<table>
<thead>
<tr>
<th>Title</th>
<th>Semicontinuous solutions for Hamilton-Jacobi equations with general Hamiltonians (Singularity theory and Differential equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Giga, Yoshikazu; Sato, Moto-Hiko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1111: 117-124</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63337</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Semicontinuous solutions for Hamilton-Jacobi equations

with general Hamiltonians

Yoshikazu Giga

Moto-Hiko Sato

1. Introduction

We consider the initial value problem for the Hamilton-Jacobi equation of form

\[u_t + H(x, u_x) = 0 \quad \text{in } \mathbb{R}^n \times (0, T), \]
\[u(0, x) = u_0(x), \quad x \in \mathbb{R}^n, \]

where \(u_t = \partial u/\partial t \) and \(u_x = (\partial_{x_1} u, \cdots, \partial_{x_n} u) \), \(\partial_{x_i} u = \partial u/\partial x_i; \infty \geq T > 0 \) is a fixed number. Our main goal is to find a suitable notion of solution when \(u_0 \) is discontinuous. The theory of viscosity solutions initiated by Crandall and Lions \([CL]\) yields the global solvability of the initial value problem by extending the notion of solutions when \(u_0 \) is continuous (cf. [E, Chap.10], [L], [B]). In fact, if initial data \(u_0 \) is bounded, uniformly continuous, it is well-known \([CL], [L]\) that the initial value problem \((1a)-(1b) \) admits a unique global (uniformly) continuous viscosity solutions when \(H \) is enough regular, for example \(H \) satisfies the Lipschitz conditions

\[|H(x, p) - H(x, q)| \leq C|p - q| \]
\[|H(x, p) - H(y, p)| \leq C(1 + |p|)|x - y|. \]

We only refer to [B], [L] and [CIL] for the basic theory of viscosity solutions. The notion of viscosity solution has been extended to semicontinuous functions. This

*Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan. Partly supported by Ministry of Education, Science, Sports and Culture through grant 10304010 for scientific research

**Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 Japan

Typeset by \LaTeX
is very important to prove the existence of solutions without appealing hard estimates. Such a method is first introduced by [I]. However, if \(u_0 \) is, for example, upper semicontinuous, a classical semicontinuous viscosity solution may not be unique.

Recently to overcome this inconvenience, Barron and Jensen [BJ] introduced another notion of viscosity solutions for semicontinuous functions when the Hamiltonian \(H = H(x, p) \) is concave in \(p \) and proved the existence and the uniqueness of their solution for (1a), (1b) for bounded (from above), upper semicontinuous initial data \(u_0 \). Their solution is now called a bilateral solution [BD]. For later development of the theory as well as other approaches we refer to [BD] and references cited there. However, their theory is limited for concave \(H \). (In [BJ] \(H \) is assumed to be convex but they consider the terminal value problem which is easily transformed to the initial value problem with concave Hamiltonian by setting \(T - t \) by \(t \).)

In this paper we introduce a new notion of a solution which is unique for a given initial upper semicontinuous initial data. For (1a), (1b) we consider auxiliary problem

\[
\psi_t - \psi_y H(x, -\psi_x/\psi_y) = 0 \quad \text{in} \quad \mathbb{R}^{n+1} \times (0, T),
\]

(3a)

\[
\psi(0, x, y) = \psi_0(x, y), \quad (x, y) \in \mathbb{R}^n \times \mathbb{R}.
\]

(3b)

The equation (3a) is called the level set equation for the evolution of the graph of \(u \) of (1a). In fact, if a level set of a solution \(\psi \) of (3a) is given as the graph of a function \(v = v(t, x) \), then \(v \) must solve (1a). For given upper semicontinuous initial data \(u_0 : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty\} \), shortly \(u_0 \in USC(\mathbb{R}^n) \), we take

\[
\psi_0(x, y) = -\min\{\text{dist}((x, y), K_0), 1\},
\]

(4)

where

\[
K_0 = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}; \; y \leq u_0(x)\}.
\]

(5)

We solve (3a), (3b) and set

\[
\bar{u}(t, x) = \sup\{y \in \mathbb{R}; \; \psi(t, x, y) \geq 0\},
\]

(6)
where ψ is the continuous viscosity solution of (3a), (3b). We call \bar{u} an L-solution of (1a), (1b). Such a solution uniquely exists globally in time under suitable condition on H.

Theorem 1. Assume that the recession function

$$H_\infty(x, p) = \lim_{\lambda \downarrow 0} \lambda H(x, p/\lambda), \quad x \in \mathbb{R}^n, \quad p \in \mathbb{R}^n \quad (7)$$

exists and that H satisfies (2a), (2b). Then there exists a global unique L-solution for an arbitrary $u_0 \in USC(\mathbb{R}^n)$.

One may relax the assumptions on H (cf. Remark right before references) but in this paper we shall always assume (2a), (2b) and (7). These assumptions guarantee that the singularity at $\psi_y = 0$ in (3a) is removable if we restrict ψ satisfying $\psi_y \leq 0$. Moreover, (3a), (3b) admits a unique global solution for any bounded, uniformly continuous initial data $\psi_0 = \psi_0(x, y)$ which is nonincreasing in y. (The monotonicity of the solution ψ in y is preserved for $t > 0$.)

2. Comparison and uniqueness

Since a solution of (3a), (3b) enjoys a comparison principle, so does an L-solution (1a), (1b).

Theorem 2 (Comparison). Let u and v be the L-solution of (1a), (1b) with initial data u_0 and v_0, respectively, where $u_0, v_0 \in USC(\mathbb{R}^n)$. If $u_0 \leq v_0$ on \mathbb{R}^n, then $u \leq v$ on $\mathbb{R}^n \times (0, T)$.

In the definition of an L-solution the specific form of ψ_0 given by (4) is not important.

Theorem 3 (Uniqueness). Assume that ψ_0 is a bounded uniformly continuous function such that $\{\psi_0 \geq 0\} = K_0$ and that $y \mapsto \psi_0(x, y)$ is nonincreasing. Let ψ be the solution of (3a), (3b). Then

$$\bar{u}(t, x) = \sup\{y \in \mathbb{R}; \psi(t, x, y) \geq 0\}, \quad t \in (0, T), \quad x \in \mathbb{R}^n$$
agrees with the L-solution of (1a), (1b).

The key observation for the proof is that the set \{\psi \geq 0\} = \{(t, x, y); \psi(t, x, y) \geq 0\} depends only on K_0 and is independent of the choice of ψ_0. This is a typical uniqueness property of a level set equation. It is based on invariance of solution under the change of the dependent variable as stated below (which is slightly more general than stated in references [ESou], [ES], [CGG1], [G], [IS] since θ need not be continuous).

Lemma 4 (Invariance). Assume that ψ is a subsolution (resp. supersolution) of (3a). Assume that θ is upper (resp. lower) semicontinuous and nondecreasing. Assume that $\theta \not\equiv -\infty$ (resp. $\theta \not\equiv +\infty$). Then the composite function $\theta \circ \psi$ is also a subsolution (resp. supersolution of (3a)).

If \{\psi \geq 0\} were a bounded set, a comparison principle for (3a), (3b) and Lemma 4 would yield the uniqueness of \{\psi \geq 0\} as in [ES], [CGG1], [G]. However, since \{\psi \geq 0\} is unbounded, we actually argue as in [IS] to get the uniqueness of \{\psi \geq 0\}.

3. Consistency

We shall compare other notion of solutions.

Theorem 5. Let \overline{u} be the L-solution of (1a), (1b) with $u_0 \in USC (\mathbb{R}^n)$. Then \overline{u} be a viscosity solution of (1a) provided that \overline{u} does not take $\pm\infty$.

Sketch of the proof. Let ψ be the solution of (3a), (3b) with ψ_0 in (4). By Lemma 4 the function $I^{-} \circ \psi$ is a subsolution of (3a), where $I^{-}(\sigma) = 0$ for $\sigma \geq 0$ and $I^{-}(\sigma) = -\infty$ for $\sigma < 0$. From this it is easy to see that \overline{u} is a viscosity subsolution.

To prove that \overline{u} is a viscosity supersolution we need to use the fact that $y \mapsto \psi(x, y)$ is nonincreasing. This implies that the lower semicontinuous envelope $(\overline{u})_*$ of
\(\overline{u} \) equals

\[
\overline{u}(t, x) = \inf\{y \in \mathbb{R}; (t, x, y) \in \overline{\{\psi < 0\}}\} \quad t \in (0, T), \ x \in \mathbb{R}^n.
\]

Since \(I^+ \circ (\psi + 1/m) \) is a supersolution of (3a) by Lemma 4, we see, by stability as \(m \to \infty \), that

\[
\Psi(t, x, y) = \begin{cases}
\infty & \text{for } (t, x, y) \in \text{int}\{\psi \geq 0\}, \\
0 & \text{for } (t, x, y) \in \{\psi < 0\}
\end{cases}
\]
is a subsolution of (3a), where \(I^+(\sigma) = 0 \) for \(\sigma \leq 0 \) and \(I^+(\sigma) = \infty \) for \(\sigma > 0 \). Thus \(\underline{u} \) is a supersolution.

Theorem 6. Assume that \(u_0 \) is bounded, uniformly continuous. Then the bounded, uniformly continuous viscosity solution \(u \) of (1a), (1b) is an \(L \)-solution.

This follows from Theorem 3 by choosing \(\psi = ((y-u(t, x)) \wedge M) \vee M \) for \(M = \sup |u| \).

Theorem 7. Assume that \(p \mapsto H(x, p) \) is concave. Let \(\overline{u} \) be the \(L \)-solution of (3a), (3b) with \(u_0 \in \text{USC} (\mathbb{R}^n) \) and \(\sup u_0 < \infty \). Then \(\overline{u} \) is a bilateral viscosity solution with initial data \(u_0 \).

For the proof we use the property that the bilateral solution is given as a monotone limit of continuous viscosity solution [BJ]. Thus the proof is reduced to the next lemma.

Lemma 8. Assume that \(u_0 \in \text{USC} (\mathbb{R}^n) \) with \(u_0 \) which is Lipschitz in \(\mathbb{R}^n \). Assume that \(u_{0 \epsilon} \geq u_{0 \epsilon'} + \epsilon - \epsilon' \) for \(\epsilon > \epsilon' > 0 \). Let \(u_{\epsilon} \) be the solution of (1a), (1b) with \(u_0 = u_{0 \epsilon} \). Then \(\lim_{\epsilon \to 0} u_{\epsilon} \) is an \(L \)-solution of (1a), (1b) (so that it agrees with \(\overline{u} \)).

The sequence \(u_{0 \epsilon} \) is easily constructed by setting \(u_{0 \epsilon} = u_0^\epsilon + \epsilon \) with sup-convolution \(u_0^\epsilon \) of \(u_0 \).

4. Right accessibility
It is not clear in what sense the initial value is attained for L-solutions (unless initial data is continuous.) Since the viscosity solution of (3a), (3b) with ψ_0 in (4) is continuous up to $t = 0$, the set $\{\psi \geq 0\}$ is closed in $[0,T) \times \mathbb{R}^n \times \mathbb{R}$ so that

$$u_0(x) \geq \lim_{t \to 0} \overline{u}(t,y).$$

However, in general it is not clear whether there is a sequence $t_m \to 0$, $y_m \to x$ such that

$$u_0(x) = \lim_{m \to \infty} \overline{u}(t_m,y_m).$$

We call this last property the right accessibility as in [CGG2]. Since \overline{u} is upper semicontinuous in $[0,T) \times \mathbb{R}^n$, the property (9) is equivalent to $u_0(x) = (\overline{u}|_{(0,T) \times \mathbb{R}^n})^*(0,x)$.

We give a simple criterion for right accessibility without mentioning its proof.

Lemma 9. Assume that $F \in C(\mathbb{R}^N)$ is positively homogeneous of degree one. Let A be a closed convex set in \mathbb{R}^N. Let w be the L-solution of

$$w_t + F(w_z) = 0, \quad z \in \mathbb{R}^N, \quad t > 0; \quad w|_{t=0} = w_0.$$

with $w_0(z) = 0$, $z \in A$ and $\sup\{w_0(z); \text{dist}(z,A) \geq \delta\} < 0$ for $\delta > 0$. Then

$$w(t,z) = \begin{cases} 0 & z \in A + tW_\alpha \\ < 0 & \text{otherwise.} \end{cases}$$

Here

$$W_\alpha = \{z \in \mathbb{R}^N; \sup_{|p|=1} (z \cdot p - \alpha(p)) \leq 0\}, \quad \alpha(p) = -F(-p).$$

The set W_α is often called the Wulff shape with respect to α if α is positive. The set W_α may be empty. For example if $F(p) = |p|$, then $W_\alpha = \emptyset$. Thus if we consider (1a), (1b) with $H(p) = |p|$ and $u_0(x) = 0$, $x = 0$; $u_0(x) = -\infty$, $x \neq 0$, then the L-solution $u(t,x) = -\infty$ for all $t > 0$. Thus (9) is not fulfilled.

Theorem 10. If H is homogeneous degree of one, and independent of x, then an L-solution is right accessible for any $u_0 \in USC(\mathbb{R}^n)$ if and only if $W_\alpha \neq \emptyset$.

Remark 11. Our results up to §3 can be generalized for more general equation

\[u_t + H(x, u, u_x) = 0, \]

when \(H \) fulfills

(i) \(H \in C(\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n) \) and \(H_{\infty} \) exists;

(ii) There exists a modulus \(m_1 \) that satisfies

\[|qH(x, y - p/q) - qH(x', y', -p/q)| \leq m_1((|x - x'| + |y - y'|)(|p| + |q| + 1)); \]

(iii) For each \(C_1 > 0 \) there exists a modulus \(m_2 \) such that

\[|qH(x, y - p/q) - q'H(x, y, -p'/q')| \leq m_2(|p - p'| + |q - q'|) \]

for all \(x \in \mathbb{R}^n, y \in \mathbb{R}, p, p' \in \mathbb{R}^n, q, q' < 0 \) satisfying \(|p|, |p'|, |q|, |q'| \leq C_1 \);

(iv) \(y \mapsto H(x, y, p) \) is nondecreasing.

A typical example of \(H \) satisfying these assumptions is \(a(x) \sqrt{b + |p|^\beta} \) and \(a \) is Lipschitz and \(0 \leq \beta \leq 1, b \geq 0 \).

References.

