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1 Introduction

This note is a report on part of an investigation undertaken by the author and
Zhou [10] last year. The main motivation came from the constructions of inter-
esting examples of constant mean curvature surfaces in complex space forms. In
mathematics, “good” examples are very much important. For example, Wente’s
tori [14] and the surfaces found by Kapouleas [7], [8] and [9] are stimulating us
to study the theory of constant mean curvature surfaces (that call cme surfaces
for short) in the Euclidean three space E3.

The notion of the mean curvature of surfaces is old and familier, but untill
1985 the round sphere is the only compact cmc surface in E3. This made the
geometry for the mean curvature rather poor.

By a cmc surface in a complex space form, we mean the surface such that the
length of the mean curvature vector is constant. In order to have the intriguing
examples, we hope to study a restricted class of the surfaces, which are surfaces
with parallel mean curvautre vector in a complex space form.

The surfaces with parallel mean curvaure vector in four dimensional real
space forms are studied in Hoffman [6], Chen [1], and Yau [15]. These are

locally cme surfaces in a totally geodesic or totally umbilic hypersurface of the
ambient manifold. '

For the complex case, the situation is different. Minimal surfaces in the com-



plex projective plane, C P2, are extensively studied by Eschenburg, Guadalupe
- and Tribuzy [5]. When the mean curvature vectors of the surfaces are not zero,
Chen [3] has found a non-trivial example of the surface with parallel mean cur-
vature vector in a complex hyperbolic plane. Let M2(K) and CH?(4p) be a two
dimensional Riemannian manifold of constant Gaussian curvature K and com-
plex two dimensional complex hyperbolic space form of constant holomorphic
sectional curvature 4p(< 0) respectively. It is the isometric immersion

X: M2(—.§) — CH?(-4) | (1)

such that both the Kaehler angle, 6, and the length of the mean curvature
vector, |H|, are constant given by

1 2
f=cos”!=, |Hl=——.
3 =7

Later on, Chen-Tazawa [4] obtained the explicit representation of the im-
mersion using the bundle struture of CH?(—4).

Surfaces with parallel mean curvature vector in the complex Euclidean plane
C? are locally classified [2] when the Kaehler angles are constant.

Recently, by the joint work with Zhou [10], the author has found new ex-
amples of the surfaces with parallel mean curvature vector in C? and CH?(4p)
such that their Kaehler angles are not constant. It shall be remarked that the
important examples only appear in the complex space forms of non-positive cur-

vature. This contrasts with the usual submanifold theory in Kaehler manifolds
(cf. [13]).

The following is our main result:

Theorem 1 (Kenmotsu-Zhou, 1998) Let M? be a real two dimensional con-
nected Riemannian manifold and H2(4p) the complex two dimensional complex
space form of constant holomorphic sectional curvature 4p. Let X : M? —
M~ (4p) be an isometric immersion from M? into T (4p) with non-zero paral-
lel mean curvature vector.

(1) When p > 0, the Kaehler angle of X is constant and the image is
locally congruent to the Clifford torus. '

(2) When p <0, there exist the surfaces such that the Kaehler angles are
not constant. Moreover we classified them.
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2 The overdetermined system of Ogata

Ogata [12] initiated the study of surfaces with non-zero parallel mean curvature
vector in a complex space form M2(4p). For the immersion X : M? — H2(4p)

with non-zero parallel mean curvature vector, he found the following overdeter-
mined system:

ax
%
du

4

= —2A(u)*(a(u) — b) cotO(u), Au)>0, uel
J = 2\ (u)(a(u) + b)

g—z = 2A(u) {2a(u)(a(u) — b) cot O(u) + %p sin 20(u)}
l log {)\(u)4 (a(u)2 - g (3 cos® (u) — 1))} = kiu + ko,

where I is an open interval, and b, p, k1,and (—oco <) kg are real numbers.

(2)

In the system (2), the variable u is one of the functions of the isothermal co-
ordinates (u,v) on M?, A(u) represents the Riemannian metric on M2, 6(u)

and a(u) describe the Kaehler angle and the second fundamental forms of X
respectively. '

Conversely, given real numbers p,b(> 0),k; and (—oco <) ks, any solutions
AMu),8(u), and a(u) of the system (2) define an isometric immersion X from
an M? in the complex space form _M—2(4p) with parallel mean curvature vector
such that the length of the mean curvature vector is equal to b. In fact, M2 is a

domain of the product space I x R, the first fundamental form of the immersion
X is given by

ds® = Mu)?(du® + dv?), (u,v)e M2 CIxR (3)

and the second fundamental forms given, with respect to an orthonormal normal
frame {es3,e4},

h = ( —a(u) — 2b — Re(u, v) —Qe(u,v) )
= —Se(u, v) a(u) = 2b + Re(u,v) /°
— -3 ( ’ ) - ( )+§R ( ’ )
heo = ( —a(u) —T—?%czéu,v) ’ 1é‘s‘c(u,'t():)u ’ ) ’ (4)

where we put, for a real number ¢,

c(u,v) = \/a.(u)2 - g (3cos?f(u) — 1) expv/—~1 (——%1-2) + t) .

Example Let p and b be any real numbers satisfying b% + p/2 > 0. Then,
A(u) = constant (= 1)), O(u) = %, and a(u) = —b (5)
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satisfy the system (2) for k; = 0 and k2 = log{\*(b% + p/2)}.

This defines a totally real immersion from the two dimensional flat Rieman-
nian manifold into M2(4p) with parallel second fundamental forms. We know
the explicit formulas for these immersions in Ogata [12] when p > 0, Chen [2]
when p = 0, and Naitoh {11] when p < 0.

All solutions with 6(u) = constant are easily obtained:
Proposition 1 e When p > 0, the solution of (2) with 8(u) = constant is
only (5).
o When p < 0, the solutions of (2) with 8(u) = constant are (1) and (5).

Proposition 1 classifies the slant immersions in _Mz(4p) with parallel mean cur-
vature vector.

3 The case of k; =0

In the beginning, let us solve the system (2) when k; = 0. We may assume that
6(u) is not constant, hence so a(u). :

Assuming that p is positive, we find a contradiction. Therefore, we do not
have new solutions of (2) in this case.

When p is zero , any solution of (2) such that 6(u) is not a constant function
is represented by, using the function a = a(u) as new variable,

M(a) = a , a>0
a 6
sin? 6(a) = co (a ;b)z . ©

where c; and c; are positive numbers, and a = a(u) satisfies the first order
differential equation.

When p is negative, at first we have p = —3b2. Next, let us consider the
differential equation

do - 2
| Fvie \/5\/8 — 9sin” O(u) . (7)
Using the solution § = 8(u) of the equation (7), put
Aw) = -
\/5\/8’ — 9sin? 6(u) (8)

a(u) =b (1 — Zsin®6(u)) .
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Then, A(u), 6(u) and a(u) defined by (7) and (8) are the general solutions of (2).
It shall be remarked that the system (2) with k; = 0 has non-trivial solutions
only when p < 0.

Representation of the surfaces. = We have the explicit representation
of the immersion given by (3), (4) and (6) as follows:
(Fl (u) - eV=Imv, Fy(u) - e‘/“_lm’) e C? (9)
where Fi(u) and F(u) are the complex valued functions written by (), 6(u),
and a(u), and 7; and 75 are some real numbers.

In the case of CH?(—3b?), we get an explict representation of the coordinate
functions of the surface by using the bundle structure of the complex hyperbolic
space form. Let 7 be the projection of the Anti-de Sitter space time H?(—1)(C
C?) onto CH?(—4). Put

Eo(u, 'U) — (epo(u)v’em(u)v,epz(u)v) S(u) c Hls(_l) A

where S(u) is a 3 x 3-matrix function, and po(u), p1(u) and py(u) are eigenvalues
of the following matrix:

0 —/3bcos %‘l V3bsin 2(-21-‘—)
V-IA(u) | +Bbeos®¥  (a(u) - b) cot i(zu—) b — c(u;t)
—+/3bsin % b— ¢(u;t) (a(u) — b) tan Q%Q

Then, the surface defined by (3), (4), (7) and (8) is integrated as = - Eg(u, v).

The surfaces which we found are isometric and have the same length of the
mean curvature vector. This may correspond to the associated family of the
cmc surfaces in R3.

4 The case of k; # 0

The crucial point in Theorem 1 is to prove that even locally there is no solution

of the system (2) when k; # 0 and 6(u) is not constant.

We will find a contradiction assuming that the system (2) with k; # 0 has a
solution A(u), 6(u) and a(u) such that §(u) is not constant. We may also assume
that A(u) and O(u) are not constant. By the change of the variable = = sin? 6,
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A(z) and a(x) are non constant solutions of the following system:

([ dx (a(z)-b) 1

dr ()(a(x)+b) T’ z>0

da _a(m)(a(m) b) 1 3p 1
\ &~ e@+y z7 ¢ @@y

20\(z)V1 — z - (4(a(z) — b) + 9bx) = k1\/x - (a(a:)2 -p+ %O-x) .

(10)

\

Let I = (1, z2) be the maximal interval of the existence of the solutions of the
system (10). We have z; > 0 and p # 0. In the analysis of (10), the hardest
part is to prove z; = 0. Then, it is shown that there ezizts lim,_.o a(z) and the
limit is equal to 0 or b. We need the following uniqueness theorem:

Proposition 2 For any real numbers p,b,aq and ay, the differential equation

da _a(z)(a(z)—b) 1 3p 1
dr =~ a(z)+b PRy a(z)+ b 0<z <,

has at most one solution under the initial conditions of

lim a(z) = ap, lim a'(z) = ay.
z—0 z—0
By using these results, we can prove that

Proposition 3 (main result) For any real numbers p and ki(# 0), the sys-
tem (2) has no solution such that A(u) > 0 and 6(u) # constant.

We thus proved Theorem 1.

Remark By [1], [15], surfaces with parallel mean curvature vector in the
real four dimensional Euclidean space E* are locally constant mean curvature
surfaces in a hyperplane or a round sphere of E* and by [6], we know how to
construct such surfaces. Theorem 1 gives us new insight for the immersion: Let
X : M — E* be an isometric immersion with parallel mean curvature vector in
E*. We consider E* as the complex two plane C? by taking an almost complex
structure on E*. Then, Theorem 1 says that either it is totally real for the
complex structure or locally congruent to a surface of the family cited above.
In particular, such a surface must be rotational if and only if 71 /7 is rational.
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