
2次元複素空間形内の定曲率極小曲面に付随した
ある常微分方程式系について

東北大理学研究科 劔持勝衛 (Katsuei Kenmotsu)

これは 1999年 9月 16日から 22日にかけてルーマニアのブラショフ (Brasov) で行わ
れる予定の第 4回微分幾何学 際研究集会の講演記録集のための原稿である. それは数理解
析研究所での講演 (1999年 6月 25日), 東京大学で行われた第 46回幾何学シンポジウ
ムでの連続講演の後半部分 (1999年 8月 3日) の講演原稿をもとにして書かれている.

1 Introduction

This note is a report on part of an investigation undertaken by the author and
Zhou [10] last year. The main motivation came from the constructions of inter-
esting examples of constant mean curvature surfaces in complex space forms. In
mathematics, “good” examples are very much important. For example, Wente’s
tori [14] and the surfaces found by Kapouleas [7], [8] and [9] are stimulating us
to study the theory of constant mean curvature surfaces (that call cmc surfaces
for short) in the Euclidean three space $E^{3}$ .

The notion of the mean curvature of surfaces is old and familier, but untill
1985 the round sphere is the only compact cmc surface in $E^{3}$ . This made the
geometry for the mean curvature rather poor.

By a cmc surface in a complex space form, we mean the surface such that the
length of the mean curvature vector is constant. In order to have the intriguing
examples, we hope to study a restricted class of the surfaces, which are surfaces
with parallel mean curvautre vector in a complex space form.

The surfaces with parallel mean curvaure vector in four dimensional real
space forms are studied in Hoffman [6], Chen [1], and Yau [15]. These are
locally cmc surfaces in a totally geodesic or totally umbilic hypersurface of the
ambient manifold.

For the complex case, the situation is different. Minimal surfaces in the com-

数理解析研究所講究録
1113巻 1999年 99-105 99



plex projective plane, $CP^{2}$ , are extensively studied by Eschenburg, Guadalupe
and bibuzy [5]. When the mean curvature vectors of the surfaces are not zero,
Chen [3] has found a non-trivial example of the surface with parallel mean cur-
vature vector in a complex hyperbolic plane. Let $M^{2}(K)$ and $CH^{2}(4\rho)$ be a two
dimensional Riemannian manifold of constant Gaussian curvature $K$ and com-
plex two dimensional complex hyperbolic space form of constant holomorphic
sectional curvature $4\rho(\leq 0)$ respectively. It is the isometric immersion

$X:M^{2}(- \frac{2}{3})arrow CH^{2}(-4)$ (1)

such that both the Kaehler angle, $\theta$ , and the length of the mean curvature
vector, $|H|$ , are constant given by

$\theta=\cos^{-1_{\frac{1}{3’}}}$ $|H|= \frac{2}{\sqrt{3}}$ .

Later on, Chen-Tazawa [4] obtained the explicit representation of the im-
mersion using the bundle struture of $CH^{2}(-4)$ .

Surfaces with parallel mean curvature vector in the complex Euclidean plane
$C^{2}$ are locally classified [2] when the Kaehler angles are constant.

Recently, by the joint work with Zhou [10], the author has found new ex-
amples of the surfaces with parallel mean curvature vector in $C^{2}$ and $CH^{2}(4\rho)$

such that their Kaehler angles are not constant. It shall be remarked that the
important examples only appear in the complex space forms of non-positive cur-
vature. This contrasts with the usual submanifold theory in Kaehler manifolds
(cf. [13]).

The following is our main result:

Theorem 1 (Kenmotsu-Zhou, 1998) Let $M^{2}$ be a real two dimensional con-
nected Riemannian manifold $and\overline{M}^{2}(4\rho)$ the complex two dimensional complex
space form of constant holomorphic sectional curvature $4\rho$ . Let $X$ : $M^{2}arrow$

$\overline{M}^{2}(4\rho)$ be an isometric immersion from $M^{2}$ into $\overline{M}^{2}(4\rho)$ with non-zero paral-
lel mean curvature vector.

(1) When $\rho>0$ , the Kaehler angle of $X$ is constant and the image is
locally congruent to the Clifford torus.

(2) When $\rho\leq 0$ , there exist the surfaces such that the Kaehler angles are
not constant. Moreover we classified them.
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2The overdetermined system of Ogata

Ogata [12] initiated the study of surfaces with non-zero parallel mean curvature
vector in a complex space $\mathrm{f}_{0}\mathrm{r}\mathrm{m}\overline{M}^{2}(4\rho)$ . For the immersion $X$ : $M^{2}arrow\overline{M}^{2}(4\rho)$

with non-zero parallel mean curvature vector, he found the following overdeter-
mined system:

$\{$

$\frac{d\lambda}{\mathfrak{g}_{\theta}}=-2\lambda(u)^{2}(a(u)-b)\cot\theta(u)$ , $\lambda(u)>0$ , $u\in I$

$\overline{du}=2\lambda(u)(a(u)+b)$

$\frac{da}{du}=2\lambda(u)\{2a(u)(a(u)-b)\cot\theta(u)+\frac{3}{4}\rho\sin 2\theta(u)\}$

$\log\{\lambda(u)^{4}(a(u)^{2}-\frac{\rho}{2}(3\cos^{2}\theta(u)-1))\}=k_{1}u+k_{2}$ ,

(2)

where $I$ is an open interval, and $b,$
$\rho,$

$k_{1}$ , and $(-\infty\leq)k_{2}$ are real numbers.

In the system (2), the variable $u$ is one of the functions of the isothermal co-
ordinates $(u, v)$ on $M^{2},$ $\lambda(u)$ represents the Riemannian metric on $M^{2},$ $\theta(u)$

and $a(u)$ describe the Kaehler angle and the second fundamental forms of $X$

respectively.

Conversely, given real numbers $\rho,$ $b(>0),$ $k_{1}$ and $(-\infty\leq)k_{2}$ , any solutions
$\lambda(u),$ $\theta(u)$ , and $a(u)$ of the system (2) define an isometric immersion $X$ from
an $M^{2}$ in the complex space form $\overline{M}^{2}(4\rho)$ with parallel mean curvature vector
such that the length of the mean curvature vector is equal to $b$ . In fact, $M^{2}$ is a
domain of the product space $I\cross R$ , the first fundamental form of the immersion
$X$ is given by

$ds^{22}=\lambda(u)(du^{2}+dv^{2})$ , $(u,v)\in M^{2}\subset I\cross R$ (3)

and the second fundamental forms given, with respect to an orthonormal normal
hame $\{e_{3}, e_{4}\}$ ,

$h_{e_{3}}$ $=$ ( $-a(u)–\Im_{c}(2b-u, v\Re)C(u, v)$ $a(u)-2b+-\Im c(u,\Re_{C}(uv),$
$v)$ ),

$h_{e_{4}}$ $=$

where we put, for a real number $t$ ,

$c(u,v)= \sqrt{a(u)^{2}-\frac{\rho}{2}(3\cos^{2}\theta(u)-1)}\exp\sqrt{-1}(-\frac{k_{1}}{2}v+t)$ .

Example Let $\rho$ and $b$ be any real numbers $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}y\mathrm{i}\mathrm{n}\mathrm{g}b^{2}+\rho/2>0$. Then,

$\lambda(u)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}(=\lambda)$ , $\theta(u)=\frac{\pi}{2}$ , and $a(u)=-b$ (5)
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$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}$ the system (2) for $k_{1}=0$ and $k_{2}=\log\{\lambda^{4}(b2+\rho/2)\}$ .
This defines a totally real immersion $\mathrm{h}\mathrm{o}\mathrm{m}$ the two dimensional flat Rieman-

nian manifold into $\overline{M}^{2}(4\rho)$ with parallel second fundamental forms. We know
the explicit formulas for these immersions in Ogata [12] when $\rho>0$ , Chen [2]

when $\rho=0$ , and Naitoh [11] when $\rho<0$ .
All solutions with $\theta(u)=constant$ are easily obtained:

Proposition 1 $\bullet$ When $\rho\geq 0$ , the solution of (2) with $\theta(u)=constant$ is
only (5).

$\bullet$ When $\rho<0$ , the solutions of (2) with $\theta(u)=\omega nstant$ are (1) and (5).

Proposition 1 classifies the slant immersions in $\overline{M}^{2}(4\rho)$ with parallel mean cur-
vature vector.

3 The case of $k_{1}=0$

In the beginning, let us solve the system (2) when $k_{1}=0$ . We may assume that
$\theta(u)$ is not constant, hence so $a(u)$ .

Assuming that $\rho$ is positive, we find a contradiction. Therefore, we do not
have new solutions of (2) in this case.

When $\rho$ is zero , any solution of (2) such that $\theta(u)$ is not a constant function
is represented by, using the function $a=a(u)$ as new variable,

$\{$

$\lambda^{2}(a)=\frac{c_{1}}{a}$ , $a>0$

$\sin^{2}\theta(a)=c_{2}\frac{(a-b)^{2}}{a}$ ,
(6)

where $c_{1}$ and $c_{2}$ are positive numbers, and $a=a(u)$ satisfies the first order
differential equation.

When $\rho$ is negative, at first we have $\rho=-3b^{2}$ . Next, let us consider the
differential equation

$\frac{d\theta}{du}=\sqrt{b}\sqrt{8-9\sin^{2}\theta(u)}$ . (7)

Using the solution $\theta=\theta(u)$ of the equation (7), put

$\{$ $\lambda(ua(u)=)=\frac{2}{b(1-\sqrt{b}\sqrt{8-9\sin^{2}\theta(u)}\frac{9}{4}\sin^{2}\theta(u))}$

.
(8)
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Then, $\lambda(u),$ $\theta(u)$ and $a(u)$ defined by (7) and (8) are the general solutions of (2).
It shall be remarked that the system (2) with $k_{1}=0$ has non-trivial solutions
only when $\rho\leq 0$ .

Representation of the surfaces. We have the explicit representation
of the immersion given by (3), (4) and (6) as follows:

( $F_{1}(u)\cdot\rho\iota\sqrt{-1}\tau v$ , $F_{2}(u)\cdot C$ )$\sqrt{-1}\mathcal{T}_{2}v\in C^{2}$ (9)

where $F_{1}(u)$ and $F_{2}(u)$ are the complex valued functions written by $\lambda(u),$ $\theta(u)$ ,
and $a(u)$ , and $\tau_{1}$ and $\tau_{2}$ are some real numbers.

In the case of $CH^{2}(-3b^{2})$ , we get an explict representation of the coordinate
functions of the surface by using the bundle structure of the complex hyperbolic
space form. Let $\pi$ be the projection of the Anti-de Sitter space time $H_{1}^{5}(-1)(\subset$

$C_{1}^{2})$ onto $CH^{2}(-4)$ . Put

$E_{0}(u, v)=(e^{\beta \mathrm{o}()v\rho(}u,$$e,$$e1u)v\rho 2(u)v)s(u)\in H_{1}^{5}(-1)$

where $S(u)$ is a $3\cross 3$-matrix function, and $\rho \mathrm{o}(u),$ $\rho_{1}(u)$ and $\rho_{2}(u)$ are eigenvalues
of the following matrix:

$\sqrt{-1}\lambda(u)(-\sqrt{3}b\sin\sqrt{3}b\mathrm{c}0\mathrm{o}\mathrm{s}\frac{\theta(u)}{f\frac{f_{(u)}}{2}}$ $(a(u)-)- \sqrt{3}b\mathrm{c}b-\frac{b}{c}(u\cdot,\frac{\theta(u)}{t)\mathrm{t}2}\mathrm{o}\mathrm{s}\mathrm{C}\mathrm{o}\frac{\theta(u)}{2} (a(u)-b)\mathrm{t}.,\frac{\theta(u)}{2}\sqrt{3}b\mathrm{s}b-c(u\mathrm{i}\mathrm{n}\frac{\theta(u)}{\mathrm{a}\mathrm{n}t)2})$ .

Then, the surface defined by (3), (4), (7) and (8) is integrated as $\pi\cdot E_{0}(u, v)$ .
The surfaces which we found are isometric and have the same length of the

mean curvature vector. This may correspond to the associated family of the
cmc surfaces in $R^{3}$ .

4 The case of $k_{1}\neq 0$

The crucial point in Theorem 1 is to prove that even locally there is no solution
of the system (2) when $k_{1}\neq 0$ and $\theta(u)$ is not constant.

We will find a contradiction assuming that the system (2) with $k_{1}\neq 0$ has a
solution $\lambda(u),$ $\theta(u)$ and $a(u)$ such that $\theta(u)$ is not constant. We may also assume
that $\lambda(u)$ and $\theta(u)$ are not constant. By the change of the variable $x=\sin^{2}\theta$ ,
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$\lambda(x)$ and $a(x)$ are non constant solutions of the following system:

Let $I=(x_{1}, x_{2})$ be the maximal interval of the existence of the solutions of the

system (10). We have $x_{1}\geq 0$ and $\rho\neq 0$ . In the analysis of (10), the hardest
part is to prove $x_{1}=0$ . Then, it is shown that there $ex\dot{w}$is $\lim_{xarrow}0a(x)$ and the
limit is equal to $0$ or $b$ . We need the following uniqueness theorem:

Proposition 2 For any real numbers $\rho,$
$b,$ $a_{0}$ and $a_{0}’$ , the differential equation

$\frac{da}{dx}=\frac{a(x)(a(X)-b)}{a(x)+b}\cdot\frac{1}{x}+\frac{3\rho}{4}\cdot\frac{1}{a(x)+b}$ , $0<x<x_{2}$ ,

has at most one solution under the initial conditions of

$\lim_{xarrow 0}a(x)=a_{0}$ , $\lim_{xarrow 0}a(/)x=a_{0}’$ .

By using these results, we can prove that

Proposition 3 (main result) For any real numbers $\rho$ and $k_{1}(\neq 0)$ , the sys-
$tem(2)$ has no solution such that $\lambda(u)>0$ and $\theta(u)\neq constant$ .

We thus proved Theorem 1.

Remark By [1], [15], surfaces with parallel mean curvature vector in the
real four dimensional Euclidean space $E^{4}$ are locally constant mean curvature
surfaces in a hyperplane or a round sphere of $E^{4}$ and by [6], we know how to
construct such surfaces. Theorem 1 gives us new insight for the immersion: Let
$X$ : $Marrow E^{4}$ be an isometric immersion with parallel mean curvature vector in
$E^{4}$ . We consider $E^{4}$ as the complex two plane $C^{2}$ by taking an almost complex
structure on $E^{4}$ . Then, Theorem 1 says that either it is totally real for the
complex structure or locally congruent to a surface of the family cited above.
In particular, such a surface must be rotational if and only if $\tau_{1}/\tau_{2}$ is rational.
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