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UNIVALENCE AND STARLIKENESS
OF SOLUTIONS OF W' + aW' + bW = 0

HirosHI SArToH

Department of Mathematics, Gunma National College of Technology
Maebashi, Gunma 371-8530, Japan

We consider the differential equation
w”(2) + a(z)w'(z) + b(2)w(z) = 0,

where a(z) and b(z) are analytic in the unit disc A. In this paper, we show that the
above differential equation has a solution w(z) univalent and starlike in A under some
conditions. It is related to results of S. S. Miller and M. S. Robertson.

1. Introduction

Let f(z) = z+ > > ,an2" be an analytic function defined in the unit disc A = {z:
|z] < 1}. We denote the class of such functions by A. If in addition f(z) is univalent,
then we say f(z) € S. Suppose f'(2) # 0 in A, then we define

1

sta=(5) @ -3 (L)

‘to be the Schwarzian derivative of f(2).
Our starting point is the following result of S. S. Miller.

Theorem A (Miller [4]). Let p(z) be analytic in the unit disc A with |zp(z)| < 1. Let
v(z), z € A, be the unique solution of

(1.1) v"(2) + p(2)v(z) =0

with v(0) = 0 and v'(0) = 1. Then

2v'(2)
v(2)

and v(z) is a starlike conformal map of the unit disc.

(1.2) -1

<1,

Theorem A is related to the next results of M. S. Robertson and Z. Nehari.
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Theorem B (Robertson [8]). Let zp(z) be analytic in A and
2
(1.3) © Re{2%p(2)} < —lelz (z€A).
Then the unique solution W = W(z), W(0) =0, W/(0) =1 of

(1.4) W"(z) + p(2)W(2) =0

is univalent and starlike in A. The constant 72 /4 is best possible one.

Theorem C (Nehari [6]). If f(z) € A and it satisfies

(15) SIS (zed),

then f(z) is univalent. The result is sharp.

Remark 1. The constant 72/2 is best possible as shown by the example 5%;"——1- We
note that by putting p(z) = %S(f, z) in (1.3) of Theorem B, then (1.5) of Theorem C
implies (1.3). Therefore, Nehari’s theorem has a stronger hypothesis. Thus Robertson
proved that the unique solution of the equation (1.4) is starlike whereas Nehari proved
the quotient of the linearly independent solution of (1.4) is univalent.

We also have

Theorem D (Gobriel [2]). Suppose f(z) € A and that
(1.6) |S(f,2)] < 2¢o =~ 2.73 (z € A),

where cg 1s the smallest positive root of the equation 2+/T —tan+/z = 0, then f(z) maps
A onto a starlike domain.

Recall that f(z) € § is starlike with respect to the origin if and only if Re { sz ES) } >0
for all z € A. We denote the class of starlike functions by -S*.

2. A class of bounded functions

Let By denote the class of bounded functions w(z) = wyz + wz? + - - - analytic in
the unit disc A for which |w(z)| < J. If g(z) € By, then by using the Schwarz lemma
we can show that the function w(z) defined by w(z) = 2% foz g(t)t~2dt is also in Bj.
Writing this result in terms of derivatives we have

2.1) ‘%w(z) + 2w/ (2)

<J (z€ed) = |wi)|<J (z€A4).
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If we let h(u,v) = Lu + v we can write (2.1) as

(2.2) h(w(z), 20’ ()| < J = |u(2)] < J.

In this section, we will show that (2.2) holds for functions h(u,v) satisfying the
following definition.

Definion 1. Let H; be the set of complex functions h(u, v) satisfying:
(i) hA(u,v) is continuous in a domain D C C x C,
(ii) (0,0) € D and |h(0,0)| < J,
(iii) |h(Je*, Ke)| > J when (Je‘e,Ke“’) €D, fisreal and K > J.

Example 1. It is easy to check that the following function A(u,v) is in Hy:
h(u,v) = au + v where a is complex with Rea > 0, and D = C x C.

Definition 2. Let h € H; with corresponding domain D. We denote by By(h) those
functions w(z) = w2z + wy2% + - -+ which are analytic in A satisfying

(i) (w(2), 2w'(2)) € D, |

(i) [h(w(z), 20" () < J (2 € A).

- The set By(h) is not empty since for any h € Hy it is true that w(z) = wyz € By (k)
for |w;| sufficiently small depending on h.

We need the following lemma to prove our results.

Lemma 1 (Miller and Mocanu [5]). Let w(z) = wyz+wg22+--- be analytic in A with
w(2) #0. If 20 = roe'®, 0 <o < 1, and |w(20)| = max|; <y {w( )|, then
(i)

Zow’ (Zo)

and

(i)

where m > 1.

Theorem 1. For any h € Hy, By(h) C By.
Proof. Let w(z) € By(h). Suppose that 329 = roe??° € A (0 < 79 < 1) such that

max |w(z)] = |w(zo)] =



116

UNIVALENCE AND STARLIKENESS OF SOLUTIONS OF W”+AW'+BW=0

Then w(zg) = Je® and since by Lemma

, ,
W) _ s
’w(Zo)
we have _
2w (z) = Ke¥ (K =mJ >J)
and thus

h(w(zo), 20w’ (20)) = h(Je?, Ke'f).
Since h € H; this implies that
|h (w(20), 20w (20)) | > J

which contradiction of w(z) € By(h). Hence |w(z)| < J (z € A), and thus w(z) € B,.

Remark 2. In other words, above theorem shows that if h € H;, with corresponding
domain D and if w(z) = w1z +wz2%+--- is analytic in A and (w(z), 2w'(2)) € D, then

|h(w(2), 20/ (2))| < J = |w(z)] <J

Furthermore, Theorem 1 can be used to show that certain first order differential equa-
tions have bounded solutions. The proof of the following theorem follows immediately
from Theorem 1.

Theorem 2. Let h € Hy and b(z) be a analytic function in A with |b(2)| < J.If the
differential equation

h(w(z),zw'(2)) =b(z)  (w(0) =0)

has a solution w(z) analytic in A, then |w(z)| < J.

3. Main results

Our main result is the following theorem.

Theorem 3. Let a(z) and b(z) be analytic in A with |2 (b(z) — 1d/(2) — 1a%(2))| < 3
and |a(z)] < 1. Let w(z) (z € A) be the solution of the following second order linear
differential equation .

(3.1) W) +a()w(2) + b(2)w(z) =0
with w(0) = 0, w'(0) = 1. Then w(z) is starlike in A.

Proof. The transformation

(32) | w(z) = exp (—% IRGHES
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leads to the normal form
(3.3) - V(2) + (b(z) - %a'(z) - —}Iaz(z)> v(z) =0
and v(0) =0, v'(0) = 1. If we put
(3.4) u(z) = Z:QS) 1 (zeA),
then u(z) is analytic in A, u(0) = 0 and (3.3) becomes
(3.5) u?(2) + u(2) + 2u'(2) = —22 (b(z) - %a’(z) - %a%z)) ,
or equivalently
(3.6) h(u(z), 2 (2)) = —22 (b(z) - %a’(z) - %(f(z)) ,

where h(u,v) = u? +u +v. It is easy to check h(u,v) € H;. i
(i) h(u,v) is continuous in D = C x C,
(i) (0,0) € D, |r(0,0)] =0 < 3,
i) |h (3, Ke9)| > 3 (K2 4).
From assumption, we have

-2 (b(z) - %a’(z) - i-az(z))l < % (z € A).

By using Theorem 2, we have

lu(2)] < = (z € A)
Therefore, we obtain
2v'(2) 1
, v(z) . 2 (z€4)
This implies that
1 2v'(2) 3
(37) 'é‘ < Re{ 'U(Z) } < 5 (Z € A)

From (3.2), we have

1 Z
(3.8) exp (5/(; a(f)d&) w(z) = v(z).
Logarithmically differentiating of (3.8) leads to
zw'(z)  2/(2)
w(z) — v(2)
Combining (3.9) and |a(z)| < 1, we obtain
Re {z;u(g)} > Re {ZE(S)} - %Iza(z)l >0 (z € A),

and thus w(z) is starlike in A.

(3.9)

- ga(z).
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Example 2. Let a(z) = -z, b(2) = %4-2@ in Theorem 3, then the solution of
, 2
‘ " / z
(3.10) w”(2) — zw'(2) + Zw(z) =0

is
w(z) = V2eT sin% S
Let a(z) = —z, b(z) = A (A € C) in Theorem 3, then differential equation (3.1) is
(3.11) w"(2) — 2w’ (2) + Mw(z) = 0.

The differential equation (3.11) is called Hermite’s differential equation.
_ " ,
By the transformation w(z) = e 7 v(z2), (3.11) lead to

(3.12) v"(2) + ()\ + % - f;) v(z) = 0.

This differential equation is well-known, that is, Weber’s equation (see [9]).

Theorem 4. We consider Weber’s differential equation (3.12). Let l)\ +3 - 543
then the solution v(z) is starlike in A.

Proof. We put

<1,

(3.13) u(z) = %—é—%z - 1.

Then u(z) is analytic in A, u(0) = 0 and

(3.14) u?(2) +u(z) + 20/ (2) = —2° (’)\ + —;— - —ZZ;)
or equivalently

(3.15) h(u(z), zu/(2)) = =22 ()\ + -;— - Z;) ,

where h(u,v) = u? +u +v. It is easy to check h(u,v) € Hy, ie.,
- (i) h(u,v) is continuous in D = C x C,
(ii) (0,0) € D, |h(0,0)] =0< 1,
(iii) |r(e*, Ke¥)| > 1 (K >1).
From assumption we have

<1 (z € A).
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By using Theorem 2, we obtain
lu(z)] < 1 (z € A).

Therefore, this shows that

-1/ <1,

which implies Re {-2—1%’)‘—)} > 0 (z € A), that is, v(2) is starlike in A.

2

— 54—) v(z) =

B

Remark 3. The solutions of Weber’s differential equation v” (z) + ()\ +
0 are

A 2 1 A1 22 V22 1-X 3 22
(10) Dale) =28 /men {T"F—*T)F(“i’a;%)“r( A)F( > v'z';?)]

2 2

(Weber’s function), where F is the confluent hypergeometric function. The following
Dy (2), D_, (2) are the solutions of (3.12) in Theorem 4.
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Supplement
We need. the Following lermma To prove next resul Ts.

[ emma 2 (Miller and Moanu €51),  Let hers,t)
C— € such that |
(i) har,s.T) is continuous in & domain DCC,
iy 0,0,0)€D and |hio,0,0)|<T (T>0),
iy [h(Je®, Ke® L) 2T when (T ke L)eD),

K23 and Rel[Le*]20.
el wr@)=w 2+ W, 224 be ana\/tic w4 If
(wiz), 2a(2), B2’ @) €D (2€4) ard

| h(w@), 2w'(2), 22ul@)|< ] (2ed)

then w2 |<J (2e4),

Theorem 5 We consider Alry’s differential eguation
(3.11)
(3.1) v (2) = Zu(2) =0
Then the solufion V(28) s starlike .

Fkoof We  consider the case of U0)=0 and v'o)=1,
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We Fut U(R)= ZX(Z()Z)~ | (z eA), them w(z) s ana//vf/‘c

in /) , U)=0 and (317 ) become s
(3.18) WD+ ulz) + 2u'tz) =2°
oy ezu,‘vafemt//
(3.79)  h(ws,zu'm))= 27,
where hrs)=thpes . Ttis easy Ty check hinsde
Hy , e,
(1) hr3) is conbinueus in DC CxC |
(i) (0.00eD, lho,orl=0<¢ 1
QD [hee® ke® | 21 21,
By UKS\;V\% Theorem 2, we have (W< | (2€4) . Therefore,

this shows that z{\qf(;‘;) — l <f{, which l‘mﬂies
!
Re {ZEEY 50 1z¢4) |, tht 1, viz) is starlie in 4.

NQXJE we Prove T\/\Q Lo“ow}ng TL\@OVQ'W\.

| ﬂeore'méi. \(\/e Consi dey \/\/e\?er’s o\ﬁr‘Femn \\2\1 J&%ua‘{n\on
(3.12) . Lot [0 3-E)[<J <I<t), then

we have RQ{—U-Z(—Z)}>O (2ep) .



122

Pr""f' Puf L((Z)-—:'——U-(—Z-)- - . —”\ew U(z) is anab/ﬁc,
Z
inAd | w)=0o and
22U'@) 2 u'(2) 2 | 32
1+ U + T+Ulz) (A Z LF)

or Q%uiva{eﬁnﬂ)/

| 2
h(uw), 2w @), 20 w) = - zl()w-g———%;)

2S t

where ‘mU“st)‘" o T

1t s ﬂxsy T check the {‘\o\mna condi bons, 1.,

(i) \Mv,s,‘t) = ortinaous 1 D= QM- x Cx

@ io,0) €D and lhio,0,0)l=0<T (0<I<H),

G Lhizew,) e, L2 T when (T€, Ke‘e L)eD,
2] ond RelLe¢*®] 2o,

o b\sguW\F'E\‘gy\) we  have

-2 d >\<J (Zed) .
By U\S\V\% LQW\MAZ , e 6 btain

fwizo) < (zed)

Thevadere , .‘wa hawe
”;” & S0 (2eA)
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WQ heed. H1Q hexﬁ /ewma, D Slzou/ our /lef l’?_su/t.

LQMW&3 (Yzwagudr\i t1ol ) Let ]C(z?)= F+Q, 254 - [76
anaf/ffc AR I][ |

RQ.{ JCS) } >0 (Z€A), them we have

Re{f’(z>}>o for []<2 -]

B/ usfng Lzmngﬁ ., we [’@VQ
Co\(\o”av/ 1 , VI(Z) s c/oée-&-wnvex In BK\/E".
Referen(_es

10 K Yamaguck;, On ]Cuncf}ons VS&fisﬁvfng RQ{J[(Z)/Z}
>0, Proc. Amer. Math. Soc. 17 (1966), £88-49/



