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Abstract
The main object of the present paper is to derive several sufficient conditions for
close-to-convexity, starlikeness and convexity of certain (normalized) analytic func-
tions. Relevant connections of some of the results obtained in this paper with those
in earlier works are also provided.
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1. INTRODUCTION AND DEFINITIONS
Let A denote the class of functions f normalized by
(<]
flz) = z+zan 2", (1.1)
n=2
which are analytic in the open unit disk
U:={z:2€C and |z|<1}.

Also let S*(a), K(a), and C(a) denote the subclasses of A consisting of functions which are,
respectively, starltke, convez close-to-conver of order o in U (0 £ @) . Thus we have (see, for
details, Duren [1] and Goodman [2]; see also Srivastava and Owa [6])

S*(a):={f:f€,A and 9%(-2—]%-%)-)>a (zEU;0§a<1)}, (1.2)
IC(a)::{f:fEA and 9{(1+f-){—,lé%l)>a (zEU;0§a<1)}, (1.3)
and
C(a):= {f:feA and R (E’ié%) > o (zeU;O§a<1;g€lC)}, (1.4)
where, for convenience,
 8":=8%0), K:=K(0), and C :=C(0). (1.5)

Next, with a view to recalling the principle of subordination betwen analytic functions, let the
functions f and g be analytic in . Then we say that the function f is subordinate to g if there
exists a function h, analytic in U/, with

R(0)=0 and |h(z)]<1 (z€U), (1.6)
such that v
fz)=g(h(2)) (z€U). (1.7)
We denote this subordination by '
| () < g(2). (1.8)

In particular, if the function g is unsvalent in U, the subordination (1.8) is equivalent to (cf. [1, p.
190})

F(0)=9(0) and f(U)Cg(h). (1.9)

Recently, R. Singh and S. Singh [5] proved several interesting results involving univalence and
starlikeness of functions f € A. In our attempt here to generalize these results of Singh and
Singh [5], we are led naturally to several sufficient conditions for close-to-convexity, starlikeness,
and convexity of functions f € A.

The following lemma, (popularly known as Jack’s lemma) will be required in our present inves-
tigation.
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Lemma 1 (cf. Jack [3]; see also Miller and Mocanu [4]). Let the (non-constant) function w(z)
be analytic in U with w(0) = 0. If |w(2)| attains its mazimum value on the circle |z{ =r < 1 at a
point zg € U, then

zow' (20) = cw (20),

where ¢ s a real number and ¢ 2 1.

2. SUFFICIENT CONDITIONS FOR CLOSE-TO-CONVEXITY

Our first result (Theorem 1 below) provides a sufficient condition for close-to-convexity of func-
tions f € A.

Theorem 1. Let the function f € A satisfy the inequality:

b (1 + ZJ{,I;S) ) > 21(;:?3) (zeU;0Sa<1). (2.1)
Then
m{f'(z)}sl-gﬁ (z€U; 0S a<1) (2.2)
or, equivalently,
feC(l-z_a) 0<a<1). (2.3)

Proof. We begin by defining a function w by

N aw(z) . a<
f(z)———~——-1+w(z) (wiz)#-1L,zelU; 0L a<1). (2.4).
Then, clearly, w is analytic in & with w(0) =0. We also find from (2.4) that
| 2f"(z) ozw'(z)  2w'(2) :
1+ ) Ttowz) 1+ uw(e) (zeU). (2.5)

Suppose now that there exists a point zy € U such that
lw(z0)]=1 and |w(2)]<1 when |z]|< |- (2.6)
Then, by applying Lemma 1, we have

zow (20) = cw (20) (c 2Lw(zn)=¢%0¢ R) . (2.7)
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Thus we find from (2.5) and (2.7) that

() = e (eiem) -2 (5)

ca (o + cos6) 4

= 1 —_
+ 14+a%2+20cosf 2
1+ 3
Sl cdl 0 <
S Siva) (n€eU;0L <),

which obﬁously contradicts our hypothesis (2.1). It follows that
lwz)]<1 (z€l),
that is, that

- 1) 0<a
'f’(z)+ l<1 Gewsoca<y). (2.8)

This evidently completes the proof of Theorem 1.

Theorem 2. If the function f € A satisfies the inequality:

R (1 + z]ﬁ'zg)) < 32“_:2; (zel;0Sa<1), (2.9)
then
|f(z) =1 <140 (z€U;0La<]). (2.10)

Proof. OQur proof of Theorem 2, a.lso.ba,sed upon Lemma 1, is much akin to that of Theorem
1. Indeed, in place of the definition (2.4), here we let the function w be given by

fZ)=0+a)wz)+1 (zel;0La<). (2.11)
The details may be omitted.

Remark 1. Since the inequality (2.10) implies that
R{f(z)} >—a (zeU;0ZLa<]), (2.12)

by setting o = 0 in Theorem 2, we readily obtain

Corollary 1 (Singh and Singh [5, p. 311, Corollary 2]). If the function f € A satisfies the
mequality:

m(1+z—}f%z) <g (zeU), (2.13)
then
Ifi(z)=1<1 (zeu), (2.14)
that 1s, f € C.

Next we prove
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Theorem 3. If the function f € A satisfies the inequality:

’ — o)t
7@ -1 e @ < S5 (et 08 a<1 y20),

then

1-{2-oz (zeU; 0L a<1).

R {f(z)} >

Proof. We define the function w by
fe) = 111?2;)
Then, clearly, w is analytic in I with w(0) = 0. We also find from (2.17) that
1— o) u(z) |aw'(z)]”
1+ w(z)[P**
Supposing now that there exists a point zg € I such that
lw(z)=1 and |w(z)]<1 when |z]|< |z],

(wiz)#-1;zelU;05a< ).

|f(2) - 1lﬁ |z£"(2)|" = ( (zelU).

if we apply Lemma 1 just as we did in the proof of Theorem 1, we shall obtain
(1-a)?t7eY
11+ eielﬂ+2'r
(1~ )bty
28+2v
which obviously contradicts our hypothesis (2.15). Thus we have

|w(z)l <1 (z€lU),

|7 (0) = 1|7 |05 (0)|]" =

1\

(zoEU;OéC!(l),

which implies that
| fl(z) -1 .n<
) =a <1l (z€U;02a<1),
that is, that (2.16) holds true.
By letting

B=7-1=0

in Theorem 2, we arrive at
Corollary 2. If the function f € A satisfies the inequality:

|2f"(2)] <

l—-—a

(zeU;0L a< 1),

then

| R {7(z)} > l;a (zeU; 08 a< ).
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Remark 2. An analogous result (which apparently is not contained in Corollary 2) was proven
earlier by Singh and Singh [5, p. 310, Corollary 1], which asserted that, if the function feuA
satisfies the inequality:

| lz2f"(z)| <1 (z€U),
then f € C. '

3. STARLIKENESS AND CONVEXITY

In this section, we first prove the following result (Theorem 4 below), which involves the already
introduced principle of subordination between analytic functions (see Section 1).

Theorem 4. If the function f € A satisfies the inequality:

f(2) A—w(z)

Then, clearly, w is analytic in & with w(0) = 0. By logarithmic differentiation of both sides of
(3.4), we also find that

S5A—1
—_— : <
2f"(2) gy FEHI<ASY
(14 221) < o
742) Atl (zelU;2< 2 <3
zr-g FeHE<A<d
for some A (1 < X\ < 3), then
zf'(z)  A1=-2)
| ) <= (3.2)
The result is sharp for the function f given by
z\ A1
flz) =2 (1 - X) . (3.3)
Proof. Let us define the function w by
, —
2f(z) _ 2l - w(z)] (w(z)# X\ zel; 1< A< 3). (3.4)

zf"(z) _ A1 - w(z)] _zw'(2) zw'(2)
f(z) A—w(z) 1-—w(z) A—w(2)

Assuming now that there exists a point zy € If such that

14

(z €U). (3.5)

|w(z)=1 and |w(z)]<1 when |[z]< |z,
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if we apply Lemma 1 just as we did in the proof of Theorem 1, we shall obtain

"+ 4e)

A(1-€Y) ce® ce'?
—-ER( ) — it ) -m(l_eia) +m()\_ez}9)

_MA+1)(1=cosh) | ¢ c(Acosf —1)
T T1+A2-2\cosf 2 1+ AZ—2Xcosh
CAdl (-1 (ek1-))
T2 T 2(1422—2)cosb)
A+l (¥-1)E-N
2 2(1+ A2 —2)\cosb)

(zo€U; 1< A3,

1%

which yields the inequality:

5A-1
20 f" (20) 2 +1) (0 €U; 1< AL 2) |
9%(1+ f' (#0) ) 2 A1 (3.6)
ﬂf:ﬁ(%€%2<A<@,

Since (3.6) obviously contradicts our hypothesis (3.1), we conclude that
lw(z)|<1 (z€lU),
that is, that |

A
<>‘+1 (z€U;1<A<3), (3.7

zf'(z) A
F(z)  A+1
which implies the subordination (3.2) asserted by Theorem 4.
Finally, for the function f given by (3.3), we have

Fa= 5 6

which evidently completes our proof of Theorem 4.

Remark 3. A special case of Theorem 4 when \ = 2 was given earlier by Singh and Singh [5,
p. 313, Theorem 6].

Lastly, since
f(z) € K(a) = zf'(z) € S*(a) (0L a<1), (3.9)

whose special case, when @ = 0, is the familiar Alexander theorem (cf., e.g., Duren [1, p. 43,
Theorem 2.12]), Theorem 4 can be applied in order to deduce
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Corollary 3. If the function f € A satisfies the inequality:

30D L ew1<rgy

2zfll(z)+z2flll(z) 2(/\+1)
() < 5
2 —1) (

ZEU;2< AL

for some A (1 < A< 3), then

/() ML= 2)
f'(2) A—z
The result is sharp for the function f given by

- -3

1+
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