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Partial Sums of Certain Analytic Functions

SHIGEYOSHI OWA

Abstract. The object of the present paper is to consider of starlikeness and convexity of partial sums
of certain analytic functions in the open unit disk

1 Introduction

Let A denote the class of functions f(z) of the form

(1) f(Z)=z2+ f: ap2®
k—2

which are analytic in the open unit disk U = {z € C : |2| < 1}. LetS*(a) be the subclass
of A consisting of functions f(z) which satisfy

2112}
2 Re {-————— >a zelU
® h ev)
for some (0 < @ < 1). A function f(z) in S*(«) is said to be starlike of order « in
U. Furthermore, let K(«) denote the subclass of A consisting of all functions f(z) which
satisfy

"
(3) _ Re{1+frf]f,-(-g)~)—}>a (zel)
for some a(0 < o < 1). A function f(z) belonging to K(«) is said to be convex of oredr
in U. We note that f(z) € S*(«) if and only if zf'(2) € K(a) and denote by 5*(0) = S*
and K(0) = K. For f(z) € A, we introduce the partial sum of f(z) by

(4) fal2) =2+ at.
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Remark 1. It is well-known that
() f (1) =gy =2+2 ke kz* is the extremal function for the class S*. But fy(z)=2+222 ¢

(1) f(2) =t =2+ ey 2* is the extremal function for the class K. But f,(z)=2+2% ¢ K.
For the partial sums f,,(2) of f(z) € S*, Szego [2] showed

(2

Theorem 1. (i)f(z) € S* implies that f,(z) € S* for |z| < 1. The result is sharp.
(i) f(2) € S* implies that f.(z) € K for |2| < §. The result is sharp.

Further, Padmanabhan [1] proved

Theorem 2. If f(z) is 2-valently starlike in U, then f,(z) is 2-valently starlike for |z| <
5. The result is sharp. '

2 Function F,(z)

Let us define the function F,(z) which is the partial sum of f(z) € A by

(5) ' Fo(2) = 2z + a,2".
Theorem 3. The function F,(z) satisfies
1 —nla,|r ! zF!(2) 1+ nla,|r™?t
: < L <
(6) 1—|ap|rt — Re{ F.(z) J = 1+4|as]rt?

for0<r< 3 TG%TI < 1. Therefore Fn(z) € S*(c) for 0 < r < ”-,1/(—5}0’7"]‘;;-' <1.
Proof. Note that

2F(z) z+nayz" Cn-1
@ Fu(z) =~ z+anm S apz™ 1
It follows from (7) that
zF’(z)} 1+ |an| " tcost
8 Red Z2n\P L _ (1 .
(8) ¢ { Fa(2) (n—1) 1+ |an|> 720=1) + 2 |a,| r=1cosh

Since the righthand side of (8) is increasing for cosf if |a,| < 1,we obtain (6).
Further, we also see that

zF!(2) 1 —nla,|r*t
®) Re{ Fu(2) } Z 1~ Jan|rnt >

for0<r < "/ (n“};)Tanl < 1. This completes the proof of the theorem.
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Next we derive

Theorem 4. The function F,(z) satisfies

—m2 n—1 " 2 n—1
(10) 1 —n?la,|r SRe{ 2F, (z)}<1+n lan| 7

T=nla, YRGS Trnlar

for0<r < »d ;li—nf < 1. Therefore, F,(2) € K for0 <r < ”,1/;@715?&%’];“—] <1
Proof. Noting that

oy, 2F(2) n—1
(1) 1+ F!(2) =T T na,an 1

we have

(12) Re{1+f£—,"il(%l}=n—(n—l)

‘ n

1+ nla,|r™ tcosd
1+ n2 |a,|* r2=1) 4 2n |a,| ri—cosd’

which derives (10).

By virtue of the above theorems, we have

Conjectufe 1. For the partial sum f,(z) of f(z) belonging to the class A,
(i)fal2) € S*(e) for 0 < v < w3 /tEr < 1,
and :

(i) fa(2) € K(@) for 0 < v < mqfolegn <1,

3 The partial sums of certain analytic functions
In this section, we consider the partial sums of functions f(z)=1% and f(2)=r%;.

Theorem 5. Let f3(z)=z+22+2° be the partial sum of f(z)=1% which is the extremal

function of the class K. Then fs(z) € S*(823) for 0<r < B (A < B < %), where 3 is the
positive root of

1
13 z* —82° 4922 ~824+1=0 0<z<—=).
(13) 0<2<)
Proof. We consider a such that

(14) | Re {z]ég((zz))} =Re {3 - -l——gziz-j:-;;} > a
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for 0 < r < B. This implies that

24+z ) (1= 72)(1 + 7% +rcosf)
15 Red m———— ¢ =1
(15) ¢ {1 + 22+ z3} H g + 4r2c05%6 + 2r(1 + r2)cosd <

3—-a,

that is, that

(1 =r2)(1 4+ 7%+ rcosd
16 R - a.
(16) © {1 — 12 +r* 4 4r2cos?0 + 2r(1 + r2cosd <Z-a

Let the function g(t) be given by

(L=r) A+ 7 +rt)

17 t) = — .
an SAQ il g g gy 2r(1 + r2)t (t = cosf)
Then we have
(18) l(t) — ’I‘(?" + 1)(7’ - 1)(1 + 57'2 + 7'4 + 4T2t2 + 87"(1 + 7‘2)t)

g (L= 12 + 1% + 4722 4 2r(1 + r2)2)?
Letting
(19) h(t) =145 + 1% + 42 4 8r(1 + r2)t,
we see that

(@Dh(t) <0 = 4@ >0,
@ER(t) >0 = 4() <0,

and
(i43)h(t) = 0 for t=“2(1+'2)ﬂ=;/3m.
If we write 2
—2(1 N !
t = ( +7")+2r T+rZ+r <o

then 0 < r < B implies that #; < —1, so that, A(¢) > 0. This gives us that

l—r+4+rd—pt _ai(r)
1-2r+3r2=2r 41t~ gy(r)’

(20) 9(t) <g(-1)=
It is easy to check that g;(r) is decreasing for r (0 < r < \/Lg) Therefore

8—2V3 1

(21) s = 91("\/"?—;) <gi(r) £ ¢:1(0) = 1.

Also, g(r) is decreasing for r (0 < r < ), because g5(0) = -2 < 0 and gj(}) = -8 < 0.
This gives that

961 1

=) < ga(r) £ L.

(22) s = 0z
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Consequently, we conclude that

_gi(r) 1296
that is, that a = ggg 0.651---.
Thus we have that
2f3(2) 626
@) { 7(2) } S
for0<r < p.

Finally, we obtain

Theorem 6. Let f3(z)=2+222+32" be the partial sum of the Keobe function f(z)=rZy

which 4s the eztremal function for the class S*. Then f3(z) € K(32L) for 0 < r < f8
(4 < B < &), where B is the positive root of

(25) 81z* — 162¢° + 722 — 182 +1 =0 (ogm<%y
Proof. Since
2 é’(z)} 2(1+22)
heF AN O g AT
(26) Re {1 + e Re T4 7072 >«
implies that
(27)
Re 1% 22 __1_+ 4r(1 — 9r?)cosf x 1 — 81r* 3—-a
1+ 42+ 922 2(1 — 2r2 + 81r* + 8r(1 + 9r%)cosf + 3670520 = 2
we have to check that
— Or2 4
(28) (1 = 973)(1 + 9r? + 4rcosb) <9—a
— 272 + 8174 + 8r(1 + 9r%)cost + 3620526
If we let
1—9r2)(1 +9r% 4 4rt
(29) h(t) = (1=9r)(1 + 9r + 4rt)

1 — 2r2 4 8174 + 8¢ (1 + 9r2)t + 36122’
then we have |

| 1-4r4+36r°=8lr* _ gi(r)
1 — 8+ 34r2 = 72r3 + 81r% ~ go(r)
Notmg that 0 < g1(r) < 1, and go(r) > g2(13) 12818 we have .

28561
g2 (r) 15876

h(t) < h(=1) =

h(t) < h(-1) <

which implies that o = 1:"51:716 0.200 - -
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