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ON SOME ANGULAR ESTIMATES
OF CLOSE-TO-CONVEX FUNCTIONS

AKIRA IKEDA AND MEGUMI SAIGO

ABSTRACT. The paper is devoted to generalizing the results by Libera [4], MacGregor [5],
Pommerenke [6] and Ponnusamy and Karunakaran [7] relating to properties of close-to-
convex functions.

1. Introduction

Let pe N =1{1,2,3,---} and A(p) denote the class of functions

which are analytic in the unit disk & = {z : |z] < 1}. A function f(z) € A(p) is called

p-valently starlike if
Zf’(Z)} ,
Re >0 in U.
{ f(z)
We denote by S*(p) the subclass of A(p) consisting of p-valently starlike functions.
Further, a function in A(p) is said to be p-valently convez if

2f"(z)
f'(2)
Let C(p) denote the subclass of A(p) of such p-valently convex functions in /. A function
f(z) € A(p) is said to be p-valently close-to-convez if there is a function g(z) € C(p)

such that .

Re{f,(z)} >0 in U

- Lg'(?) |
We shall denote by K(p) the class of p-valently close-to-convex functions. As is well
know, we have the inclusions

1+Re{ }>O in U.

C(p) € §*(p) C K(p).

Now, we define the subordination. Let f(z) and g(z) be analytic in U, with f(0) =
g(0). Suppose f(z) is univalent, and the range of U by g(z) is contained in that of f(2).
Then we say the function g(z) subordinates to f(z) and write g(z) < f(2).
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Theorem A. (3] Let f(z) € A(p). Let g(z) € S*(p) satisfy

Re{gg}w in U,

then we have

Re{g—((g)l}>0 in U.

Theorem A was proved by Sakaguchi [3], which is generalized by Libera [4], MacGre-
gor [5], Pommerenke [6], and Ponnusamy and Karunakaran [7].

The generalization of MacGregor [5] is the following, which is quite similar to that
of Libera [4]:

Theorem B. [5, Lemma 2] Suppose that functions f(z) and g(z) are analytic in U with
f(0) = g(0) = 0, and g(z) maps U onto a region which is starlike with respect to the

origin. Let 0 <y < 1. If
f’(Z)} :
Re > n U,
{gf<z> ! |

then

Re{g—g%}>'y mn U.

Likewise, if

re{fGp<r o
9(z)

In [6], Pommerenke obtained the following theorem.

Theorem C. [6, Lemma 1] Let f(z),g(2) € A(p). For 0 < a <1,

lfl s

then

for zy,29 € U.

In [7], Ponnusamy and Karunakaran lead the next theorem.
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Theorem D. [7, Corollary 2] Letp>1,k>1,8<1and0< 6 < 1/p. If f(2),9(2) €
A(p) and g(z) satisfies

ne{ ) >
then ‘ ’

SFEIA
implies

\Y

{05} > T

Theorem D may be regarded as a generalization of the results of Theorems A and B.
In 1995, Nunokawa obtained the next two theorems.

Theorem E. [8, Theorem 1] Let f(z) € A(p), g(2) € S*(p), 0 < a < 1 and B be a real
number. Suppose that

') m :
arg{gl(z) —,8}|<§a m U,
then we have :
f(z) m :
arg{—g—(—z—y—BH<§a n U.

Theorem F. [8, Theorem 2] Let f(z) € A(p), g(2) € S*(p), where 0 < a < 1 and
B > 1. Suppose that
f ’(z)}

g'(z)

s {-

then we have

or

Remark 1. Theorem E is a generalization of Theorem A, the first half of Theorem B
and Theorem C, while Theorem F is a generalization of the second half of Theorem B.
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2. Preliminaries

In this paper, we need the following lemmas.

Lemma 1. [10] Let p(z) be analytic in U with p(0) = 1 and p(z) # 0 in U. Let B> 0
and suppose that there exists a point zg € U such that

larg {p(2)} | < 58 for |z] < |2o]

and -
Jarg {p(z0)} | = 6.

Then we have ,

2o0p (Zo) — Zkﬁ,

p(zo)
where T
B2l when arglp(zo)} = 26,
k< -1 when arg{p(z9)} = —gﬂ

and

p(zo)l/ﬂ = +ia, a > 0.

Lemma 2. Let a be a positive real number and let p(z) be analytic in U with p(0) = 1
and p(z) #0 inU. Let —1 <6 < XA <1 and suppose that

arg{p(z)+-9,—(’ﬁp'(z)}l<‘fa in U

1) /() 2

or

g(z) , 14+2\° .
p(z)—l—mp (z) < (1—z) in U,

where g(z) belongs to S*(p) and satisfies

g(2) 114Xz

) 0@ pitez

Then for B > 0 being determined by

(3) a=5+%tanwl{(1—A){(z\—é)ﬁ+p(1-—x)(1_52)}}’

p(1=8)(A=9)

we have .
larg {p()}| < 5B in U



40

ON SOME ANGULAR ESTIMATES OF CLOSE-TO-CONVEX FUNCTIONS

Proof. Suppose that there exists a point zp € U such that
™
larg {p(2)}| < 26 for |2] <zl

and
| |arg {p(z0)} | = 3.

Then, from Lemma 1, we have

ZoP”(zo) .
= 1k[3,
p(20) g
where _
k>1 when arg {p(20)} = gﬁ,
E< -1 when arg{p(z9)} = —%B
and

p(20)Y/P = +ia, a>0.

Then it follows that

9(z0) 2 _ zop'(z0) 9(20)
arg {p(zO) + 7 ()" ( 0)} = arg {p(20)} [1 + (0] zOg,(zO)}

= arg {P(ZO)} [1 +1kp zfg('z(i')o)]

= arg {p(20)} (A + iB).

Here real constants A and B can be estimated by virtue of the assumption (2) such as

(4) B2z

Note that the right hand side of (4) is positive.
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When arg {p(z0)} = 73/2, we have

am{mm»+i@iﬂww}=mg@@wnA+Uﬂ

9'(z0)
11- A
A
T -1 1-94
> g tan 1p1)\—6k
L
o A== kB +p(1 - A)(L - 62))
gfrte { p(L- 5 3) }
. A== 08+ - N1 - 62)}
2 gf+tan P1- 5 0) }
Tl 2 o fO=-N{A=-8B+p1-N(01-6%)}
‘E{ﬁ“ﬁtan { 1= (=) H
:“2-(1.

On the other hand, when arg {p(20)} = ~73/2, we have

arg {p(zo) + ég;é%p)(zo)} = arg {p(20)} (A + i¢B)

m 2 Ja=-X0{(A-8B+p(l-X1(1-6%)}
S_E[MEW { P —0)(» —3) H

Wa
5

H

These contradict (1), which completes the proof of Lemma, 2.
Remark 2. Note that when A = 1, 8 = o from the equation (1).

Remark 3. The existence of 3 satisfying (3) for any positive a can be certificated
easily.

3. Main results

Theorem 1. Let y be a real number and 0 < < 1. Let f(z) € A(p), g(2) € S*(p)
and

9(2) < 11+ Az
2¢'(z) pl+dz
for =1 <6 < XA <1 and suppose that

arg{f,(z) —’y}l < Zcx m U.

(5) 7'(2)

(o]
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Then for 3 > 0 being determined by (3) we have

arg{%~7}‘<gﬂ in U.

p(z)=ﬁ{§%—7}~

L9 L[PG
PE* gm? = 15 {g’(Z) 7}'

Applying Lemma 2 for this p(z), we obtain the required result.

Proof. Let us put

Then we have

Remark 4. Theorem 1 is a revision of Theorem E in view of Remark 2.
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Theorem 2. Lety>1 and 0 < a < 1. Let f(z) € A(p), g(z) € 8*(p). For -1 <4 <

A <1 we assume
9(2) 11+ Az

zg'(z) pl+6z

arg {’Y*‘ f'(z)}l < T in‘ U.

and suppose that

g'(2) 2
Then for 3 > 0 being determined by (3) we have
arg{ —g—%}i<gﬂ in U
or
w—g,@<arg{—£—(§—3—7}<w+g—ﬂ in U.

Proof. Let us put

Then we have

9y L[ 1)
o+ 0= - T

which yields the result of the present theorem.

Remark 5. Theorem 2 is better than Theorem F, as we noted in Remark 3.

Remark 6. Incase of A = 1, « = 8 = 1 and v = 0, Theorem 1 is equivalent to

Theorem A. '
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