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Abstract

An antimatroid arises from various kinds of ’shellings’ and ’searches’: typical examples are poset

shelling, $\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}/\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$ shelling of a tree, node search of a $\mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{C}\iota\alpha 1/\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{r}\propto \mathrm{t}\mathrm{e}\mathrm{d}$ graph etc. We shall

present the forbidden-minor characterizations of nodesearch antimatroids of directed and undirected

graphs. It is shown that an antimatroid is given as a node-search antimatroid on a directed graph

if and only if it contains no minor isomorphic to a lattice $D_{5}$ where $D_{5}$ is a lattice of five elements
$\emptyset,$ $\{x\},$ $\{y\},$ $\{x,y\},$ $\{x,y, z\}$ . It is also shown that an antimatroid is a nodesearch antimatroid of an

undirected graph if and only if it does not contain $D_{5}$ nor $S_{10}$ as a minor.

1 Introduction

Let $E$ denote a nonempty finite set and $\mathrm{F}$ a family of subsets of E. $\mathrm{F}$ is called an antimatroid if it satisfies

(A1) $\emptyset\in \mathrm{F}$ , [nonemptiness]

(A2) if $X\in \mathrm{F}$ and $X\neq\emptyset$ , then $X\backslash e\in \mathrm{F}$ for some $e\in X$ , [accessibility]

(A3) if $X,\mathrm{Y}\in \mathrm{F}$ then $X\cup \mathrm{Y}\in \mathrm{F}$. [closed under umion]

The sets in $\mathrm{F}$ are called feasible sets. As is easily seen, $\mathrm{F}$ constitutes a semimodular lattice with respect to

inclusion relation.
A chain of sets $A_{0}\subset A_{1}\subset\cdots\subset A_{k}$ is called elementary if every difference set is a singleton, i.e.

$|A_{i}|=|A_{i-1}|+1$ for $i=1,$ $\ldots$ , $k$ .
The condition (A2) of the axiom set is eqiuvalent to $(A2’)$ .

(A2’) for any $X\in \mathrm{F}$ , there exists an elementary chain of feasible sets from $\emptyset$ to $X$ .

For $\mathrm{a}$

,
feasible set $X\in \mathrm{F}$, take an elementary chain $\emptyset=X_{0}\subset X_{1}$ $C...\subset X_{k}=X$ as in $(A2’)$ , and let

$\{x_{j}\}=X_{j}\backslash X_{j-1}$ for $j=1,$ $\ldots$ , $k$ . Then the sequence $x_{1}x_{2k}\ldots X$ of the elements of $X$ is called a feasible
ordering. In general, a feasible set may have a multiple number of feasible orderings.
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Take a feasible set $A\in \mathrm{F}$ . Then $\mathrm{F}|A=\{X\underline{\subset}A:X\in \mathrm{F}\}$ is an antimatroid on $A$ , called a restriction
to $A$, and $\mathrm{F}/A=\{X-A:X\in \mathrm{F},A\subseteq X\}$ is an antimatroid on $E\backslash A$, called a contraction of $A$ . And for
$A,$ $B\in \mathrm{F}$ with $A\underline{\subset}B$ ,

$(\mathrm{F}|B)/A=\{X\underline{C}B\backslash A : A\cup X\in \mathrm{F}\}$

is called a minor of F.
If a class of antimatroids is closed under takin$\mathrm{g}$ minors, we can characterize it by counting up all its

forbidden mminimal minors. For instance, an antimatroid is a poset shelling antimatroid if and only if it
does not contain $S_{7}$ as a minor where $S_{7}=\{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ .

A feasible set $X\in \mathrm{F}$ is called a path. set if there exists uniquely an element $e\in X$ such that $X\backslash e\in \mathrm{F}$.
In terms of lattice theory, a path set is equal to a join-irreducible element of the lattice F.

Lemma 1 Suppose $X$ to be a path set of an antimatroid F. Let $A\in \mathrm{F}$ and A $\underline{C}X$ . Then $X\backslash A$ is a path
set of $\mathrm{F}/A$ .

(Proof) It follows from $(A2’\rangle.$ $\square$

2 Node-search Antimatroids of Directed Graphs

Let $G=(V\mathrm{U}\{r\},E)$ be a directed graph with a distinguished node $r(\not\in V)$ called a root. We shall call it
a rooted graph. A node is called an atom if there is an edge from the root. An $r$-path of $G$ is an elementary
directed path which starts ffom the root. An $\mathrm{r}$-path in an undiredted graph is simmilarly defined.

For an $\mathrm{r}$-path $P=rv_{1}\cdots v_{k}$ whbre $v_{i}\in V$ and $(v_{\dot{\mathrm{e}}-1},v_{i})\in E$ for $i=1,$ $\ldots,k$, we let $\partial P=\{v_{1}, \ldots , v_{k}\}$ .
The family of sets given by

$\mathrm{F}=$ { $X\underline{C}V$ : $X= \bigcup_{j=1}^{m}\partial P_{j}$ and $\{P_{1},$ $\ldots,P_{m}\}$ is an arbitrary family of $\mathrm{r}$-patlls of $G$ } (1)

$=$ { $X\subseteq V$ : There exists a directed tree rooted at $r$ whose vertex set is $X\cup r$ } (2)

constitutes an antimatroid on $V$, called a node-search antimatroid of a directed graph $G$. The node-search
antimatroid of an undirected graph is similarly defined replacing ’directed’ with ’undirected’ in the above.

Let us denote by $\Re \mathfrak{S}_{D}$ the class of node-search antimatroids of directed graphs, and by $\Re \mathfrak{S}_{UND}$ the
class of those of undirected graphs. Both classes of $\Re 6_{D}$ and $\Re \mathfrak{S}_{UND}$ are closed under taking minor.

In a rooted directed gaph $G$, an edge is called redundant if there is no r-path which contains it and is
fiiee of short-cuts. $G$ is called nonredundant if it has no redundant edges. Actually, $\mathrm{r}\mathrm{e}J\mathrm{d}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{n}\mathrm{t}$ edges are
of no use in defining node-search antimatroids of graphs. Obviously, if a rooted graph is nonredundant,
there is no in-edge to the root, and every atom has a umique in-edge which comes from the root.

Let $G=(V\cup\{r\},E)$ be a rooted diredted graph, and $\mathrm{F}$ be its node-search antimatroid. For $A,$ $B\in \mathrm{F}$

with $A\subseteq B$ , we define an $r$-minor graph of $G$ as follows: First delete nodes in $V\backslash B$ from $G$ , and shrink
the node set $A\cup\{r\}$ to a new root $r’$ . Then delete the in-edges to $r’$ and the in-edges to atoms which
comes from nodes other than $r’$ . We denote by $G[A, B]$ the resultant rooted directed graph, and call it
an $\mathrm{r}$-minor of $G$. An $\mathrm{r}$-minor graph is necessanily nonredundant. Clearly, the node-search antimatroid of
$G[A, B]$ is equal to the minor $(\mathrm{F}|B\rangle/A$.
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Furthermore, suppose $G’$ to be another rooted directed graph and $\mathrm{F}’$ to be its node-search antimatroid.

Then $\mathrm{F}$ contains a minor isomorphic to $\mathrm{F}’$ if and only if there is an $\mathrm{r}$-minor graph of $G$ which is isomorohic

to $G’$ under a isomorphism napping a root to another root.

Let $D_{6}=\{\phi,\{x\}, \{y\},\{x,y\},\{x,y,z\}\}$ be an antimatroid on a threeelement set $\{x,y,z\}$ . It is easy to

check that $D_{5}$ is not in $\Re 6_{D}$ . Since the class $\Re \mathfrak{S}_{D}$ is closed under taking minors, containing no minor

isomorphic to $D_{5}$ is a trivial necessary condition for an antimatroid to belong to $\Re \mathfrak{S}_{D}$ . We shall show

below that this is also sufficient.
In the following lemmas and arguments, we suppose that $\mathrm{F}$ is an antimatroid on a finite set $V$ , and

does not contain $D_{5}$ as a minor.

Lemma 2 For a path set $X$ of $\mathrm{F}$, there exist a unique feasible ordering of the elements, say $x_{1}\cdots x_{k}$ , and

$\{x_{1}, \ldots,x_{i}\}$ is a path set of $\mathrm{F}$ for each $i=1,$ $\ldots$ , $k$ .

(Proof) Otherwise, $\mathrm{F}$ would contain $D_{5}$ as a minor. $\square$

Rom the path sets of $\mathrm{F}$, we shall construct a rooted directed graph, denoted by $G[\mathrm{F}]$ , so that the unique

$\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{B}\mathrm{g}}$ of each path set of $\mathrm{F}$ becomes a directed path in $G[\mathrm{F}]$ . More precisely, the vertex set of $G[\mathrm{F}]$ is

$V\cup\{r\}$ , and for each path set $A$ of $\mathrm{F}$ with its llnique feasible ordering $a_{1}a_{2}\cdots a_{n}$ , we add an edge $(r,a_{1})$

and edges $(a_{i},a_{i+1})(i=1, \ldots , n-1)$ to $G[\mathrm{F}]$ . By definitin, a path in $G[\mathrm{F}]$ which arises from a path set

of $\mathrm{F}$ is elementary and free of short-cuts.

We first state two observations as lemnas $\mathrm{b}\mathrm{e}\dot{\mathrm{l}}\mathrm{o}\mathrm{w}$ .

Lemma 3 $G[\mathrm{F}]$ is nonredundant.

The following is a crucial property of the antimatroids containing no minor isomorphic to $D_{5}$ , and it

is a key lemma for Theorem 1.

Lemna 4 Let $a,$ $b,$ $x_{1},$ $\ldots$ , $x_{n}(n\geq 2)$ be distinct elements of $V$. And suppose that $A_{i}=\{a,x_{1}, \ldots , x_{i}\}(0\leq$

$i\leq n-1)$ and $B_{i}=\{b,x_{1}, \ldots ,x_{i}\}(0\leq i\leq n\rangle$ are feasible sets of $\mathrm{F}$ , and $B_{n}$ is a path set of F. Then

$A_{n}=\{a,x_{1}, \ldots ,x_{n}\}$ is a feasible set of F.

(Proof) By $(A3)$ , we have $C_{j}=\{a,b,X_{1}, \ldots ,x_{j}\}$ is a feasible set of $\mathrm{F}$ for $j=1,$ $\ldots$ , $n$ . Since $[A_{n-2},Cn]\supseteq$

$\mathrm{t}C_{n},C_{n-}1,c_{n}-2,A_{n-}1,A_{n}-2\}$ and at the same time $[A_{n-2},Cn]$ must not be isomorphic to $D_{5}$ , either

$A_{n-1} \bigcup_{X_{n}}\in \mathrm{F}$ or $C_{n-2}\cup x_{n}\in \mathrm{F}$ holds. In the first case $\mathrm{o}\mathrm{f}A_{n-1}\cup xn\in \mathrm{F}$ , we have $A_{n}=A_{n-1}\cup(An-1\cup X_{n})$ ,

which completes the proof. In the latter case of $C_{n-2}\cup x_{n}\in \mathrm{F}$ , we have either $A_{n-2}\cup x_{n}\in \mathrm{F}$ or
$C_{n-3}\cup x_{n}\in \mathrm{F}$ by similar argument. If $A_{n-2}\cup x_{n}\in \mathrm{F}$, then $A_{n}=A_{n-1}\cup(A_{n-2\cup}x_{n})$ follows and the

proof is $\infty \mathrm{m}_{\mathrm{P}\}}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{d}$ . And in case of $C_{n-3}\cup x_{n}\in \mathrm{F}$ , we can repeat the above argument until we have

either $A_{0}\cup x_{n}=\{a,x_{n}\}\in \mathrm{F}$ or $C0\cup x_{n}=\{a,b,x_{n}\}\in$ F. If $\{a,x_{n}\}\in \mathrm{F}$, then $A_{n}=A_{n-1}\cup\{a,x_{n}\}$

readily follovs. And if not, $\{a,b,x_{n}\}\in \mathrm{F}$ holds and this implies $B_{0}\cup x_{n}=\{b,x_{n}\}\in \mathrm{F}$ since otherwise
$1\emptyset,$ $\{a,b,x_{n}\}]$ would be isomorphic to $D_{5}$ . Then $B_{n}-\{x_{n-1}\}=Bn-2\cup x_{n}=Bn-2\mathrm{U}\{\}\in \mathrm{F}$ By assunption,

$B_{n}-\{x_{n}\}=B_{n}-1\in \mathrm{F}$. But this contradicts the assumption that $B_{n}$ is a path set. Hence the proof is

completed. $\square$
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Theorem 1 Let $\mathrm{F}$ be an antinatroid containing no minor isomorphic to $D_{5}$ . Let $G[\mathrm{F}]$ be the rooted
directed graph defined from the kmily of $\mathrm{a}\mathrm{U}$ the path sets of $\mathrm{F}$, and $\mathrm{F}(G[\mathrm{F}])$ denote the node-sear&
antimatroid of the graph $G[\mathrm{F}]$ . Then

$\mathrm{F}(G[\mathrm{F}])=\mathrm{F}$

(Proof of Theorem 1)
Take a feasible set $A\in \mathrm{F}$ such that $A\neq\emptyset$ . Since any element in a lattice is a union of $\mathrm{j}_{\mathrm{o}\mathrm{i}\mathrm{n}}- \mathrm{i}_{\mathrm{I}}\mathrm{T}\mathrm{e}\mathrm{d}_{\mathrm{U}\mathrm{C}}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$

elements and a join-irreducible element of the lattice of $\mathrm{F}$ is equal to a path set, there exist path sets
$A_{1},$ $\ldots,A_{m}$ such that $A=A_{1}\cup\cdots\cup A_{n}$ . Since each path set $A_{v’}$ corresponds to a rooted path in $G[\mathrm{F}],$ $A$

is a feasible set of a node-search antinatroid of $G[\mathrm{F}]$ , i.e. $A\in \mathrm{F}(G[\mathrm{F}])$ . Hence we have $\mathrm{F}\underline{\subset}\mathrm{F}(G[\mathrm{F}])$ .
Conversely, we shall show $\mathrm{F}(G[\mathrm{F}])\subseteq \mathrm{F}$. Any feasible set of $\mathrm{F}(G[\mathrm{F}])$ is a join of vertex sets of paths of

$G\mathrm{F}]$ without short-cuts. Hence, it is sufficient to show that $A=\{a_{1}, \ldots,a_{n}\}$ is a feasible set of $\mathrm{F}$ for any
short-cut-Ree path $P=ra_{1}\cdots a_{n}$ in $G[\mathrm{F}]$ ,

Suppose that $P$ is a minimal path for which the assrtion fails to hold. Hence we have $A_{i}=\{a_{1}, \ldots a_{i}\}\in$

$\mathrm{F}$ $(i=1,\ldots , n-1)$ and $A(=A_{n})=\{a_{1}, \ldots a_{n}\}\not\in \mathrm{F}$ . By definition, there exists a path $Q=rb_{1}\cdots b_{m}$ in
$G[\mathrm{F}]$ such that the final edge of $Q$ is equal to $(a_{n-1},a_{n})$ , that is, $a_{n-1}=b_{m-1}$ and $a_{n}=b_{m}$ . By Lemma 2,
$B_{i}=\{b_{1}, \ldots , b_{\hat{l}}\}$ is a path set for $i=1,$ $\ldots,$ $m$. By assumption, there exist $s\geq 2$ such that $a_{n-s}\neq b_{m-s}$

and $a_{n-j}=b_{m-j}$ for $j=0,1,$ $\ldots,$ $s-1$ . Since $P$ and $Q$ are shot-cut-&ee paths, we have $n-s\geq 1$ and
$m-s\geq 1$ . And $a_{n-s}$ is not on $Q$, and $b_{m-s}$ is not on $P$.

Let $X=A_{n-s-1}\cap B_{m-s-1}$ and $\mathrm{F}’=\mathrm{F}/X$ . Then $A_{i}’=A_{n-s+i}\backslash A_{n-s-1}$ and $B_{\iota+i}’,$$=B_{n-s}\backslash B_{n-s-1}$

for $(i=0,1,\ldots , s)$ are feasible sets of $\mathrm{F}’$ , and $B_{n}’$ is a path set of $\mathrm{F}’$ . Hence by Lemma 4, we have $A_{s}’\in \mathrm{F}’$,
which implies $A=A_{s}’\cup X\in \mathrm{F}$ . This completes the proof. $\square$

Rom Theoren 1, we readily have

Corollary 1 A $\dot{\mathrm{n}}$eccessary and sufficient condition $\mathrm{k}$)$\mathrm{r}$ an antimatroid to be a node-search antinatroid of
a rooted directed graph is that it has no ninor isonorphic to $D_{5}$ .

3 Node-search Antimatroids of Undirected Graphs
A node-search antimatroid of an undirected graph is a special case of those of directed graphs. In act, if
we are given an undirected graph, replacing each undirected edge with a pair of directed edges with reverse
orientations gives a directed graph whose nodesearch antimatroid is the same with that of the undiredted
graph. Hence $\Re 6_{UND}\subseteq\Re 6_{D}$ , and $D_{5}$ is also a forbidden minor for the class $\Re \mathrm{e}_{UND}$ .

Now let us consider a rooted directed graph $G_{4}=(V_{4}\cup r, E)$ such that

$V_{4}=\{1,2,3,4\}$ , (3)

$E=\{(r, 1), (r,2), (1,3), (2,4), (3,4)\}$ , (4)

and let $S_{10}\in\Re 6_{D}$ be the node-search antinaatroid of $G_{4}$ , which is described as

$S_{10}=\{\emptyset,$ $\{1\},$ $\{2\},$ $\{1,2\},$ $\{1,3\},$ $\{2,4\}$ , (5)

{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3, 4} $\}$ . (6)
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It is a routine to check that $S_{10}$ cannot be realized as a node-search antimatroid of an undirected graph,

and is minimal with respect to this property.
Hence $S_{10}$ is another forbidden minor of $\Re \mathfrak{S}_{UND}$ . And we can further show

$\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}2$ Let $\mathrm{F}$ be an antimatroid containing no minor isomorphic to $D_{6}$ , and $G=G\mathrm{F}$] be an nonre-
dundant directed graph defined from the path sets of F. Let $G^{0}$ be an undirected graph which is defined

from $G$ by considering each directed edge as an undirected one, and $\mathrm{F}^{0}$ denote the node-search antimatroid

of the undiredted graph $G^{0}$ . The the following are equivalent.

(1) $\mathrm{F}^{0}=\mathrm{F}$ ,
(2) $\mathrm{F}$ does not contain $S_{10}$ as a minor,
(3) $G\mathrm{F}]$ does not contain $G_{4}$ as an $\mathrm{r}$-minor graph.

(Proof) (1) $\Rightarrow$ (2) and (2) $\Rightarrow$ (3) are obvious.

We shall show that (3) inplies (1). $\mathrm{F}\underline{C}\mathrm{F}^{0}$ is obvious from the definition. We shall show the opposite

inclusion $\mathrm{F}^{0}\subseteq$ F. Take any undirected path $P^{0}=ra_{1}\cdots a_{n}(n\geq 1)$ in $G^{0}$ without an (undirected)

short-cut. Then it is sufficient to show that $A=\{a_{1},a_{2}, \ldots , a_{fl}\}$ is a feasible set of F. If $(a_{i-\mathrm{i}},a_{\dot{\mathrm{t}}})$ is an

edge in $E(G)$ for each $i=1,$ $\ldots$ , $n$ , then $ra_{1}\cdots a_{n}$ is a directed path of $G$ and $A=\{a_{1},a_{2}, \ldots ,a_{n}\}\in \mathrm{F}$ is

obvious. Otherwise, let $k$ be the smallest index such that $(a_{k-1},a_{k})\not\in E(G)(1\leq k\leq n)$ , and $P$ be the

directed path $ra_{1}\cdots r_{k}$ in G.. Since $G$ is nonredundant, we have $k\geq 3$ . And $\{a_{k-1},a_{k}\}$ is an undirected

edge in $G^{0}$ . Hence there exists a path set $B=\{b_{1}, \ldots ,b_{m}\}$ of $\mathrm{F}$ with its unique ordering $b_{1}\cdots b_{m}$ and
$(b_{m-1},b_{m})=(a_{k},a_{k-1})\in E(G)$ If the size $m$ of $B$ is two, then the edge $(r,b_{1})$ is a short-cut of $P^{0}$ , a

contradiction. Hence $m\geq 3$ holds.
Let $X=\{a_{1}, \ldots , a_{k-3}\}\mathrm{u}\{b_{1}, \ldots , b_{m-3}\}$ and $\mathrm{Y}=A\cup B$ . And let $G[x,\mathrm{Y}]\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}$ the associated r-minor

graph of $G$. Since the path $Q=rb_{1}b_{2}\cdots b_{m}$ is free of short-cuts, we have $b_{m-2}\neq a_{k-2}$ . Hence the set of

nodes of $G[X, \mathrm{Y}]$ consists of $r,$ $a_{k-2},$ $a_{k-1}(=b_{m}),$ $b_{m-1}(=a_{k})$ and $b_{m-2}$ . By definition of $\mathrm{r}$-Iminor, there is

no in-edge to $a_{k-2}$ nor to $b_{m-2}$ . Since $P$ and $Q$ do not have short-cuts, the edges $\langle$ $r,b_{m-1}),$ $(r,a_{k-1})$ and
$(b_{m-2}, b_{m})$ do not exist in $G[X,\mathrm{Y}]$ . And $G[X,\mathrm{Y}]$ does not have an edge $(a_{k-2}, a\iota.)8\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}$ the undirected

path $P^{0}$ has no short-cut.
Hence the edge set of $G[X,\mathrm{Y}]$ consists of $(r,a_{k-2}),$ $(a_{k-2},a_{k}-1),$ $(r,b_{m-2}),$ $(b_{m-2},b_{m-1})$ and $(b_{m-1},a_{k}-1)$ ,

and $G[X,\mathrm{Y}]$ is shown to be isomorphic to $G_{4}$ , which is $\mathrm{a}$ contradiction This completes the proof ロ

We can rewrite the theorem as

Corollary 2 A necessary and sufficient condition for an antimatroid to be a node-serach antimatroid of

an undirected graph is that it contains neither $D_{5}$ nor $S_{10}$ as a minor.
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