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Characterisations of Node-Search Antimatroids
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Abstract

An antimatroid arises from various kinds of ’shellings’ and ’searches’: typical examples are poset
shelling, node/edge shelling of a tree, node search of a directed/undirected graph etc. “We shall
present the forbidden-minor characterizations of node-search antimatroids of directed and undirected
graphs. It is shown that an antimatroid is given as a node-search antimatroid on a directed graph
if and only if it contains no minor isomorphic to a lattice Ds where Ds is a lattice of five elements
0, {}, {¥}, {z,4}, {=,9,2}. It is also shown that an antimatroid is a node-search antimatroid of an
undirected graph if and only if it does not contain D5 nor S1o as a minor.

1 Introduction

Let E denote a nonempty finite set and F a family of subsets of E. F is called an antimatroid if it satisfies
(A1) B eF, [nonemptiness]

(A2) if X € F and X # 0, then X \ e € F for some ¢ € X, [accessibility]

(A3) f X,Y € Fthen XUY €F. [closed under union]

The sets in F are called feasible sets. As is easily seen, F constitutes a semimodular lattice with respect to
inclusion relation. :

A chain of sets Ag C A; C +++ C Ay is called elementary if every difference set is a singleton, i.e.
[4;| =|Aicqa|+1fori=1,... k.

The condition (A2) of the axiom set is eqiuvalent to (A2').

(A2)) for any X € F, there exists an elementary chain of feasible sets from § to X.

For a feasible set X € F, take an elementary chain § = Xo C X1 C ... C X = X as in (A2'), and let
{z;} = X; \ Xj-1 for j =1,... ,k. Then the sequence 13- - s, of the elements of X is called a feasible
ordering. In general, a feasible set may have a multiple number of feasible orderings.
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Take a feasible set A € F. Then F|A = {X C A: X € F} is an antimatroid on A, called a restriction
to A; and F/A={X — A: X € F,A C X} is an antimatroid on E \ 4, called a contraction of A. And for
A,B e F with AC B,

(FIB)/JA={XCB\A : AUX €F}

is called a minor of F.

If a class of antimatroids is closed under taking minors, we can characterize it by counting up all its
forbidden minimal minors. For instance, an antimatroid is a poset shelling antimatroid if and only if it
does not contain Sy as a minor where S7 = {0, {1}, {2}, {1,2},{1,3},{2,3},{1,2,3}}.

A feasible set X € F is called a path. set if there exists mﬁquely an element e € X such that X \e € F.
In terms of lattice theory, a path set is equal to a join-irreducible element of the lattice F.

Lemma 1 Suppose X to be a path set of an antimatroid F. Let A € F and A C X. Then X \ A is a path
set of F/A.

_ (Proof) It follows from (A2'). ]

2 Node-search Antimatroids of Directed Graphs

Let G = (VU {r}, E) be a directed graph with a distinguished node = (¢ V) called a root. We shall call it
a rooted graph. A node is called an atorm if there is an edge from the root. An r-path of G is an elementary
directed path which starts from the root. An r-path in an undiredted graph is similarly defined.

For an r-path P = rv; - - - v}, where v; € V' and (v;_1,v;) € E for i =1,...,k, welet OP = {vy,... ,vc}.
The family of sets given by

m
F={XCV:X= U OPj and {P,...,Pp} is an arbitrary family of r-paths of G } (1)
j=1 .

={X CV : There exists a directed tree rooted at 7 whose vertex set is X Ur } (2)

constitutes an antimatroid on V, called a node-search antimatroid of a directed graph . The node-search
antimatroid of an undirected graph is similarly defined replacing ’directed’ with *undirected’ in the above.

Let us denote by MG p the class of node-search antimatroids of directed graphs, and by MSy yp the
class of those of undirected graphs. Both classes of MSp and NSy p are closed under taking minor.

In a rooted directed gaph G, an edge is called redundant if there is no r-path which contains it and is
free of short-cuts. G is called nonredundant if it has no redundant edgés. Actually, redundant edges are
of no use in defining node-search antimatroids of graphs. Obviously, if a rooted graph is nonredundant,
there is no in-edge to the root, and every atom has a unique in-edge which comes from the root.

Let G = (V U{r}, E) be a rooted diredted graph, and F be its node-search antimatroid. For 4, B € F
with A C B, we define an r-minor graph of G as follows: First delete nodes in V' \ B from G, and shrink
the node set AU {r} to a new root #'. Then delete the in-edges to 7’ and the in-edges to atoms which
comes from nodes other than »/. We denote by G[A, B] the resultant rooted directed graph, and call it
an r-minor of G. An r-minor graph is necessarily nonredundant. Clearly, the node-search antimatroid of
G[A, B] is equal to the minor (F|B)/A.
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Furthermore, suppose G’ to be another rooted directed graph and F' to be its node-search antimatroid.
Then F contains a minor isomorphic to F if and only if there is an r-minor graph of G which is isomorohic
to G’ under a isomorphism mapping a root to another root.

Let Ds = {0, {z}, {y},{z,y}, {z,¥,2}} be an antimatroid on a three-element set {m y,2}. It is easy to
check that Ds is not in 9&p. Since the class 9Sp is closed under taking minors, containing no minor
isomorphic to Dj is a trivial necessary condition for an antimatroid to belong to MSp. We shall show
below that this is also sufficient.

In the following lemmas and arguments, we suppose that F is an antimatroid on a finite set V, and
does not contain Dy as a minor. A

Lemma 2 For a path set X of F, there exist a unique feasible ordering of the elements, say x - -+ T, and
{z1,... ,x;} is a path set of F for each i =1,... ,k.

(Proof) Otherwise, F would contain D5 as a minor. O

From the path sets of F, we shall construct a rooted directed graph, denoted by GIF], so that the unique
ordering of each path set of F becomes a directed path in G[F]. More precisely, the vertex set of G[F] is
V U {r}, and for each path set A of F with its unique feasible ordering a;az - - a,, we add an edge (r,a;)
and edges (@i, ai+1) (i = 1,... ,n — 1) to G[F]. By definitin, a path in G[F] which arises from a path set
of F is elementary and free of short-cuts. '

We first state two observations as lemmas below.

Lemma 3 G[F] is nonredundant.

The following is a crucial property of the antimatroids containing no minor isomorphic to Ds, and it

is a key lemma for Theorem 1.

Lemma 4 Leta, b, 1,... ,n (n > 2) be distinct elements of V. And suppose that 4; = {a,1,..., z;} (0 <
i <n-—1)and B; = {b,21,...,2;} (0 < i < n) are feasible sets of F, and B, is a path set of F. Then
A, = {a,z1,-... ,%,} is a feasible set of F.

(Proof) By (A3), we bave C; = {a,b,%1,... ,z;} is a feasible set of F for j = 1,... ,n. Since [Ap—2,Chr] 2
{Cp,Cr-1,Cn—2,An—1,An_2} and at the same time [An—2,Cy] must not be isomorphic to D, either
A,—1Uz, € For C,_2Uz, € F holds. In the first case of A,_1 Uz, € F, we have A, = Ap—1U{An-1UZyp),
which completes the proof. In the latter case of C,—2 Uz, € F, we have either A, Uz, € F or
Cn—3 Uz, € F by similar argument. If Ap2Uz, € F, then A, = Ap—1 U (An—2uz,) follows and the
proof is completed. And in case of Cp_3 U2z, € F, we can repeat the above argument until we have
either Ag Uz, = {a,2,} € F or Co Uz = {a,b,2n} € F. If {a,2,} € F, then Ap = Ap1 U {a,zn}
readily follows. And if not, {a,b,z,} € F holds and this implies Bo U % = {b,Za} € F since otherwise
[0, {a,b,2,}] would be isomorphic to Ds. Then B, —{Zn-1} = Bp-2UZn = Bn—2 U{} € F By assumption,
B, — {£,} = Bn_1 € F. But this contradicts the assumption that B, is a path set. Hence the proof is
completed. a ‘
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Theorem 1 Let F be an antimatroid containing no minor isomorphic to Ds. Let G[F] be the rooted
directed graph defined from the family of all the path sets of F, and F(G[F]) denote the node-search
antimatroid of the graph G[F]. Then

F(G[F]) =F

(Proof of Theorem 1) ,
Take a feasible set A € F such that A # §. Since any element in a lattice is a union of join-irreducible
elements and a join-irreducible element of the lattice of F is equal to a path set, there exist path sets
Ai,y...,Ap such that A= A; U---UA,. Since each path set A; corresponds to a rooted path in G[F], A
is a feasible set of a node-search antimatroid of G[F], i.e. A € F(G[F]). Hence we have F C F(G[F]).

Conversely, we shall show F(G[F]) C F. Any feasible set of F(G[F]) is a join of vertex sets of paths of
G[F] without short-cuts. Hence, it is sufficient to show that A = {ai,... ,a,} is a feasible set of F for any
short-cut-free path P = ra; - - - a,, in G[F], ' '

Suppose that P is a minimal path for which the assrtion fails to hold. Hence we have A; = {a1,...a;} €
F (i=1,...,n—1)and A(= 4,) = {a1,...an} ¢ F. By definition, there exists a path Q = rb; - - - by, in
G[F] such that the final edge of Q is equal to (a,_1,ay,), that is, a,_; = by,_; and @y, = b,,. By Lemma 2,
B; = {b1,...,b;} is a path set for i = 1,... ,m. By assumption, there exist s > 2 such that Gp—s F Dy
and @n—j = bm-; for j = 0,1,... ,s— 1. Since P and Q are shot-cut-free paths, we have n — s > 1 and
m—s>1. And a,_, is not on Q, and d,,_, is not on P.

Let X = An_g—1 N Bpnese1 30d F' = F/X. Then A} = Ap_p1i \ Apy1 and B} = Bp—gri \ Bpog1
for (i =0,1,...,s) are feasible sets of F, and B/, is a path set of F". Hence by Lemma 4, we have Al eF,
which implies A = A, U X € F. This completes the proof. 0

From Theorem 1, we readily have

Corollary 1 A neccessary and sufficient condition for an antimatroid to be a node-search antimatroid of
a rooted directed graph is that it has no minor isomorphic to Djs.

3 Node-search Antimatroids of Undirected Graphs

A node-search antimatroid of an undirected graph is a special case of those of directed graphs. In fact, if
we are given an undirected graph, replacing each undirected edge with a pair of directed edges with reverse
orientations gives a directed graph whose node-search antimatroid is the same with that of the undiredted
graph. Hence MSynp € NSp, and Dy is also a forbidden minor for the class NSy N p.

Now let us consider a rooted directed graph G4 = (V; Ur, E) such that

Vi= {1’ 2, 314}*» - (3)
E={(n1), (n2), (1,3), (2,4), 3,9 }, (4)

and let Sj9 € 9MSp be the node-search antimatroid of G4, which is described as
S ={0, {1}, {2}, {1,2}, {1,3}, {2,4}, (5)

{1,2,3}, {1,3,4}, {1,2,4}, {1,2,3,4} }. (6)
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Tt is a routine to check that Sio cannot be realized as a node-search antimatroid of an undirected graph,
and is minimal with respect to this property.
Hence Sio is another forbidden minor of Sy yp. And we can further show

Theorem 2 Let F be an antimatroid containing no minor isomorphic to D5, and G = G[F] be an nonre-
dundant directed graph defined from the path sets of F. Let G° be an undirected graph which is defined
from @ by considering each directed edge as an undirected one, and FO denote the node-search antimatroid
of the undiredted graph G°. The the following are equivalent.

(1) F°=F,
(2) F does not contain Syp as a minor,
(3) GIF] does not contain G4 as an r-minor graph.

(Proof) (1) = (2) and (2) = (3) are obvious.

We shall show that (3) implies (1). F C F° is obvious from the definition. We shall show the opposite
inclusion F C F. Take any undirected path P® = ra;,---a, (n > 1) in G° without an (undirected)
short-cut. Then it is sufficient to show that A = {ay,a9,... ,a,} is a feasible set of F. If (@i-1,a;) is an
edge in E(G) for each i = 1,... ,n, then ra; - - - a, is a directed path of G and A= {a1,a2,...,a,} €Fis
obvious. Otherwise, let k be the smallest index such that (ax—1,ax) € E(G) (1 < k < n), and P be the
directed path ra; -+- 7y in G.. Since G is nonredundant, we have k > 3. And {ak-1,ar} is an undirected
edge in G°. Hence there exists a path set B = {b;,... ,b} of F with its unique ordering b - - - by, and
(bm-1,bm) = (G, ax—1) € E(G) If the size m of B is two, then the edge (r,b1) is a short-cut of P% a
contradiction. Hence m > 3 holds.

Let X = {a1,.-. ,ax-3}U{b1,... ,bm—3} and Y = AUB. And let G[X,Y]denote the associated r-minor
graph of G. Since the path Q = rbibs - - - by, is free of short-cuts, we have bm—2 # ag—2. Hence the set of
nodes of G[X, Y] consists of 7, k-2, @Gk—1{= bm), bn-1(= ak)' and b,,_2. By definition of r-minor, there is
no in-edge to ax_g nOr t0 by,_y. Since P and @ do not have short-cuts, the edges (7, byn—1), (7;@k— 1) and
(bm—2,bm) do not exist in G[X,Y]. And G[X,Y] does not have an edge (ax—2,ax) since the undirected
path PP has no short-cut. : '

Hence the edge set of G[X, Y] consists of (7, ax—2), (@x—2,0%—1), (Tsbm—2), (bm—2,bm—1) and (br,-1, ax-1),
and G[X,Y] is shown to be isomorphic to G4, which is a contradiction. This completes the proof. O

We can rewrite the theorem as

Corollary 2 A necessary and sufficient condition for an antimatroid to be a node-serach antimatroid of
an undirected graph is that it contains neither Dy nor Sio as a minor.
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