Characterisations of Node－Search Antimatroids of Directed and Undirected Graphs

中村政隆 Masataka Nakamura＊
東京大学総合文化研究科広域システム科学系

Dept．of Systems Science，University of Tokyo
Komaba，Meguro，Tokyo 153，JAPAN

Abstract

An antimatroid arises from various kinds of＇shellings＇and＇searches＇：typical examples are poset shelling，node／edge shelling of a tree，node search of a directed／undirected graph etc．We shall present the forbidden－minor characterizations of node－search antimatroids of directed and undirected graphs．It is shown that an antimatroid is given as a node－search antimatroid on a directed graph if and only if it contains no minor isomorphic to a lattice D_{5} where D_{5} is a lattice of five elements $\emptyset,\{x\},\{y\},\{x, y\},\{x, y, z\}$ ．It is also shown that an antimatroid is a node－search antimatroid of an undirected graph if and only if it does not contain D_{5} nor S_{10} as a minor．

1 Introduction

Let E denote a nonempty finite set and \mathbb{F} a family of subsets of $E . \mathbb{F}$ is called an antimatroid if it satisfies
（A1）$\emptyset \in \mathbb{F}, \quad$［nonemptiness］
（A2）if $X \in \mathbb{F}$ and $X \neq \emptyset$ ，then $X \backslash e \in \mathbb{F}$ for some $e \in X, \quad$［accessibility］
（A3）if $X, Y \in \mathbb{F}$ then $X \cup Y \in \mathbb{F}$ ．［closed under union］
The sets in \mathbb{F} are called feasible sets．As is easily seen， \mathbb{F} constitutes a semimodular lattice with respect to inclusion relation．

A chain of sets $A_{0} \subset A_{1} \subset \cdots \subset A_{k}$ is called elementary if every difference set is a singleton，i．e． $\left|A_{i}\right|=\left|A_{i-1}\right|+1$ for $i=1, \ldots, k$ ．

The condition（A2）of the axiom set is eqiuvalent to（ $A 2^{\prime}$ ）．
（A2＇）for any $X \in \mathbb{F}$ ，there exists an elementary chain of feasible sets from \emptyset to X ．
For a feasible set $X \in \mathbb{F}$ ，take an elementary chain $\emptyset=X_{0} \subset X_{1} \subset \ldots \subset X_{k}=X$ as in（A2＇），and let $\left\{x_{j}\right\}=X_{j} \backslash X_{j-1}$ for $j=1, \ldots, k$ ．Then the sequence $x_{1} x_{2} \cdots x_{k}$ of the elements of X is called a feasible ordering．In general，a feasible set may have a multiple number of feasible orderings．

[^0]Take a feasible set $A \in \mathbb{F}$. Then $\mathbb{F} \mid A=\{X \subseteq A: X \in \mathbb{F}\}$ is an antimatroid on A, called a restriction to A, and $\mathbb{F} / A=\{X-A: X \in \mathbb{F}, A \subseteq X\}$ is an antimatroid on $E \backslash A$, called a contraction of A. And for $A, B \in \mathbb{F}$ with $A \subseteq B$,

$$
(\mathbb{F} \mid B) / A=\{X \subseteq B \backslash A: A \cup X \in \mathbb{F}\}
$$

is called a minor of \mathbb{F}.
If a class of antimatroids is closed under taking minors, we can characterize it by counting up all its forbidden minimal minors. For instance, an antimatroid is a poset shelling antimatroid if and only if it does not contain S_{7} as a minor where $S_{7}=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$.

A feasible set $X \in \mathbb{F}$ is called a path. set if there exists uniquely an element $e \in X$ such that $X \backslash e \in \mathbb{F}$. In terms of lattice theory, a path set is equal to a join-irreducible element of the lattice \mathbb{F}.

Lemma 1 Suppose X to be a path set of an antimatroid \mathbb{F}. Let $A \in \mathbb{F}$ and $A \subseteq X$. Then $X \backslash A$ is a path set of \mathbb{F} / A.
(Proof) It follows from ($A 2^{\prime}$).

2 Node-search Antimatroids of Directed Graphs

Let $G=(V \cup\{r\}, E)$ be a directed graph with a distinguished node $r(\notin V)$ called a root. We shall call it a rooted graph. A node is called an atom if there is an edge from the root. An r-path of G is an elementary directed path which starts from the root. An r-path in an undiredted graph is similarly defined.

For an r-path $P=r v_{1} \cdots v_{k}$ where $v_{i} \in V$ and $\left(v_{i-1}, v_{i}\right) \in E$ for $i=1, \ldots, k$, we let $\partial P=\left\{v_{1}, \ldots, v_{k}\right\}$. The family of sets given by

$$
\begin{align*}
\mathbb{F} & =\left\{X \subseteq V: X=\bigcup_{j=1}^{m} \partial P_{j} \text { and }\left\{P_{1}, \ldots, P_{m}\right\} \text { is an arbitrary family of r-paths of } G\right\} \tag{1}\\
& =\{X \subseteq V: \text { There exists a directed tree rooted at } r \text { whose vertex set is } X \cup r\} \tag{2}
\end{align*}
$$

constitutes an antimatroid on V, called a node-search antimatroid of a directed graph G. The node-search antimatroid of an undirected graph is similarly defined replacing 'directed' with 'undirected' in the above.

Let us denote by $\mathfrak{N \Im _ { D }}$ the class of node-search antimatroids of directed graphs, and by $\mathfrak{N} \mathfrak{S}_{U N D}$ the class of those of undirected graphs. Both classes of $\mathfrak{N S}_{D}$ and $\boldsymbol{N S}_{U N D}$ are closed under taking minor.

In a rooted directed gaph G, an edge is called redundant if there is no r-path which contains it and is free of short-cuts. G is called nonredundant if it has no redundant edges. Actually, redundant edges are of no use in defining node-search antimatroids of graphs. Obviously, if a rooted graph is nonredundant, there is no in-edge to the root, and every atom has a unique in-edge which comes from the root.

Let $G=(V \cup\{r\}, E)$ be a rooted diredted graph, and \mathbb{F} be its node-search antimatroid. For $A, B \in \mathbb{F}$ with $A \subseteq B$, we define an r-minor graph of G as follows: First delete nodes in $V \backslash B$ from G, and shrink the node set $A \cup\{r\}$ to a new root r^{\prime}. Then delete the in-edges to r^{\prime} and the in-edges to atoms which comes from nodes other than r^{\prime}. We denote by $G[A, B]$ the resultant rooted directed graph, and call it an r-minor of G. An r-minor graph is necessarily nonredundant. Clearly, the node-search antimatroid of $G[A, B]$ is equal to the minor $(\mathbb{F} \mid B) / A$.

Furthermore, suppose G^{\prime} to be another rooted directed graph and \mathbb{F}^{\prime} to be its node-search antimatroid. Then \mathbb{F} contains a minor isomorphic to \mathbb{F}^{\prime} if and only if there is an r -minor graph of G which is isomorohic to G^{\prime} under a isomorphism mapping a root to another root.

Let $D_{5}=\{\emptyset,\{x\},\{y\},\{x, y\},\{x, y, z\}\}$ be an antimatroid on a three-lement set $\{x, y, z\}$. It is easy to
 isomorphic to D_{5} is a trivial necessary condition for an antimatroid to belong to $\mathfrak{N \mathscr { S } _ { D }}$. We shall show below that this is also sufficient.

In the following lemmas and arguments, we suppose that \mathcal{F} is an antimatroid on a finite set V, and does not contain D_{5} as a minor.

Lemma 2 For a path set X of \mathbb{F}, there exist a unique feasible ordering of the elements, say $x_{1} \cdots x_{k}$, and $\left\{x_{1}, \ldots, x_{i}\right\}$ is a path set of \mathbb{F} for each $i=1, \ldots, k$.
(Proof) Otherwise, \mathbb{F} would contain D_{5} as a minor.
From the path sets of \mathbb{F}, we shall construct a rooted directed graph, denoted by $G[\mathbb{F}]$; so that the unique ordering of each path set of \mathbb{F} becomes a directed path in $G[\mathbb{F}]$. More precisely, the vertex set of $G[\mathbb{F}]$ is $V \cup\{r\}$, and for each path set A of \mathbb{F} with its unique feasible ordering $a_{1} a_{2} \cdots a_{n}$, we add an edge (r, a_{1}) and edges $\left(a_{i}, a_{i+1}\right)(i=1, \ldots, n-1)$ to $G[\mathbb{F}]$. By definitin, a path in $G[\mathbb{F}]$ which arises from a path set of \mathbb{F} is elementary and free of short-cuts.

We first state two observations as lemmas below.
Lemma $3 G[\mathbb{F}]$ is nonredundant.
The following is a crucial property of the antimatroids containing no minor isomorphic to D_{5}, and it is a key lemma for Theorem 1.

Lemma 4 Let $a, b, x_{1}, \ldots, x_{n}(n \geq 2)$ be distinct elements of V. And suppose that $A_{i}=\left\{a, x_{1}, \ldots, x_{i}\right\}(0 \leq$ $i \leq n-1)$ and $B_{i}=\left\{b, x_{1}, \ldots, x_{i}\right\}(0 \leq i \leq n)$ are feasible sets of \mathbb{F}, and B_{n} is a path set of \mathbb{F}. Then $A_{n}=\left\{a, x_{1}, \ldots, x_{n}\right\}$ is a feasible set of \mathbb{F}.
(Proof) By (A3), we have $C_{j}=\left\{a, b, x_{1}, \ldots, x_{j}\right\}$ is a feasible set of \mathbb{F} for $j=1, \ldots, n$. Since $\left[A_{n-2}, C_{n}\right] \supseteq$ $\left\{C_{n}, C_{n-1}, C_{n-2}, A_{n-1}, A_{n-2}\right\}$ and at the same time $\left[A_{n-2}, C_{n}\right]$ must not be isomorphic to D_{5}, either $A_{n-1} \cup x_{n} \in \mathbb{F}$ or $C_{n-2} \cup x_{n} \in \mathbb{F}$ holds. In the first case of $A_{n-1} \cup x_{n} \in \mathbb{F}$, we have $A_{n}=A_{n-1} \cup\left(A_{n-1} \cup x_{n}\right)$, which completes the proof. In the latter case of $C_{n-2} \cup x_{n} \in \mathbb{F}$, we have either $A_{n-2} \cup x_{n} \in \mathbb{F}$ or $C_{n-3} \cup x_{n} \in \mathbb{F}$ by similar argument. If $A_{n-2} \cup x_{n} \in \mathbb{F}$, then $A_{n}=A_{n-1} \cup\left(A_{n-2 \cup x_{n}}\right)$ follows and the proof is completed. And in case of $C_{n-3} \cup x_{n} \in \mathbb{F}$, we can repeat the above argument until we have either $A_{0} \cup x_{n}=\left\{a, x_{n}\right\} \in \mathbb{F}$ or $C_{0} \cup x_{n}=\left\{a, b, x_{n}\right\} \in \mathbb{F}$. If $\left\{a, x_{n}\right\} \in \mathbb{F}$, then $A_{n}=A_{n-1} \cup\left\{a, x_{n}\right\}$ readily follows. And if not, $\left\{a, b, x_{n}\right\} \in \mathbb{F}$ holds and this implies $B_{0} \cup x_{n}=\left\{b, x_{n}\right\} \in \mathbb{F}$ since otherwise $\left[\emptyset,\left\{a, b, x_{n}\right\}\right]$ would be isomorphic to D_{5}. Then $B_{n}-\left\{x_{n-1}\right\}=B_{n-2} \cup x_{n}=B_{n-2} \cup\{ \} \in \mathbb{F}$ By assumption, $B_{n}-\left\{x_{n}\right\}=B_{n-1} \in \mathbb{F}$. But this contradicts the assumption that B_{n} is a path set. Hence the proof is completed.

Theorem 1 Let \mathbb{F} be an antimatroid containing no minor isomorphic to D_{5}. Let $G[\mathbb{F}]$ be the rooted directed graph defined from the family of all the path sets of \mathbb{F}, and $\mathbb{F}(G[\mathbb{F}])$ denote the node-search antimatroid of the graph $G[\mathbb{F}]$. Then

$$
\mathbb{F}(G[\mathbb{F}])=\mathbb{F}
$$

(Proof of Theorem 1)

Take a feasible set $A \in \mathbb{F}$ such that $A \neq \emptyset$. Since any element in a lattice is a union of join-irreducible elements and a join-irreducible element of the lattice of \mathbb{F} is equal to a path set, there exist path sets A_{1}, \ldots, A_{m} such that $A=A_{1} \cup \cdots \cup A_{n}$. Since each path set A_{i} corresponds to a rooted path in $G[\mathbb{F}], A$ is a feasible set of a node-search antimatroid of $G[\mathbb{F}]$, i.e. $A \in \mathbb{F}(G[\mathbb{F}])$. Hence we have $\mathbb{F} \subseteq \mathbb{F}(G[\mathbb{F}])$.

Conversely, we shall show $\mathbb{F}(G[\mathbb{F}]) \subseteq \mathbb{F}$. Any feasible set of $\mathbb{F}(G[\mathbb{F}])$ is a join of vertex sets of paths of $G[\mathbb{F}]$ without short-cuts. Hence, it is sufficient to show that $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is a feasible set of \mathbb{F} for any short-cut-free path $P=r a_{1} \cdots a_{n}$ in $G[\mathbb{F}]$,

Suppose that P is a minimal path for which the assrtion fails to hold. Hence we have $A_{i}=\left\{a_{1}, \ldots a_{i}\right\} \in$ $\mathbb{F}(i=1, \ldots, n-1)$ and $A\left(=A_{n}\right)=\left\{a_{1}, \ldots a_{n}\right\} \notin \mathbb{F}$. By definition, there exists a path $Q=r b_{1} \ldots b_{m}$ in $G[\mathbb{F}]$ such that the final edge of Q is equal to $\left(a_{n-1}, a_{n}\right)$, that is, $a_{n-1}=b_{m-1}$ and $a_{n}=b_{m}$. By Lemma 2, $B_{i}=\left\{b_{1}, \ldots, b_{i}\right\}$ is a path set for $i=1, \ldots, m$. By assumption, there exist $s \geq 2$ such that $a_{n-s} \neq b_{m-s}$ and $a_{n-j}=b_{m-j}$ for $j=0,1, \ldots, s-1$. Since P and Q are shot-cut-free paths, we have $n-s \geq 1$ and $m-s \geq 1$. And a_{n-s} is not on Q, and b_{m-s} is not on P.

Let $X=A_{n-s-1} \cap B_{m-s-1}$ and $\mathbb{F}^{\prime}=\mathbb{F} / X$. Then $A_{i}^{\prime}=A_{n-s+i} \backslash A_{n-s-1}$ and $B_{i}^{\prime}=B_{n-s+i} \backslash B_{n-s-1}$ for $(i=0,1, \ldots, s)$ are feasible sets of \mathbb{F}^{\prime}, and B_{n}^{\prime} is a path set of \mathbb{F}^{\prime}. Hence by Lemma 4, we have $A_{s}^{\prime} \in \mathbb{F}^{\prime}$, which implies $A=A_{s}^{\prime} \cup X \in \mathbb{F}$. This completes the proof.

From Theorem 1, we readily have

Corollary 1 A neccessary and sufficient condition for an antimatroid to be a node-search antimatroid of a rooted directed graph is that it has no minor isomorphic to D_{5}.

3 Node-search Antimatroids of Undirected Graphs

A node-search antimatroid of an undirected graph is a special case of those of directed graphs. In fact, if we are given an undirected graph, replacing each undirected edge with a pair of directed edges with reverse orientations gives a directed graph whose node-search antimatroid is the same with that of the undiredted

Now let us consider a rooted directed graph $G_{4}=\left(V_{4} \cup r, E\right)$ such that

$$
\begin{align*}
V_{4} & =\{1,2,3,4\} \tag{3}\\
E & =\{(r, 1),(r, 2),(1,3),(2,4),(3,4)\} \tag{4}
\end{align*}
$$

and let $S_{10} \in \boldsymbol{N S} \boldsymbol{S}_{\boldsymbol{D}}$ be the node-search antimatroid of G_{4}, which is described as

$$
\begin{align*}
S_{10}= & \{\emptyset,\{1\},\{2\},\{1,2\},\{1,3\},\{2,4\} \tag{5}\\
& \{1,2,3\},\{1,3,4\},\{1,2,4\},\{1,2,3,4\}\} . \tag{6}
\end{align*}
$$

It is a routine to check that S_{10} cannot be realized as a node-search antimatroid of an undirected graph, and is minimal with respect to this property.

Hence S_{10} is another forbidden minor of $\mathfrak{N S}_{U N D}$. And we can further show
Theorem 2 Let \mathbb{F} be an antimatroid containing no minor isomorphic to D_{5}, and $G=G[\mathbb{F}]$ be an nonredundant directed graph defined from the path sets of \mathbb{F}. Let G^{0} be an undirected graph which is defined from G by considering each directed edge as an undirected one, and \mathbb{F}^{0} denote the node-search antimatroid of the undiredted graph G^{0}. The the following are equivalent.
(1) $\mathbb{F}^{0}=\mathbb{F}$,
(2) \mathbb{F} does not contain S_{10} as a minor,
(3) $G[\mathbb{F}]$ does not contain G_{4} as an r-minor graph.
(Proof) (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious.
We shall show that (3) implies (1). $\mathbb{F} \subseteq \mathbb{F}^{0}$ is obvious from the definition. We shall show the opposite inclusion $\mathbb{F}^{0} \subseteq \mathbb{F}$. Take any undirected path $P^{0}=r a_{1} \cdots a_{n}(n \geq 1)$ in G^{0} without an (undirected) short-cut. Then it is sufficient to show that $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a feasible set of \mathbb{F}. If (a_{i-1}, a_{i}) is an edge in $E(G)$ for each $i=1, \ldots, n$, then $r a_{1} \cdots a_{n}$ is a directed path of G and $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \in \mathbb{F}$ is obvious. Otherwise, let k be the smallest index such that $\left(a_{k-1}, a_{k}\right) \notin E(G)(1 \leq k \leq n)$, and P be the directed path $r a_{1} \cdots r_{k}$ in G.. Since G is nonredundant, we have $k \geq 3$. And $\left\{a_{k-1}, a_{k}\right\}$ is an undirected edge in G^{0}. Hence there exists a path set $B=\left\{b_{1}, \ldots, b_{m}\right\}$ of \mathbb{F} with its unique ordering $b_{1} \cdots b_{m}$ and $\left(b_{m-1}, b_{m}\right)=\left(a_{k}, a_{k-1}\right) \in E(G)$ If the size m of B is two, then the edge $\left(r, b_{1}\right)$ is a short-cut of P^{0}, a contradiction. Hence $m \geq 3$ holds.

Let $X=\left\{a_{1}, \ldots, a_{k-3}\right\} \cup\left\{b_{1}, \ldots, b_{m-3}\right\}$ and $Y=A \cup B$. And let $G[X, Y]$ denote the associated r-minor graph of G. Since the path $Q=r b_{1} b_{2} \cdots b_{m}$ is free of short-cuts, we have $b_{m-2} \neq a_{k-2}$. Hence the set of nodes of $G[X, Y]$ consists of $r, a_{k-2}, a_{k-1}\left(=b_{m}\right), b_{m-1}\left(=a_{k}\right)$ and b_{m-2}. By definition of r-minor, there is no in-edge to a_{k-2} nor to b_{m-2}. Since P and Q do not have short-cuts, the edges $\left(r, b_{m-1}\right),\left(r, a_{k-1}\right)$ and $\left(b_{m-2}, b_{m}\right)$ do not exist in $G[X, Y]$. And $G[X, Y]$ does not have an edge (a_{k-2}, a_{k}) since the undirected path P^{0} has no short-cut.

Hence the edge set of $G[X, Y]$ consists of $\left(r, a_{k-2}\right),\left(a_{k-2}, a_{k-1}\right),\left(r, b_{m-2}\right),\left(b_{m-2}, b_{m-1}\right)$ and $\left(b_{m-1}, a_{k-1}\right)$, and $G[X, Y]$ is shown to be isomorphic to G_{4}, which is a contradiction. This completes the proof.

We can rewrite the theorem as

Corollary 2 A necessary and sufficient condition for an antimatroid to be a node-serach antimatroid of an undirected graph is that it contains neither D_{5} nor S_{10} as a minor.

References

[1] M. Aigner, Combinatorial Theory, Springer, 1979.
[2] B. L. Dietrich, "Matroids and antimatroids - a survey", Discrete Mathematics 78 (1989), 223-237.
[3] P.H. Edelman and R.E. Jamison, "The theory of convex geometry", Geometriae Dedicata 19 (1985), 247-270.
[4] B. Korte, L. Lovász and R. Shrader, Greedoids, Springer-Verlag, 1980.

[^0]: ＊e－mail：nakamura＠klee．c．u－tokyo．ac．jp

