<table>
<thead>
<tr>
<th>Title</th>
<th>ON SOME ANGULAR ESTIMATES OF CLOSE-TO-CONVEX FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikeda, Akira; Saigo, Megumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1999), 1112: 36-43</td>
</tr>
<tr>
<td>Date</td>
<td>1999-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63364</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
ON SOME ANGULAR ESTIMATES OF CLOSE-TO-CONVEX FUNCTIONS

AKIRA IKEDA AND MEGUMI SAIGO

ABSTRACT. The paper is devoted to generalizing the results by Libera [4], MacGregor [5], Pommerenke [6] and Ponnusamy and Karunakaran [7] relating to properties of close-to-convex functions.

1. Introduction

Let \(p \in \mathcal{N} = \{1, 2, 3, \ldots\} \) and \(\mathcal{A}(p) \) denote the class of functions

\[
f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k
\]

which are analytic in the unit disk \(\mathcal{U} = \{ z : |z| < 1 \} \). A function \(f(z) \in \mathcal{A}(p) \) is called \(p \)-valently starlike if

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad \text{in} \quad \mathcal{U}.
\]

We denote by \(S^*(p) \) the subclass of \(\mathcal{A}(p) \) consisting of \(p \)-valently starlike functions. Further, a function in \(\mathcal{A}(p) \) is said to be \(p \)-valently convex if

\[
1 + \text{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > 0 \quad \text{in} \quad \mathcal{U}.
\]

Let \(\mathcal{C}(p) \) denote the subclass of \(\mathcal{A}(p) \) of such \(p \)-valently convex functions in \(\mathcal{U} \). A function \(f(z) \in \mathcal{A}(p) \) is said to be \(p \)-valently close-to-convex if there is a function \(g(z) \in \mathcal{C}(p) \) such that

\[
\text{Re} \left\{ \frac{f'(z)}{g'(z)} \right\} > 0 \quad \text{in} \quad \mathcal{U}.
\]

We shall denote by \(\mathcal{K}(p) \) the class of \(p \)-valently close-to-convex functions. As is well know, we have the inclusions

\[
\mathcal{C}(p) \subset S^*(p) \subset \mathcal{K}(p).
\]

Now, we define the subordination. Let \(f(z) \) and \(g(z) \) be analytic in \(\mathcal{U} \), with \(f(0) = g(0) \). Suppose \(f(z) \) is univalent, and the range of \(\mathcal{U} \) by \(g(z) \) is contained in that of \(f(z) \). Then we say the function \(g(z) \) subordinates to \(f(z) \) and write \(g(z) \prec f(z) \).

1991 Mathematics Subject Classification. 30C45.
A. Ikeda and M. Saigo

Theorem A. [3] Let $f(z) \in \mathcal{A}(p)$. Let $g(z) \in \mathcal{S}^*(p)$ satisfy

$$\text{Re} \left\{ \frac{f'(z)}{g'(z)} \right\} > 0 \quad \text{in } \mathcal{U},$$

then we have

$$\text{Re} \left\{ \frac{f(z)}{g(z)} \right\} > 0 \quad \text{in } \mathcal{U}.$$

Theorem A was proved by Sakaguchi [3], which is generalized by Libera [4], MacGregor [5], Pommerenke [6], and Ponnusamy and Karunakaran [7].

The generalization of MacGregor [5] is the following, which is quite similar to that of Libera [4]:

Theorem B. [5, Lemma 2] Suppose that functions $f(z)$ and $g(z)$ are analytic in \mathcal{U} with $f(0) = g(0) = 0$, and $g(z)$ maps \mathcal{U} onto a region which is starlike with respect to the origin. Let $0 \leq \gamma < 1$. If

$$\text{Re} \left\{ \frac{f'(z)}{g'(z)} \right\} > \gamma \quad \text{in } \mathcal{U},$$

then

$$\text{Re} \left\{ \frac{f(z)}{g(z)} \right\} > \gamma \quad \text{in } \mathcal{U}.$$

Likewise, if

$$\text{Re} \left\{ \frac{f'(z)}{g'(z)} \right\} < \gamma \quad \text{in } \mathcal{U},$$

then

$$\text{Re} \left\{ \frac{f(z)}{g(z)} \right\} < \gamma \quad \text{in } \mathcal{U}.$$

In [6], Pommerenke obtained the following theorem.

Theorem C. [6, Lemma 1] Let $f(z), g(z) \in \mathcal{A}(p)$. For $0 \leq \alpha \leq 1$,

$$\left| \arg \left\{ \frac{f'(z)}{g'(z)} \right\} \right| \leq \frac{\pi}{2} \alpha \quad \text{in } \mathcal{U},$$

then

$$\left| \arg \left\{ \frac{f(z_2) - f(z_1)}{g(z_2) - g(z_1)} \right\} \right| \leq \frac{\pi}{2} \alpha$$

for $z_1, z_2 \in \mathcal{U}$.

In [7], Ponnusamy and Karunakaran lead the next theorem.
ON SOME ANGULAR ESTIMATES OF CLOSE-TO-CONVEX FUNCTIONS

Theorem D. [7, Corollary 2] Let \(p \geq 1, k \geq 1, \beta < 1 \) and \(0 \leq \delta < 1/p \). If \(f(z), g(z) \in \mathcal{A}(p) \) and \(g(z) \) satisfies
\[
\text{Re} \left\{ \frac{g(z)}{zg'(z)} \right\} > \delta,
\]
then
\[
\text{Re} \left\{ \frac{f'(z)}{g'(z)} \right\} > \beta
\]
implies
\[
\text{Re} \left\{ \frac{f(z)}{g(z)} \right\} > \frac{2\beta + k\delta}{2 + k\delta}.
\]

Theorem D may be regarded as a generalization of the results of Theorems A and B.

In 1995, Nunokawa obtained the next two theorems.

Theorem E. [8, Theorem 1] Let \(f(z) \in \mathcal{A}(p), g(z) \in \mathcal{S}^*(p) \), \(0 < \alpha \leq 1 \) and \(\beta \) be a real number. Suppose that
\[
\left| \arg \left\{ \frac{f'(z)}{g'(z)} - \beta \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in} \quad \mathcal{U},
\]
then we have
\[
\left| \arg \left\{ \frac{f(z)}{g(z)} - \beta \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in} \quad \mathcal{U}.
\]

Theorem F. [8, Theorem 2] Let \(f(z) \in \mathcal{A}(p), g(z) \in \mathcal{S}^*(p) \), where \(0 < \alpha \leq 1 \) and \(\beta > 1 \). Suppose that
\[
\left| \arg \left\{ \beta - \frac{f'(z)}{g'(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in} \quad \mathcal{U},
\]
then we have
\[
\left| \arg \left\{ \beta - \frac{f(z)}{g(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in} \quad \mathcal{U}
\]
or
\[
\pi - \frac{\pi}{2} \alpha < \arg \left\{ \frac{f(z)}{g(z)} - \beta \right\} < \pi + \frac{\pi}{2} \alpha \quad \text{in} \quad \mathcal{U}.
\]

Remark 1. Theorem E is a generalization of Theorem A, the first half of Theorem B and Theorem C, while Theorem F is a generalization of the second half of Theorem B.
2. Preliminaries

In this paper, we need the following lemmas.

Lemma 1. [10] Let $p(z)$ be analytic in \mathcal{U} with $p(0) = 1$ and $p(z) \neq 0$ in \mathcal{U}. Let $\beta > 0$ and suppose that there exists a point $z_0 \in \mathcal{U}$ such that

$$|\arg\{p(z)\}| < \frac{\pi}{2}\beta$$

for $|z| < |z_0|$

and

$$|\arg\{p(z_0)\}| = \frac{\pi}{2}\beta.$$

Then we have

$$\frac{z_0p'(z_0)}{p(z_0)} = ik\beta,$$

where

$$k \geq 1 \quad \text{when} \quad \arg\{p(z_0)\} = \frac{\pi}{2}\beta,$$

$$k \leq -1 \quad \text{when} \quad \arg\{p(z_0)\} = -\frac{\pi}{2}\beta$$

and

$$p(z_0)^{1/\beta} = \pm ia, \quad a > 0.$$

Lemma 2. Let α be a positive real number and let $p(z)$ be analytic in \mathcal{U} with $p(0) = 1$ and $p(z) \neq 0$ in \mathcal{U}. Let $-1 \leq \delta < \lambda \leq 1$ and suppose that

(1) $$\left|\arg\left\{p(z) + \frac{g(z)}{g'(z)}p'(z)\right\}\right| < \frac{\pi}{2}\alpha$$

in \mathcal{U}

or

$$p(z) + \frac{g(z)}{g'(z)}p'(z) \prec \left(\frac{1+z}{1-z}\right)^\alpha$$

in \mathcal{U},

where $g(z)$ belongs to $S^*(p)$ and satisfies

(2) $$\frac{g(z)}{zg'(z)} \lesssim \frac{1+\lambda z}{p 1 + \delta z}.$$

Then for $\beta > 0$ being determined by

(3) $$\alpha = \beta + \frac{2}{\pi} \tan^{-1} \left\{ \frac{(1 - \lambda) \{(\lambda - \delta)\beta + p(1 - \lambda)(1 - \delta^2)\}}{p(1 - \delta)(\lambda - \delta)} \right\},$$

we have

$$|\arg\{p(z)\}| < \frac{\pi}{2}\beta$$

in \mathcal{U}.
ON SOME ANGULAR ESTIMATES OF CLOSE-TO-CONVEX FUNCTIONS

Proof. Suppose that there exists a point \(z_0 \in \mathcal{U} \) such that

\[
|\arg\{p(z)\}| < \frac{\pi}{2} \beta \quad \text{for} \quad |z| < |z_0|
\]

and

\[
|\arg\{p(z_0)\}| = \frac{\pi}{2} \beta.
\]

Then, from Lemma 1, we have

\[
\frac{z_0 p'(z_0)}{p(z_0)} = ik\beta,
\]

where

\[
k \geq 1 \quad \text{when} \quad \arg\{p(z_0)\} = \frac{\pi}{2} \beta,
\]

\[
k \leq -1 \quad \text{when} \quad \arg\{p(z_0)\} = -\frac{\pi}{2} \beta
\]

and

\[
p(z_0)^{1/\beta} = \pm ia, \quad a > 0.
\]

Then it follows that

\[
\arg\left\{p(z_0) + \frac{g(z_0)}{g'(z_0)} p'(z_0)\right\} = \arg\{p(z_0)\} \left[1 + \frac{z_0 p'(z_0)}{p(z_0)} \frac{g(z_0)}{z_0 g'(z_0)} \right]
\]

\[
= \arg\{p(z_0)\} \left[1 + ik\beta \frac{g(z_0)}{z_0 g'(z_0)} \right]
\]

\[
= \arg\{p(z_0)\} (A + iB).
\]

Here real constants \(A \) and \(B \) can be estimated by virtue of the assumption (2) such as

\[
A \leq 1 + \frac{1}{p} \frac{\lambda - \delta}{1 - \delta^2} k\beta,
\]

(4)

\[
B \geq \frac{1}{p} \frac{1 - \lambda}{1 - \delta} k\beta.
\]

Note that the right hand side of (4) is positive.
When \(\arg \{ p(z_0) \} = \pi \beta / 2 \), we have
\[
\arg \left\{ p(z_0) + \frac{g(z_0)}{g'(z_0)} p'(z_0) \right\} = \arg \{ p(z_0) \} (A + iB)
\geq \frac{\pi}{2} \beta + \tan^{-1} \left\{ \frac{1 - \lambda}{p(1 - \delta)} \left(\frac{\beta}{k} + \frac{p(1 - \lambda)(1 - \delta^2)}{1 - \delta} \right) \right\}
= \frac{\pi}{2} \beta + \tan^{-1} \left\{ \frac{1 - \lambda}{p(1 - \delta)} \left(\frac{(\lambda - \delta) \beta + p(1 - \lambda)(1 - \delta^2)}{1 - \delta} \right) \right\}
\geq \frac{\pi}{2} \beta + \tan^{-1} \left(\frac{(1 - \lambda)(\lambda - \delta) \beta + p(1 - \lambda)(1 - \delta^2)}{p(1 - \delta)(\lambda - \delta)} \right)
= \frac{\pi}{2} \beta + \frac{2}{\pi} \tan^{-1} \left(\frac{(1 - \lambda)(\lambda - \delta) \beta + p(1 - \lambda)(1 - \delta^2)}{p(1 - \delta)(\lambda - \delta)} \right)
= \frac{\pi}{2} \alpha.
\]

On the other hand, when \(\arg \{ p(z_0) \} = -\pi \beta / 2 \), we have
\[
\arg \left\{ p(z_0) + \frac{g(z_0)}{g'(z_0)} p'(z_0) \right\} = \arg \{ p(z_0) \} (A + iB)
\leq -\frac{\pi}{2} \left(\beta + \frac{2}{\pi} \tan^{-1} \left(\frac{(1 - \lambda)(\lambda - \delta) \beta + p(1 - \lambda)(1 - \delta^2)}{p(1 - \delta)(\lambda - \delta)} \right) \right)
= -\frac{\pi}{2} \alpha.
\]

These contradict (1), which completes the proof of Lemma 2.

Remark 2. Note that when \(\lambda = 1 \), \(\beta = \alpha \) from the equation (1).

Remark 3. The existence of \(\beta \) satisfying (3) for any positive \(\alpha \) can be certificate easily.

3. Main results

Theorem 1. Let \(\gamma \) be a real number and \(0 < \alpha \leq 1 \). Let \(f(z) \in A(p) \), \(g(z) \in S^*(p) \) and
\[
\frac{g(z)}{zg'(z)} < \frac{1 + \lambda z}{p(1 + \delta z)}
\]
for \(-1 \leq \delta \leq 1 \) and suppose that
\[
\arg \left\{ \frac{f'(z)}{g'(z)} - \gamma \right\} < \frac{\pi}{2} \alpha \quad \text{in} \quad U.
\]
ON SOME ANGULAR ESTIMATES OF CLOSE-TO-CONVEX FUNCTIONS

Then for $\beta > 0$ being determined by (3) we have

$$|\arg \left\{ \frac{f(z)}{g(z)} - \gamma \right\}| < \frac{\pi}{2} \beta \quad \text{in } \mathcal{U}.$$

Proof. Let us put

$$p(z) = \frac{1}{1-\gamma} \left\{ \frac{f(z)}{g(z)} - \gamma \right\}.$$

Then we have

$$p(z) + \frac{g(z)}{g'(z)} p'(z) = \frac{1}{1-\gamma} \left\{ \frac{f'(z)}{g'(z)} - \gamma \right\}.$$

Applying Lemma 2 for this $p(z)$, we obtain the required result.

Remark 4. Theorem 1 is a revision of Theorem E in view of Remark 2.

Theorem 2. Let $\gamma > 1$ and $0 < \alpha \leq 1$. Let $f(z) \in \mathcal{A}(p), g(z) \in S^{*}(p)$. For $-1 \leq \delta < \lambda \leq 1$ we assume

$$\frac{g(z)}{zg'(z)} < \frac{1 + \lambda z}{p(1 + \delta z)}$$

and suppose that

$$|\arg \left\{ \gamma - \frac{f'(z)}{g'(z)} \right\}| < \frac{\pi}{2} \alpha \quad \text{in } \mathcal{U}.$$

Then for $\beta > 0$ being determined by (3) we have

$$|\arg \left\{ \gamma - \frac{f(z)}{g(z)} \right\}| < \frac{\pi}{2} \beta \quad \text{in } \mathcal{U}$$

or

$$\pi - \frac{\pi}{2} \beta < \arg \left\{ \frac{f(z)}{g(z)} - \gamma \right\} < \pi + \frac{\pi}{2} \beta \quad \text{in } \mathcal{U}.$$

Proof. Let us put

$$p(z) = \frac{1}{\gamma - 1} \left\{ \gamma - \frac{f(z)}{g(z)} \right\}.$$

Then we have

$$p(z) + \frac{g(z)}{g'(z)} p'(z) = \frac{1}{\gamma - 1} \left\{ \gamma - \frac{f'(z)}{g'(z)} \right\},$$

which yields the result of the present theorem.

Remark 5. Theorem 2 is better than Theorem F, as we noted in Remark 3.

Remark 6. In case of $\lambda = 1, \alpha = \beta = 1$ and $\gamma = 0$, Theorem 1 is equivalent to Theorem A.
A. IKEDA AND M. SAIGO

REFERENCES

AKIRA IKEDA:
MEGUMI SAIGO:

DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVERSITY,
8-19-1 NANAKUMA, JONAN-KU, FUKUOKA, 814-0180, JAPAN

E-mail address: aikeda@sf.sm.fukuoka-u.ac.jp, msaigo@fukuoka-u.ac.jp