ON THE STRONGLY STARLIKENESS OF
MULTIVALENTLY CONVEX FUNCTIONS OF ORDER α

MAMORU NUNOKAWA, SHIGEYOSHI OWA AND AKIRA IKEDA

Let $A(p)$ denote the class of functions $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$ which are analytic in the open unit disc $\mathcal{E} = \{z : |z| < 1\}$. A function $f(z) \in A(p)$ is called to be p-valently starlike if and only if the inequality

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0$$

holds for $z \in \mathcal{E}$. A function $f(z) \in A(p)$ is called p-valently convex of order α ($0 \leq \alpha < p$) if and only if the inequality

$$1 + \text{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > \alpha$$

holds for $z \in \mathcal{E}$. We denote by $C(p, \alpha)$ the family of such functions. A function $f(z) \in A(p)$ is said to be strongly starlike of order α ($0 < \alpha \leq 1$) if and only if the inequality

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2\alpha}$$

holds for $z \in \mathcal{E}$. We also denote by $STS(p, \alpha)$ the family of functions which are strongly starlike of order α. From the definition, it follows that if $f(z) \in STS(p, \alpha)$, then we have

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad \text{in} \quad \mathcal{E}$$

or $f(z)$ is p-valently starlike in \mathcal{E} and therefore $f(z)$ is p-valent in \mathcal{E} [1, Lemma 7].

Nunokawa [2,3] proved the following theorems.

1991 Mathematics Subject Classification. 30C45.

Key words and phrases. starlike and convex function, strongly starlike function of order α and strongly convex function of order α.

Typeset by \LaTeX
Theorem A. [2] If \(f(z) \in A(p) \) satisfies
\[
1 + \Re \left\{ \frac{zf''(z)}{f'(z)} \right\} < p + \frac{\alpha}{2}
\]
where \(0 < \alpha \leq 1 \), then \(f(z) \in STS(p, \alpha) \).

Theorem B. [3] If \(f(z) \in A(1) \) satisfies
\[
\left| \arg \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \right| < \frac{\pi}{2} \alpha(\beta)
\]
in \(\mathcal{E} \), then we have
\[
\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2} \beta
\]
in \(\mathcal{E} \), where
\[
\alpha(\beta) = \beta + \frac{2}{\pi} \tan^{-1} \left\{ \frac{\beta q(\beta) \sin \frac{\pi}{2} (1 - \beta)}{p(\beta) + \beta q(\beta) \cos \frac{\pi}{2} (1 - \beta)} \right\}
\]
\[
p(\beta) = (1 + \beta)^{\frac{\beta + \mathcal{B}}{2}} \quad \text{and} \quad q(\beta) = (1 - \beta)^{\frac{\beta - 1}{2}}.
\]

It is the purpose of the present paper to prove that if
\[
f(z) \in C \left(1, 1 - \frac{\alpha}{2} \right),
\]
then \(f(z) \in STS(1, \alpha) \).

In this paper, we need the following lemma.

Lemma 1. If \(f(z) \in A(1) \) be starlike with respect to the origin in \(\mathcal{E} \). Let \(C(r, \theta) = \{ f(te^{i\theta}) : 0 \leq t \leq r < 1 \} \) and \(T(r, \theta) \) be the total variation of \(\arg f(te^{i\theta}) \) on \(C(r, \theta) \), so that
\[
T(r, \theta) = \int_0^r \left| \frac{\partial}{\partial t} \arg \{ f(te^{i\theta}) \} \right| dt.
\]
Then we have
\[
T(r, \theta) < \pi.
\]

We owe this lemma to Sheil-Small [6, Theorem 1].
ON THE STRONGLY STARLIKENESS OF MULTIVALENTLY CONVEX FUNCTIONS

Main Theorem. Let $f(z) \in A(1)$ and

\[1 + \text{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > 1 - \frac{\alpha}{2} \quad \text{in} \quad \mathcal{E}, \]

where $0 < \alpha \leq 1$. Then we have

\[\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in} \quad \mathcal{E}, \]

or $f(z)$ is strongly starlike of order α in \mathcal{E}.

Proof. Let us put

\[\frac{2}{\alpha} \left\{ 1 + \frac{zf''(z)}{f(z)} - 1 + \frac{\alpha}{2} \right\} = \frac{zg'(z)}{g(z)} \]

where $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$. From the assumption (1), we have

\[\text{Re} \left\{ \frac{zg'(z)}{g(z)} \right\} > 0 \quad \text{in} \quad \mathcal{E}. \]

This shows that $g(z)$ is starlike and univalent in \mathcal{E}. With an easy calculation (see e.g. [4]), the equality (2) gives us that

\[f'(z) = \left\{ \frac{g(z)}{z} \right\}^{\frac{\alpha}{2}}. \]

Since

\[f'(z) \neq 0 \quad \text{in} \quad 0 < |z| < 1, \]

we easily have

\[\frac{f(z)}{zf'(z)} = \int_{0}^{1} f'(tz) \frac{dt}{f'(z)} = \int_{0}^{1} t^{-\frac{\alpha}{2}} \left\{ \frac{g(tre^{i\theta})}{g(re^{i\theta})} \right\}^{\frac{\alpha}{2}} dt \]

where $z = re^{i\theta}$ and $0 < r < 1$. Since $g(z)$ is starlike in \mathcal{E}, from Lemma 1, we have

\[-\pi < \arg \left\{ g(tre^{i\theta}) \right\} - \arg \left\{ g(re^{i\theta}) \right\} < \pi \]

for $0 < t \leq 1$. Putting

\[\xi = \left\{ \frac{g(tre^{i\theta})}{\overline{g(re^{i\theta})}} \right\}^{\frac{\alpha}{2}}, \]
we have

\[(5) \quad \arg s = \frac{\alpha}{2} \arg \left\{ \frac{g(tre^{i\theta})}{g(re^{i\theta})} \right\}.
\]

From (4) and (5), \(s\) lies in convex sector

\[\left\{ s : |\arg s| \leq \frac{\pi}{2\alpha}\right\} \]

and the same is true of its integral mean of (3), (see e.g. [5, Lemma 1]). Therefore we have

\[\left| \arg \left\{ \frac{f(z)}{zf'(z)} \right\} \right| < \frac{\pi}{2\alpha} \text{ in } \mathcal{E},\]

or

\[\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2\alpha} \text{ in } \mathcal{E}.\]

This shows that

\[\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \text{ in } \mathcal{E},\]

which completes the proof of our main theorem.

Remark. This result is sharp for the case \(\alpha \rightarrow 0\) and \(\alpha = 1\).

(a) For the case \(\alpha \rightarrow 0\), let us put \(f(z) = z\), then \(f(z)\) is a convex function of order \(1 - \frac\alpha2 \rightarrow 1\) and \(f(z)\) is a strongly starlike function of order \(\alpha \rightarrow 0\).

(b) For the case \(\alpha = 1\), let us put

\[(6) \quad 1 + \frac{zf''(z)}{f'(z)} = \frac{1}{1-z}.
\]

Then we have

\[1 + \text{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > \frac{1}{2} \text{ in } \mathcal{E},\]

and therefore \(f(z)\) is a convex function of order \(1/2\). From (5), we easily have

\[f'(z) = \frac{1}{1-z} \quad \text{and} \quad f(z) = \log \left\{ \frac{1}{1-z} \right\}.
\]

Putting \(|z| = 1, z = e^{i\theta}, 0 \leq \theta < 2\pi\), then it follows that

\[\frac{z}{1-z} = -\frac{1}{2} + i\frac{\cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}\]
ON THE STRONGLY STARLIKENESS OF MULTIVALENTLY CONVEX FUNCTIONS

and

\[
\log \left\{ \frac{1}{1 - z} \right\} = \log \left\{ \frac{1}{2 + i \frac{\cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}} \right\} + i \arg \left\{ \frac{1}{2 + i \frac{\cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}} \right\}.
\]

\[
\lim_{\theta \to +0} \arg \left\{ \frac{zf'(z)}{f(z)} \right\} = \lim_{\theta \to +0} \arg \left\{ \frac{1}{1 - z} \right\} \left(\log \frac{1}{1 - z} \right)
\]

\[
= \lim_{\theta \to +0} \arg \left\{ \frac{1}{2 + i \frac{\cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}} \right\}
\]

\[
- \lim_{\theta \to +0} \arg \left\{ \log \left\{ \frac{1}{2 + i \frac{\cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}} \right\} + i \arg \left(\frac{1}{2 + i \frac{\cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}} \right) \right\} = \frac{\pi}{2}.
\]

The above shows that the main theorem is sharp for the case \(\alpha \to 0\) and \(\alpha = 1\).

Applying the same method as the above and [2], we can obtain the following result.

Theorem C. If \(f(z) \in \mathcal{A}(p)\) and satisfies

\[
p - \frac{\alpha}{2} < 1 + \Re \left\{ \frac{zf''(z)}{f'(z)} \right\}
\]

in \(\mathcal{E}\)

where \(0 < \alpha \leq 1\), then \(f(z) \in STS(p, \alpha)\).

REFERENCES

M. NUNOKAWA, S. OWA AND A. IKEDA

Mamoru Nunokawa:
Department of Mathematics, University of Gunma
Aramaki Maebashi Gunma, 371-8510, Japan
E-mail address: nunokawa@storm.edu.gunma-u.ac.jp

Shigeyoshi Owa:
Department of Mathematics, Kinki University
Higashi-Osaka, Osaka 577-8502, Japan
E-mail address: owa@math.kindai.ac.jp

Akira Ikeda:
Department of Applied Mathematics, Fukuoka University
Nanakuma Jonan-ku Fukuoka, 814-0180, Japan
E-mail address: aikeda@sm.fukuoka-u.ac.jp