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The Optimal Auto Sleep Scheduling for a Cvomputer System
with Batch Arrival of Transactions
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Abstract i

This paper addresses a problem of how to determine the optimal sleep timing
when the computer user should turn the hard disk or the display off in order to save
the electric power after the computer has not been accessed. We consider a stochastic
model to obtain the optimal sleep timing strategy which minimizes the expected power
consumed per unit time in the steady-state, where access requirements arrive at the
system according to a renewal-process and contain some lightweight processes. Then,
the approximation form for the idle period is proposed to represent the expected power
consuimed per unit time based on the workload process. We also derive the condition
to exist the unique optimal sleep timing. ‘

1 Introduction

Recently, the automatic sleep function of the hard disk or the display in a computer system
is rapidly recognized to be important in terms of power management [1. 2]. In fact, the
auto-sleep function is equipped in almost computer systems as a standard function. Then,
the optimal design for the auto-sleep function is the most important problem, in particular,
for notebook computers with limited capacity of battery. For example, on the hard disk of
a computer, the electronic power consumed to warm up from sleep mode is larger than that
consumed by the normal operation. Thus, it is not always effective to design the system
such that moves its state to the sleep mode whenever there is no access requirement.

First, the optimal design problem for the auto-sleep function was considered by Sandoh.
Hirakoshi and Kawai [3] and Hirakoshi and Sandoh [4]. Dohi. Kaio and Osaki [5] also
proposed a nonparametric method to estimate the optimal sleep timing for the same
problems. However. it is noted that the seminal works above simplified the underlving
problem extremely and was incomplete for representation of stochastic hehavior of the
auto-sleep svstent. More valid formmlations were made by Okanmra. Dohi and Osaki (6.
7. They proposed two kinds of models (Type I model and Type IT model) with and
without cancellation of access requiremnents arvived at the systenn. respectively.  More
specifically. Type 1 modol with cancellation assumes that other access requirciments arvived
at the system when one job has been processed are canceled. and focuses on the multi-use
circumstance for a (lo,sktop computer unit. On the other hand. Type IT model corresponds
to a buffer system in which the other access requirements arrived latter are accumulated
when one job has been processed. and considers the multi-task system such as network
printers. They proved that the optimal sleep timing strategies for both models are the
switching strategies, i.e., turn always the system off after the process for a job is completed
or not do at all, if the access requirements arrive according to the homogeneous Poisson
process.



However, notice that the actual multi-task system is required to process a huge num-
ber of transactions during a limited period. This implies that the auto-sleep scheduling
problem should be considered for the buffer system with batch arrival of transactions, such
that a single arrival is composed of some lightweight transactions called threads. Threads
are parts of a single arrived process which are independently scheduled each other in the
system. In this paper, we design the optimal auto-sleep schedule for a computer system
with batch arrival of transactions. If a single arrival has only one thread, the model under
consideration can be reduce to Type II model in Okamura, Dohi and Osaki [7]. In that
sense, the model in this paper is an extension of Type II model.

The paper is planned as follows. Section 2 describes the auto-sleep model with batch
arrival of transactions. In Section 3, we give an implicit form of the expected power
consumed per unit time in the steady-state under the assumption that the access require-
ments arrive at the system following a compound renewal process. Section 4 concerns the
approximation problem for the expected power consumed per unit time. Then we propose
an approximation form of the idle period distribution. The condition to exist the unique
optimal sleep timing is derived approximately. In Section 5, we give some numerical ex-
amples, and investigate the asymptotic property of the idle period derived in Section 4.
Also, we examine the dependence on model parameters for the optimal auto-sleep timing.
Finally, the paper is concluded with some remarks.

2 Auto-Sleep Model for a Computer System

We assume that the stochastic system under consideration can take the following four
states:

busy state: The process is started at least for an access requirement, where 7 (> 0) tine
units are needed for making ready the process. The process is continued until the
buffer is empty. and the system is turned immediately an idle state after completing
the final process. In the busy state, we suppose that the electronic power consumed
per unit time is P; (> 0).

~ idle state: In this state, the system is waiting at least for an access requirement. If the
access requirement arrives at the system up to the time limit %5 (0 < ¢y < o), the
process is started at that time. otherwise. the system is moved to a sleep mode. In
the idle state. the system also consumes the electronic power P (> 0) per unit time.

sleep state: Suppose that the syvstem is dormant. If more than one access requirement
come in the sleep state. the system state moves to a warm-up state immediately.
To simplify the analysis. we suppose that the electronic power occurred during the
sleep mode is zevo.

warm-up state: After arriving an access requirement. the system is warmed up from a
sleep mode. where s (> 0) time units are needed for the warm-up. After wariing the
systeni. the state is moved to a busy state immediately. Since the electronic power
in the sleep mode is known to be rather small relative to that consumed during the
warm-up period. we denote P, (P > P)) as the electronic power consumed per unit
‘warm-up time.

Suppose that the access requirements arrive at the system according to a compound
renewal process. Denote {Xj : k =1,2,---} as a sequence of inter-arrival times between
(k — 1)-th and k-th arrivals. Then, X}, are non-negative i.i.d. random variables, having
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the probability distribution F(t) with mean 1/A(> 0) and variance o4 (> 0). There are
some threads contained in an access requirement. The number of threads contained in
k-th arrival is given by the random variable Ny with finite mean pupg (> 0) and variance
o (> 0). The other threads arrived during the processing time are accumulated in the
buffer. The k-th thread contained in n-th arrival is processed for a service time Sy,
which is the random variable having the probability distribution G(t) with finite mean
1/ps (> 0) and variance og (> 0). The system processes threads exhaustively until the
buffer becomes empty. Since the system under consideration is very similar to the GI/GI/1
queueing system with a server vacation (see Takagi [8]), we may analyze the stochastic
properties for the auto-sleep system in the framework of queueing analysis.

3 Expected Power Formulation

To formulate the expected power consumed per unit time in the steady-state, we introduce
the following two random variables (see Fig. 1);

¢, (time length of busy period) : time period for an exhaustive processing, provided that
the server vacation period is x,

n. (time length of idle period) : time period when there is no access requirement in the
buffer. provided that the server vacation period is x.

Let us define the probability distribution function of 5, by I(t|z) = Pr{n, < t}. where in
general ¢(-) = 1 — ¢(+) is the survivor function. From the well-known result for queueing
analysis with server vacation (scc Takagi [8]). we obtain the following equilibrium equation:

E[Ct] = /0(:17 + E[Cﬂ”] + E[”r]) (1)

where p = Aup/ps is the traffic intensity. Since Eq. (1) holds only if p < 1, we assume in
the rest part of this paper that the condition p <1 holds.

The system is-resumed at the point of time when the state moves from the sleep mode
to the busy one. Then, we define the time period between the successive resuming points
as one cycle. Let T'(tg) denote the mean time length of one cycle, provided that the sleep
timing is fixed as tg. Noting whether the first idle period 74, exceeds the sleep timing ¢,
the mean time length of one cycle is written by

10
Tlty) = [ {s+7+ElCorr] +t+T(to)} d{t]s +7)
Jo
G
4 [T s Bl + ) It 7). (2)
Jig

where 1} (t9) is the expected time length from the termination of the first idle period nntil
the bheginning of the next cvele. It is evident that the first idle period is we have

-ty . o'e :
1.(ty) = {7+ E[¢;] + 1+ L (o) pdI(t]T) + / {T+E[(]+t dI(tr).  (3)
S0 Jto
Hence. from Eqs. (2) and (3). the mean time length of one cycle hecomes
I(tols+ T ,
T(t0) = 5+ 7 + Bl + Bl + gL 7 + iG]+ Elne) ()

Furthermore, substituting Eq. (1) into Eq. (4), we have

I(tQ‘S'{-T)}' (5)

Flto) = T(tol")

] i p{s + 7 + Ensyr| + (7 + Elns))
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Figure 1: Possible realization of the stochastic system.

Let the random variable N denote the total number of transition from the idle to the busy
during one cycle. Then, it is verified that N has the following probability mass function;

I(tols +7) for n =0, :
Pr{N =n} = - (6)
I(tgls + T)T(tQIT)I(tO[T)””l forn=12-... °

From the property of the geometric distribution, the expected value of N is

N I(i0|8+’%)
BN = e

Using Eq. (7). the mean time length of one cycle has the following simple form:

I 1
T(to) = 7= {5 + 7+ Bliosr] + EIVI(7 + Bl ]) (8)
where Eq. (8) depends only on the idle distribution I(#]-).

In a fashion similar to the mean time length of one cycle. we define the total expected
power consumed during one c¢yele as B

. “lo ) :
Clto) = | {Pos + P (7 + ElGosr) +) + Colto)} I (t]s + 7)
Je
X

[ APas 4 P+ Blr] + o)} ATt + 7). (9)

Jig

where

Crlto) = [ (P +BlG) +6)+ Cylao) T o)
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4+ ” {Pr (7 + E[osr] + to) } dI(t]7) (10)

to

is the expected power consumed for the period T, (to). From a few algebraic manipulations,
the total expected power consumed for one cycle is given by

O(to) = Pos+ Pu{7+ECoss] + Eltor Ao} + PEIN] {7 +E[] + Elnr A to] |
{1 _p_ pPl + P2}S + i + Pl{ £ E[Tls+7] + E[7,S+T A tO]}

1-p 1-p _
b P I(tolS—l—T)
+{1fp+P1(1—P (-] + Elny Ato]) } Tiolr) (11)
where
t
Eln: A to] = E[min(ng, to)] = / ° udl(u | x) +tol(to | x). (12)
0

Finally, the expected power consumed per unit time in the steady-state is, from the well-
known renewal reward argument, ‘

E[total consumed power in (0,t]]  C(to)
t  T(to)

V(to) = th—}go (13)

Then, the problem is to seek the optimal sleep timing ¢ which ininimize_s Vito).

4 The Approximation of the Idle Period

To represent the expected power consumed per unit time V' (to) explicitly, we have to derive
the probability distribution I(t|z) for the idle period. It is. however. difficult to obtain
the explicit form in the ordinary renewal arrival case. Thus, we propose an approximation
method for the idle period based on the workload process. Let us denote the arrival time
of the n-th access requirement by {T},; n = 0,1,2,- -}, where

n
Tp=Y X (14)
k=0

Then, for an arbitrary time ¢t € (T, < t < Tp41). we define the workload process {W (t): t >
0}. where

W () =W ({T+) — (t=1,). (15)

AW
WA(L+) =T (=) + > S (16)

h=1
where W (t+) = limo Wt +¢) aud TW(t—) = lim,_o TV (# — €) (see Gross and Harris [9]).
Notice that if W (t) > 0 then the system is busy at time t. otherwise. the system is idle.
Suppose that the first arrival of access requirements occurs at time ¢t = 0 and that the
server vacation period is s + 7. If the number of access requirements which experience the

first empty buffer in the system is n*, then the idle period can be represented as

Nogr = =W (T —). (17)
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Figure 2: Behavior of the workload process.

Figure 2 illustrates the configuration of workload process. For the idle period with the
server vacation, we obtain the following renewal-type equation for an arbitrary measurable
function f;

Elf(nsin)) = [ Elf(ne_a)dI(zlr) + | flz - $)dI(z]7). (18)
0 s

Lemma 1 For an arbitrary measurable function f. the asymptotic property of the idle
period is given by
ElJ" f(z)dz]

lim E[f(n-)] = T En] (19)

Proof. Taking the Laplace transform to hoth sides of Eq. (18), we have

> EU" exp{—aln, — 2)}f(2)dz]
| exp(=as)Blf (e ))ds =~ e (20)

where o is any complex number. Letting a — 0 in Eq. (20). the result is due to the
well-known Abel’s lemma [10]. The proof is completed. Q.E.D.

If f{z) =cxp(=az) in Lenuna 1. then it is seen that

I — Elexp(—an;)]
aEn;]

Jim Efexp(-anr )] = (21)
Since the right-hand side of Eq. (21) is the same Laplace transform as the equilibrium
distribution of 7,, we can approximate the idle period for sufficiently larger s than . that
s,

1o ~
/0 T(s|r)ds. @

Tl +7) = En,].
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Substituting Eq. 22 into Eqgs. (4) and (11), we derive approximately the expected power
" .consumed per unit time in the steady-state as

Ca(to)

V(to) = Va(to) = Tulto)’ (23)
where
21 - to T

Ta<to)=1—f7{s+f+§%%+< + Elne]) %} (29)

and ,

Culty) = {1 —P; + PQ}S + 15_5 + Py { Efstr] + /Otg /too T(ulr)dudt}
P T [ T(t|r)ydt

+{1 7 4R (I—E ] +/ T(tlr dt)} i (25)

To obtain the optimal sleep timing, we define the mean residual life R(to|7) and hazard
rate r(to|7);

S T(tr)at %)

Rl = o
and
1 dl(to|T)
rltor) = 7 (i) 27)
Further, define
S _ dlog R(to|T) E[n;]
fo= lf{to >0 Togr(toln) | Tl Rtolr) 1}' (28)

The following result gives the optimal auto sleep timing which minimizes approximately
" the expected power consumed per unit time in the steady-state.

' Theorem 1 Suppose that. for all ty € [fo,o0), the idle period n. has decreasing hazard
rate. If an auto-sleep timing to satisfies Py > Vy(to) for all tg € [on ). then there exists
an unique optimal sleep timing t € [to. o) which minimizes Vo(to).

Proof. In order to prove the couvexity of V,(ty). define

Culto) = (1 = p)T(to|7)Culto) (29)
and

Ta(to) = (1 — p)I(tol7)Ta(to), _ (30)

~ where V,(to) = Ca(to)/Tu(te). Further, define the numerator of the derivative of V,(to)
with respect to to, divided by I(to|7)r(to|7) as q(to)

alto) = P1<1—p)Ta<to>{;@% [ Ty / I Iu{v'dudt}



_é’a.(io)_ _ O 7 . Ta(oo) A ~
' {E[m]r(tolﬂ C“(O)} falto) {Em]r(tow) T“(m} ofto)- GV
Differentiating ¢(to) with respect to tg yields

Pl(l — p)fd(to)f(tOlT) {1 — r(tO‘T)R(tOIT)
7(to|T) |

_dr(to|T)/dto ( Eln.] _ R(tolT)> }
)

T(to|7‘) T(to]’f
d?‘(to|7’)/dt0

~ ElnrJr(tolr)2Ta(00) Ta (to)

If dr(to|7)/dto < 0 holds for all ¢y € [fy, 00), the first term of Eq. (32) is strictly positive
for all tq € [fo, o0). Therefore, for the range satisfying Py > V(ty), it can be seen that
q(to)/dto > 0. Since this implies d?V,(to)/dtZ > 0, the convexity of V,(t) is proved for
tg € [fo, OO) Q.ED.

d
ity (to)

{P1 — Va(to)}. (32)

Remark 1 Theorem 1 shows that there is a local optimal sleep timing for strong condi-
tions Py > V(tg) and tg € [fg, 00). Hence the local optimal sleep timing can be calculated
using any numerical optimization method such as the deepest decent method, Newton-
Raphson method, etc. On the other hand, to find the global optimal sleep timing, we
have to check the global behavior of the function V,(to) for all ¢y. Since Va(oo) = Py, the
solution space can be limited to the range at which P, > V(#o) holds. This result leads to
the fact that the numerical optimization method should be applied for all ¢, € [to, o0).

5 Numerical Examples
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In this section, we investigate the asymptotic properties of the approximated idle period, -

and examine the dependence on model parameters for the optimal sleep timing. Suppose
that the time interval between the successive access requirements obeys the phase-type
distribution. The phase-type distribution represents the time until the absorption in the
continuous time Markov chain, with the following distribution function:

F(t)=1-aexp(Tte, ' (33)

where 1" is a m x m matrix having negative diagonal components. a is a probability
vector and e is a column vector of 1s. Also. we suppose that the workload of an access
requircment obevs the following expouential distribution with a parameter

Gt) = 1 = exp(—pit). (34)

Under the condition that the server vacation is x. theidle period has the following distri-
bution (see Neuts [11]):

aexp {(T + T%aG)z} Gexp(Tt)e
aexp {(T + TaG)z}Ge

I(tla) =1~- (35)

where T9 = —Te, and G is a transition probability matrix with components [G];; which
is the probability that the phase makes a transition from i to j.
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Figure 3: Asymptotic behavior of the mean time length of the idle period with varying
service rate.

In this section, we assume the following model parameters;

—222 044
=2 { 0.22 —-0.44

} . a=(1.0,00),

A=1.0,0.3,0.5 or 0.7, p=1.0,1/0.1, 1/0.5 or 1/0.9.
Figures 3 and 4 depict the behavior of the mean time length of the idle period for the

the mean time length of
the idle period
A

¢

S 3 the server vacation

Figure 4: Asvmptotic behavior of the mean time length of the idle period with varyving
arrival rate.

server vacation with varying g and A. respectively. These results explain that the mean
time length of the idle period depends on the arrival of the access requirements rather than
the workload. Also. taking account of the mean inter-arrival of access requirements. we
observe that the mean time length of the idle period converges to a value asymptotically
when the server vacation is about 4~5 times as long as the mean inter-arrival of access
requirements.

Next, we investigate the dependence on model parameters for the optimal sleep timing,



Table 1: Dependence on the arrival rate for the optimal sleep timing.

X % V)
0.1 { 0.00 0.541
0.270.00 0.770
0.3 1 0.00 0.889
0.4 | 0.00 0.957
0.5 1.99 0.994
0.6 | o0 1.000

Vo

1.01

1.00

0.99

0.98

0 E 10 s 20 o

Figure 5: Dependence on the electronic power Py for the expected power consumed per
unit time in steady-state.

where the following parameters are assumed;
Pi=1, P,=10. s=100. 7=0.5. ' (36)

and where the arrival and service parameters are the same as the previous example. In
Table 1 we give the numerical value of the optimal sleep timing and the associated min-
imummn expected power for several values of the arrival parameter A. From Table 1. it
is found that the mininmum expected power increases monotonically for the increasing
A. and that the variation of the optimal sleep timing is greater than that of the mean
inter arrvival. These results indicate that the optimal sleep timing depends strongly on
the arvival parameter. and that the auto-sleep function is a more effective power-saving
function when access requirements have a light traffic.  Also. in Figs. 5 and 6. we give
the behavior of the expected power V(#y) for the sleep timing #o with % = 9.0.10.0.11.0
and s = 10.0.12.0.14.0. In Fig. 5. it is seen that the shape of expected power changes
sensitively as the power consumed in warm-up P increases. On the other hand. it is clear
from Fig. 6 that the optimal sleep timing is insensitive to warm-up time.
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Figure 6: Dependence on the warm-up time for the expected power consumed per unit
time in steady-state.

6 Concluding Remarks

In this paper, we have proposed the stochastic model to generate the auto sleep schedule
for a computer system with batch arrival of transactions. In the case of the renewal access
requirements, the expected power consumed per unit time in steady-state has been formu-
lated. Also, we have derived the approximation form of the idle period from its asymptotic
property. With the proposed approximation method, we have derived a sufficient condition
to exist the unique optimal sleep timing which minimizes the expected power consumed
per unit time in steady-state. In numerical examples, we have investigated asymptotic
properties of the idle period, and have examined the sensitivity of model parameters for
the optimal sleep timing.
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