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- ARGUMENT ESTIMATES OF
MEROMORPHICALLY MULTIVALENT FUNCTIONS

*NAK EuN CHO AND **SHIGEYOSHI OwA

ABsTRACT. The object of the present paper is to obtain some argument properties
of meromorphically multivalent functions in the punctured open unit disk. We also
derive the integral preserving properties in a sector.

1. Introduction

Let U = {z € C: |z| < 1}. For f and g which are analytic in U, we say that f is
subordinate to g, written f <. g or f(z) < g(z), if there exists a Schwarz function
w in U such that f(z) = g(w(z)).

Let X, denote the class of all meromorphic functions of the form

o)==+

P

1+ (pEN={1,2,--})

which are analytic in the annulus D = {2 : 0 < 2| < 1}. We denote by X3(3)
the subclass of ¥, consisting of all functions which is meromorphically starhke of
order §in U.

The Hadamard product or convolution of two functions f and g in ¥, will be
denoted by f *x g.

Let ’

1

D™ (z) = zP(1 — z)nte

* f(z) (z€ D) (1.1)

or, equivalently,

1991 Mathematics Subject Classification: 30C45.
Key words and phrases. meromorphically starlike, differential operator, argument estimates,
integral operator.

Typeset by ApS-TEX



N. E. CHO AND S. OWA

zP

. —”1 zn+2p-_——1f(z) (n+p-1)
o160~ (Gt )

1 1 (n+p+(n+p) 1
== + (n+p)ao g + o U + .
(n+k+2p—1)...(n+p)

»(k:+p)!

ak+p_1zk +.. (z€ D),

where n is any integer greater than —p.

For various interesting developments involving the operators D™*P~! for func-
tions belonging to ¥,, the reader may be refereed to the recent works of author[1],
Uralegaddi and Path([7], and others|8,9]. -

Let

2Dl f(2)) (2) | 14+ Az
Dntp-1f(z) “P1y Bz

S¥n; A, B] = {f €%, — z€ u}, (1.2)
where —1 < B < A < 1. In particular, we note that X3[—p + 1;1,—1] is the

well known class of meromorphically p-valent starlike functions. From (1.2), we
observe[6] that a function f is in }[n; A, B] if and only if

[(liar CICIEIERIRRLES)
DnFp=17(3) 1- B2 7

(-1<B<A<L1; z€l).

(1.3)

The object of the present paper is to give some argument estimates of mero-
morphically multivalent functions belonging to ¥, and the integral preserving
properties in connection with the differential operators D™*?~! defined by (1.1).

2. Main results

To establish our main results, we need the following lemmas.

Lemma 2.1 [2]. Let h be convez univalent in U with h(0) = 1 and Re (Bh(z)+
v) > 0(8,7 € C). If ¢ is analytic in U with ¢(0) = 1, then

z2q (z) N (s
o)+ 52 <) Gew

implies
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q(z) < h(z) (z€l).

 Lemma 2.2 [4]. Let h be convex univalent in U and \(z) be analytic in U
with Re A(z) > 0. If q is analytic in U and q(0) = h(0), then
q(z) + M2)zq'(2) < h(z) (2 €U)

implies

q(z) < h(2) (z€U).

Lemma 2.3 [5]. Let q be analytic in U with q(‘O) =1 and q(z) # 0 in U.
Suppose that there exists a point zo € U such that

’arg q(z), < %a for |z| < |zo] (2.1)
and -
larg q(zo)' = o 0<a<Ll). (2.2)
Then we have /()
209 \Z0 .
209°20) — ko, 2.3
q(z0) e (23)
where
k>—1- a+l when ar (z)—za (2.4)
= 2 g q\20) = B .
1 1 T
L —_— = —— .
k< 5 (a + a) when arg q(zp) 5 (2.5)
and .
g(z0)= = *ia (a > 0). (2.6)

At first, with the help of Lemma 2.1, we obtain the following

Proposition 2.1. Let h be conver univalent in U with h(0) = 1 and Re h be
bounded in U. If f € L, satisfies the condition

_ 2D f(2))

P (2) < h(z) (z€l),



then
2(D™P~L f(2))

 pD™H1f(z)
- for max,cy Re h(z) < -’li;)% (provided D™"*P~1f(z) #£ 0 in U).
Proof. Let

< h(z) (z€el)

2D (z))
=Gy

By using the eqﬁation
2D f(2)) = (n+p)D"Pf(z) — (n+29) D), (2)

we get .
- n+2p ___(n + )DL f(2)
W) = = T DI (s)

Taking logarithemic derivatives in both sides of (2.8) and multiplying by z, we
have
2q' (z z2(DMPf(2))
() = HDG)
-pq(z) +n+2p pD™ P f(z)

From Lemma, 2.1, it follows that g(z) < h(z) for Re (—h(z) + -Tipzﬂ) >0 (zel),
which means

(2.8)

< h(z) (z€U).

(DML f(2))
pDntP-1£(z)

for max.cy Re h(z) < 2—"—;;22.

Proposition 2.2. Let h be convex univalent in U with h(0) =1 and Re h be
bounded in U. Let F be the integral operator defined by

< h(z) (zel)

€ * etp-1 ‘
Fa) =5 /O = P-1E () dt (e > 0). (2.9)
If f € X, satisfies the condition

_z(D™PLf(2))
pDrtr=1f(z)

<h(z) (z€l),

then
_=(DHLR()Y

pDn+p——1F(z)
for max,cy Re h(z) < —c% (provided D™"*P~1F(2) #0 inU).

< h(z) (zell)



Proof. From (2.9), we have
HD™PLF(2)) = D™l f(2) — (¢ + p) D" PR (2). (2.10)
Let

__HDEG)Y
P) = == e ip(s)

Then, by using (2.10), we get

D1 f(2)

g(z) - (c+p) = —c

Taking logarithemic derivatives in both sides of (2.11) and multiplying by z, we

have
zq'(2) (2) = (DM (2))
—pq(z) + (c + p) pD™tP-1f(z)
Therefore, by Lemma 2.1, we have

<h(z) (zel).

z(D™P1F(2))
~ pDtPlF(Z)

< h(z) (z € U)

for max,cuyRe h(z) < E—';E (provided D™*P~1F(2) # 0 in U).

Remark. Taking p =1 and h(z) = ;*2 in Proposition 2.1 and Proposition
2.2, we have the results obtained by Ganigi and Uralegaddi[3].

Applying Lemma 2.2, Lemma 2.3 and Proposition 2.1, we now derive

Theorem 2.1. Let f € ¥,. Choose an integer n such that

n>p(1+A)_
- 1+B

where—1.<B<A§1 and pe N. If

z(D™Pf(2)) ™
arg <__(5;¥@f((5)_)_-7)|<§5 0<y<p; 0<d6<L1)

- for some g € Xx[n + 1; A, B], then

org (_ 2(D"PLf(2)) —’7)! < Ea,

2p,

Drtr—1g(32) 2

where o (0 < a < 1) 1is the solution of the equation
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2. asin Z(1 —t(4, B))
od=a+ P tan ( (n+2p)(1-—B)+A-—21 n W
5 acos §(1 - t(4, B))
when ‘
E p(4 - B)
44, B) = o | ((n +2p)(1-B2?)—p(1—AB) )’
Proof. Let

_ 1 (D™ (2))
%) = p—-v( Dr+e=lg(z) +7)'

By (2.7), we have

(p—7)2q' (2)D™P 1g(2) + (1 — 7)a(2)z(D™+P " g(2))

(2.12)

(2.13)

(2.14)

— (n+20)2(D™P7f(2)) = —(n +p)2(D"P(2)) = y2(D"**71g(2)) ().

Dividing (2.14) by D™*P~1g(z) and simplifying, we get

W) 1 (ADMSG)
—r(z)+n+2p p——'y< Dntpg(z) +7>’

q(z) +
where

r(z) = -2 P1g(2))
Drtr=lg(z) -

Since g € Z3[n + 1; 4, B], from Proposition 2.1, we have

1+ Az
1+ Bz’

r(z) < p

Using (1.3), we have

—r(2) + 1+ 2p = pe'2 ¢,

where

{(n+2p)(11-:_%)-—(1+A) < p< (n4+2p)(1-B)+A—1

1-B
—t(A,B) < ¢ < t(4,B)

(2.15)
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when t(A, B) is given by (2.13). Let h be a function which maps U onto the
angular domain {w : |argw| < %6} with h(0) = 1. Applying Lemma 2.2 for
this h with A(z) = —:R;)—_ll_—ﬂ_%, we see that Re ¢(z) > 0 in ¢/ and hence g(z) # 0
inlU. -

If there exists a point zp € U such that the conditions (2.1) and (2.2) are

satisfied, then(by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5)
and (2.6).

At first, suppose that g(2z0)= = ia (a > 0). Then we obtain

o [ (gt )] = (w04 =)

-7 : iZpy—1
= 2a+arg (1+zak(pe 2 %) )
nksin (1 — ¢) )
p+akcos Z(1— o)

o+ tan™! asin%(l _t(A’B))
(n+2p)(11:§)+4"’1 +acos 5(1 —t(4, B))

= Z04 + tan~!
T2

2

5,

Il

Ny oy

where 6 and t(A, B) are given by (2.12) and (2.13), respectively. This is a contra-
diction to the assumption of our theorem.

Next, suppose that p(z)s = —ia (a > 0). Applying the same method as the
above, we have

s [ (DS )

T p—n Dm+Pg(z)
- 1 ‘ asin Z(1 - t(4, B))
< ——a —tan
S5 ( (n+2p)(11:BB)+A_1 + acos (1 ~t(A, B))
T
= ——2—6,

where 0 and t(A, B) are given by (2.12) and (2.13), respectively, which contradicts
the assumption. Therefore we complete the proof of our theorem.

Letting A=1, B=20and § = 1 in Theorem 2.1, we have
Corollary 2.1. Let fe X. If

z(D"*Pf(2))
—Re {W}>’Y (0S7<p)
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for some g € Xy, satisfying the condition

z(D™*Pg(2))’
- Dntrg(z)

+Pl <p,

then

e s (T Y

Taking A =1, B =0 and g(z) = % in Theorem 2.1, we have
Corollary 2.2. Let f € &,. If

|arg [~zp+1(D"+Pf(z))' -9]| < g—é (0<vy<p 0<6<L1),
then

|larg [—2PtH(D™P1f(2)) —9]| < g—é.

Making n =0, p=1 and § = 1 in Corollary 2.2, we have
Corollary 2.3. Let fe ;. If

—Re {£%(zf"(2) +3f'(2))} >v (0 <y < 1),
then

~Re {Z2f'(2)} > 7.

By the same techniques as in the proof of Theorem 2.1, we obtain
Theorem 2.2. Let f € ¥. Choose an integer n such that

p(1+A)
> £ T
"="1+B

where -1 < B< A<1landpeN. If

Iarg (%+7>|<g5 (y>p0<35<1)

- Zp,



ARGUMENT ESTIMATES

for some g € Z3[n + 1; A, B, then

o (S )| <5

where o (0 < o < 1) is the solution of the equation given by (2.12).

Next, we prove
Theorem 2.3. Let f € ¥, and choose a positive number ¢ such that
1+A4
>
‘=1yB P
where -1 < B< A<1landpe€eN. If
- z(D™tPLE(2))
S ELLCE
Dr+r=ig(z)
for some g € ¥3[n; A, B, then
z(D™tP-1F(2)Y T
e \T TG )| T 2%
where F' is the integral operator given by (2.9),

v)l<%5 0<y<p; 0<6<1)

c

G(z) = /0 ’ ttPlg(t)dt, (c > 0), (2.16)

zetp

and a(0 < o < 1) is the solution of the equation

2 asin Z(1 —t(4, B, c))
§=a+ —tan~! 2 2.17
] o T ( (C'H?)(::ll:%)'l-A—-l + eos %(1 _ t(A, B,C)) ( )
when
_ 2. p(A - B) )
t(A,B,c)-ﬂ_sm ((c+p)(1—B2)—p(1—AB) .
Proof. Let

1 (z2(D"F(z)) )
+71-
pP—7 ( DnG(2)

Since g € Xj[n; A, B], from Proposition 2.2, g € ¥3[n; A, B].

q(z) =~
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Using (2.10), we have

(p—7)g(2)D™P7G(2) — (¢ + p) D™ F(2) = —~cD™P~ f(2) — yD™ P G(2).

Then, by a simple calculation, we get

(DM ()Y

(=g () + 0 (-1(2) + ¢+ 8) +2(—1(2) + e+ p) = =T B
where
)=~
Hence we have
sl ()

The remaining part of the proof is similar to that of Theorem 2.1 and so we omit
it.
Lettingn=—-p+1, A=1, B=0and § =1 in Theorem 2.3, we have
Corollary 2.4. Letc>0 and f € 3. If
zf'(2) }
—Re > 0<y<
{g(z) r > (0<v<p)

for some g € L, satisfying the condition

| <

then

= (G ) >

where F and G are given by (2.9) and (2.16), respectively.

Takingn =0, B — A and g(z) = ;1; in Theorem 2.3, we have
“Corollary 2.5. Letc>0 and f € ¥p. If |
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|arg (—2P*f'(z) =)l < 56, (0<7<p; 0<6<1)
then
il
2

where F' is the integral operator given by (2.9) and o (0 < o < 1) is the solution
of the equation

|arg (—2PT1F(2) = )| < 5o,

2 o .
0= Ztan"l | ———— ).
a+7r an (c+p~—l)

By using the same methods as in proving Theorem 2.3, we have

Theorem 2.4. Let f € L, and choose a positive number ¢ such that

1+A
> 2
“=1+B P
where -1 < B< A<1andpeN. If
z(D™P1f(2))
are ( Drrr—1g(7)
for some g € X3[n; A, B, then
2(DPPEIP(Z))Y  \| 7w
arg D 1G(7) +7) < §a,

where F' and G are given by (2.9) and (2.16), resﬁectz’vely, and (0 < a < 1) s
the solution of the equation given by (2.17)

+'y>;<-g-_5 (y>p; 0<6<1)

Finally, we derive
Theorem 2.5. Let f € ,. Choose an integer n such that

o> p(1+4)
-~ 1+8B

where -1 < B<A<1landpeN. If

n+p—1 /
arg (——z(D /(2)) ——’y)‘<g6 0<y<p; 0<6<)

2p,

Drtp=lg(z)
for some g € X3[n; A, B], then
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- (EE-

where F and G are given by (2.9) and (2.16) with ¢ = n + p, respectively.

Proof.  From (2.7) and (2.8) with ¢ = n+p, we have D"*P~1 f(z) = D"*PF(z)
Therefore

m
=,
< 5

AD™P1f(2)) _ 2(DPF(z))
Dtr-1g(z) DG (z)

and the result follows.
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