! 4 22 + 32° + 32" + 32° +
325 + 22% 4+ ¢ + 3 by appending 3 to the last coordinate of the generator
vectors. Gog4 is a self-dual code over Zy.

It is shown that G4 contains some 5-designs by using computer in [8]
and [9] at first. Let C’ be a Zs-code with the same symmetrized weight
enumerator as Go4. Recently, it is shown that the support of the codewords
with any given Lee composition of C’ forms a 5-design possibly with repeated
blocks in [5].

We apply Theorem 3 to Ga4 (or C’). The symmetrized weight enumer-
ator of G4 is given in [3]. We show it in Table 1. The last column in
Table 1 gives the value A in t-(24,k, A) design and “+”means that the Lee
composition (ng, n1,n2) ¢ I'(G24) there.
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Table 1: Symmetrized weight enumerator of G4 [3]

Hamming | Lee composition | Number of words A
weight 71 Ny

0 0 0 1 X
8 0 8 759 1
10 8 2 12144 36
12 8 4. 170016 1584

0 12 2576 48
13 12 1 61824 936
14 8 6 765072 *
15 12 3 1133440 40040
16 16 0 24288 *

8 8 1214400 *

: 0 16 759 78
17 12 5 4080384 *
18 16 2 680064 *

8 10 765072 *
19 12 7 4080384 *
20 16 4 1700160 X
8 12 170016 X
21 12 9 1133440 X
22 16 6 680064 X
8 14 12144 X
23 12 11 61824 X
24 24 0 4096 X
16 8 24288 X
0 24 1 X

We can see I'(Ga4), A1 (k), A2(k), and Az(k) in Theorem 3 from this table.

For example,

F(G24) =

Ai(5) =

A2 (5)

il

11,12,1),(9,12,3), (8,0, 16)

1,15),(1,16),
2,16), (2,17),

{ (16,0,8), (14,8,2), (12,8,4), (12,0, 12), }
( )
(
(

(1
(3,

,17), (1, 18), (2, 15),
15), (3, 16), (4, 15),

(17,1),(17,2), (18,1)

{0,1,2,4,6},

1
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(0,8),(8,2), (8,4),(0,12), (12, 1),
As(5) = 3 (8,6),(12,3),(16,0),(8,8),(0,16),
(12,5), (16,2), (8,10), (12,7)

The ranks of M (k) in Theorem 3 are computed by using computer.

Table 2 '
k| #AL(F) [ #A2(k) [ #AL (k) + #Az(k) | #As(R) | rankM (k)
1] 66 9 75 20 20
2| 47 8 55 19 19
3| 32 7 39 17 17
4| 21 6 27 16 16
5| 13 5 18 14 14
(6] 7 1 4 | 11 | 13 | 11 |

Hence G4 (or a Zy-code with the same symmetrized weight enumerator as

Gla4) contains 5-designs on Lee compositions:

(16,0, 8), (14, 8,2), (12,8,4), (12,0,12), (11,12,1), (9, 12, 3), (8,0, 16).

Remark. It was shown that the support of the codewords with any given
Lee composition of the lifted quadratic residue code of length 32 over Z,4
forms a 3-design possibly with repeated blocks in [5]. The symmetrized
weight enumerator of the code is given in [10]. Similarly we can show those
facts for some Lee compositions.
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