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Abstract

Degenerate elliptic equation $\lambda\Delta_{p}u+u^{q-1}(1-u^{r})=0$ with zero Dirichlet
boundary condition, where $\lambda$ is a positive parameter, $2<p<q$ and $r>0$ ,
is studied in three aspects: existence of maximal solution, $\lambda$-dependence of
maximal solution and multiplicity of solutions. We will show that there exists
a positive number A such that if $\lambda>\Lambda$ , then the problem has no solution;
if $\lambda\leq\Lambda$ , then it has a maximal solution, which possesses a flat core for
sufficiently small $\lambda>0$ . It is also proved that $(\mathrm{P})_{\lambda}$ admits at least two
solutions if $\lambda\in(0, \Lambda)$ .

1 Introduction and Results
Let $\Omega$ be a connected, bounded open subset of $\mathbb{R}^{N},$ $N\geq 2$ , with $C^{2,\alpha}$-boundary $\partial\Omega$

for some $\alpha\in(0,1)$ . We consider the following degenerate elliptic equation:

$(\mathrm{P})_{\lambda,\Omega}$

where $\lambda$ is a positive parameter and $\triangle_{p}$ is the p–Laplace operator defined by

$\Delta_{p}u=\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|p-2\nabla u)$

*This work was partially supported by JSPS Research Fellowships for Japanese Young Scientists.
\dagger Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555,

JAPAN.
$E$-mail address: 697m504l@mn.waseda.ac.jp

数理解析研究所講究録
1117巻 1999年 119-133 119



with $p>2$ and $f$ is given by

$f(u)=u^{q-}(11-u^{r})$

with $q\geq 2$ and $r>0$ . We often write ‘
$(\mathrm{P})_{\lambda}$

’ instead of ‘
$(\mathrm{P})_{\lambda,\Omega}’$ .

A function $u=u_{\lambda}\in W_{0}^{1,p}(\Omega)\cap L^{\infty}(\Omega)$ is called a solution of $(\mathrm{P})_{\lambda}$ if $u\geq 0\mathrm{a}.\mathrm{e}$ .
in $\Omega,$ $u$ does not vanish in a set of positive measure, and

$- \lambda\int_{\Omega}|\nabla u|^{p2}-\nabla u\cdot\nabla\varphi dX+\int_{\Omega}f(u)\varphi d_{X}=0$ (1.1)

for all $\varphi\in W_{0}^{1,p}(\Omega)$ . A solution $u$ of $(\mathrm{P})_{\lambda}$ is called a maximal solution of $(\mathrm{P})_{\lambda}$ if
$u\geq v\mathrm{a}.\mathrm{e}$ . in $\Omega$ for all solutions $v$ of $(\mathrm{P})_{\lambda}$ . Obviously, a maximal solution is decided
uniquely. If a function $u\in W^{1,p}(\Omega)\cap L^{\infty}(\Omega)$ satisfies $u\geq 0$ (resp. $u\leq 0$) on $\partial\Omega$

and

$- \lambda\int_{\Omega}|\nabla u|^{p2}-\nabla u\cdot\nabla\varphi dX+\int_{\Omega}f(u)\varphi dx\leq 0$ (resp. $\geq 0$ )

for all $\varphi\in W_{0}^{1,p}(\Omega)$ satisfying $\varphi\geq 0\mathrm{a}.\mathrm{e}$ . in $\Omega$ , then it is called an upper (resp. a
lower) solution of $(\mathrm{P})_{\lambda}$ .

With respect to $(\mathrm{P})_{\lambda}$ , there are a few works on the $equidiff\sim$usive case $p=q$
as follows. Let $\lambda_{0}$ be the first eigenvalue $\mathrm{o}\mathrm{f}-\Delta_{p}$ under zero Dirichlet boundary
condition. In one-dimensional case $N=1$ , Guedda and V\’eron [7] have shown by
phase plane analysis that if $\lambda<1/\lambda_{0}$ , then $(\mathrm{P})_{\lambda}$ has a unique solution $u_{\lambda}$ , and that
a set called flat core of $u_{\lambda}$ :

$\mathcal{O}_{\lambda}=\mathcal{O}_{\lambda}(u_{\lambda}):=\{_{X}\in\Omega;u\lambda(x)=1\}$

is nonempty for sufficiently small $\lambda$ . Since the length of $\mathcal{O}_{\lambda}$ can be indicated ex-
plicitly, we can see that as $\lambdaarrow 0,$ $\mathcal{O}_{\lambda}$ spreads out toward the whole of $\Omega$ with the
growth as

$\lim_{\lambdaarrow 0}\lambda^{-1}/p$ dist $(\mathcal{O}_{\lambda}, \partial\Omega)=C(f,p)$ , (1.2)

where $C(f,p)= \int_{0}1(F(1)-F(s))^{-}1/pds$ and $F(s)= \int_{0}^{S}f(t)dt$ . In higher
dimensional case $N\geq 2$ , phase plane analysis is no longer useful and one has to
approach by other methods. Constructing a suitable lower solution with use of the
eigenfunction for $\lambda_{0}$ , Kamin and V\’eron [9] have proved that the unique solution of
$(\mathrm{P})_{\lambda}$ has a flat core for sufficiently small $\lambda$ and extended the results of [7]. However,
they have given only an estimate dist $(\mathcal{O}_{\lambda}, \partial\Omega)\leq C\lambda^{1/p}$ as $\lambdaarrow 0$ , where $C$ is a
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constant independent of $\lambda$ , without explicit information about $C$ and any estimate
of dist $(\mathcal{O}_{\lambda}, \partial\Omega)$ from below. In virtue of an exact estimate for $\mathcal{O}_{\lambda}$ , Garc\’ia-Meli\’an
and Sabina de Lis [6] have utilized the solutions for $N=1$ , whose dependence on
$\lambda$ is understood well, to make upper- and lower solutions and concluded that (1.2)
also holds true in the case $N\geq 2$ .

The $subdiffu\mathit{8}iveca\mathit{8}ep>q$ can be also investigated in the same way as the
equidiffusive case. One can observe that there exists a unique solution $u_{\lambda}$ for every
$\lambda>0$ and that as the equidiffusive case, $\mathcal{O}_{\lambda}(u_{\lambda})$ is nonempty for sufficiently small
$\lambda>0$ and it grows as (1.2). See the author and Yamada [18] for $N=1$ and [6] with
its Remarks 2.2 $\mathrm{b}$ for $N\geq 2$ . For uniqueness, see also Diaz and Saa [4].

On the other hands, the structure of solution-set in the superdiffusive case $p<q$
is essentially different from those in the other cases. For $N=1$ , using time-map, the
author and Yamada [18] have shown that $(\mathrm{P})_{\lambda}$ produces a spontaneous bifurcation
for $\lambda$ , that is, there exists A $>0$ such that if $\lambda>\Lambda$ , then $(\mathrm{P})_{\lambda}$ has no solution; if
$\lambda=\Lambda$ , then $(\mathrm{P})_{\lambda}$ has a unique solution; if $\lambda<\Lambda$ , then $(\mathrm{P})_{\lambda}$ has exactly two distinct
solutions $\overline{u}\lambda$ and $\underline{u}_{\lambda}$ satisfying $\overline{u}\lambda>\underline{u}_{\lambda}$ in $\Omega$ . It also follows from our analysis that as
$\lambdaarrow 0,$ $\mathcal{O}_{\lambda}(\overline{u}_{\lambda})$ spreads out toward the whole of $\Omega$ with (1.2) and $\underline{u}_{\lambda}arrow 0$ uniformly
in $\Omega$ . For $N\geq 2$ , Guo [8] has studied the case that there exists $\beta>0$ such that
$f(0)=f(\beta)=0,$ $(\beta-x)f(x)>0$ in $(0, \beta)\cup(\beta, +\infty),$ $\lim_{sarrow 0}f(s)/s^{p-1}=0$ and
$(f(s)/S^{p-1})’’<0$ in $(0, \beta)$ (the condition ‘ $f^{\prime/}(X)<0$ ’ in [8, Theorem 3.3] is a misprint
and should be replaced by ‘ $(f(x)/x^{p-1})’/<0’)$ , and has found two distinct solutions
for sufficiently small $\lambda>0$ . However, this is a particular case in our problem, and no
information about the shape of solutions and about the $\lambda$-range of multiple existence
of solutions, is given.

In the present paper, we will discuss $(\mathrm{P})_{\lambda}$ in the case $2<p<q,$ $N\geq 2$ , and
study $(\mathrm{P})_{\lambda}$ in three aspects: (a) existence of solution, especially maximal solution;
(b) $\lambda$-dependence of maximal solution; and (c) multiplicity of solutions. As for (a),
we can prove the following theorem by so-called barrier method:

Theorem 1.1. Let $2<p<q$ and $r>0$ . Then there exists a positive number A
such that
(i) if $\lambda>\Lambda$ , then $(\mathrm{P})_{\lambda}ha\mathit{8}$ no $\mathit{8}olution$ ;
(ii) if $\lambda\leq\Lambda$ , then $(\mathrm{P})_{\lambda}$ has a maximal solution $\overline{u}_{\lambda}$ ;
(iii) if $\lambda_{1}<\lambda_{2}\leq\Lambda,$ then $\overline{u}_{\lambda_{2}}\leq\overline{u}_{\lambda_{1}}$ ;
(iv) the mapping $\lambda\vdasharrow\overline{u}_{\lambda}$ is left-continuous on $(0, \Lambda]$ in $C^{1,\beta’}(\overline{\Omega})$ for any $\beta’\in(0, \beta)$ ,
where $\beta$ is the constant appearing in Proposition 2.1.

Remark 1.1. Theorem 1.1 (i) has been obtained by V\’eron [19, Theorem 3] for the
p–Laplace operator on a compact Riemannian manifold without boundary.
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We will state our result on (b). The proof essentially consists in constructing
suitable upper- and lower solutions by the idea of Garc\’ia-Meli\’an and Sabina de Lis
[6] and the one-dimensional result in [18].

Theorem 1.2. Let $2<p<q$ and $r>0$ . There exists a positive number $\lambda^{*}\in(0, \Lambda]$

such that
(i) if $\lambda\leq\lambda^{*}$ , then $\mathcal{O}_{\lambda}=\mathcal{O}_{\lambda}(\overline{u}_{\lambda})$ is nonempty;
(ii) if $\lambda_{1}<\lambda_{2}\leq\lambda^{*}$ , then $\mathcal{O}_{\lambda_{2}}\subset \mathcal{O}_{\lambda_{1};}$

(iii) for sufficiently small $\epsilon>0$ , there exists $\lambda\leq\lambda^{*}$ such that $\Omega\backslash \Omega_{\epsilon}\subset \mathcal{O}_{\lambda}$ .
$Fu\Gamma thermoref\mathcal{O}_{\lambda}$ satisfies (1.2) $a\mathit{8}\lambdaarrow 0$ .

Remark 1.2. From the last assertion of Theorem 1.2, we can see that the growth
order of maximal solution of $(\mathrm{P})_{\lambda}$ when $\lambdaarrow 0$ is the same as that of case $p\geq q$ .

To mention (c), we define the functional $\Phi$ on $W_{0}^{1,p}(\Omega)$ corresponding with $(\mathrm{P})_{\lambda}$ :

$\Phi(u)=\frac{\lambda}{p}||\nabla u||_{p}p-\int_{\Omega}\overline{F}(u)d_{X}$ , (1.3)

where $\overline{F}(u)=\int_{0}^{u}\overline{f}(S)d_{S}$ and $\overline{f}(s):=f(s)$ in $[0, \xi],$ $:=0$ in $(-\infty, 0)$ and $:=f(\xi)$ in
$(\xi, +\infty)$ for any $\xi>1$ fixed. Here, $||\cdot||_{p}$ denotes $L^{p}$-norm. Solutions of $(\mathrm{P})_{\lambda}$ satisfy
$0<u\leq 1$ in $\Omega$ (see Proposition 2.1); so that they coincide with critical points
of $\Phi$ . We can show that $\Phi$ satisfies the Palais-Smale condition (see the proof of
[16, Theorem 1.3] $)$ . Our strategy is to apply an extended Mountain pass theorem by
Pucci and Serrin, which asserts that, if $\Phi$ has a pair of local minima, then $\Phi$ possesses
a third critical point (see Pucci and Serrin [13, Theorem 4]). We will prove that the
trivial solution $u=0$ is a local minimizer of $\Phi$ in $W_{0}^{1,p}$ for every $\lambda>0$ , and that if
the maximal solution $\overline{u}_{\lambda}$ is isolated, then $\overline{u}_{\lambda}$ is also a local minimizer of $\Phi$ in $W_{0}^{1,p}$

for $\lambda\in(0, \Lambda)$ . Finally we can conclude the following theorem:

Theorem 1.3. Let $2<p<q$ and $r>0$ . Then, for any $\lambda\in(0, \Lambda),$ $(\mathrm{P})_{\lambda}$ has a
solution $u_{\lambda}$ satisfying $u_{\lambda}\leq\overline{u}_{\lambda},$ $\not\equiv\overline{u}_{\lambda}$ .

Remark 1.3. For the linear diffusion case $2=p<q$ , Rabinowitz [14] has studied
$(\mathrm{P})_{\lambda}$ by combining critical point theory and the Leray-Schauder degree theory, and
obtained Theorem 1.3. Especially, when $\Omega$ is a ball, Ouyang and Shi [12] have
obtained precise global bifurcation diagram and concluded that there exist exactly
two solutions for a certain range of $\lambda$ by using a bifurcation theorem of Crandall
and Rabinowitz.
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2 Proofs of Theorems 1.1 and 1.2
In this section, we will prove Theorems 1.1 and 1.2. The following proposition is
fundamental in this paper (for the proof, see [16, Proposition 2.1]).

Proposition 2.1. Let $u$ be a solution of $(\mathrm{P})_{\lambda}$ . Then $u\in C_{0}^{1,\beta}(\overline{\Omega})\cap c^{2,\alpha}(\overline{\Omega_{\epsilon}})$ , where
$\Omega_{\epsilon}:=\{x\in\Omega;\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(X, \partial\Omega)<\epsilon\}_{f}$ for some $\beta\in(0,1)$ and sufficiently small $\epsilon>0$ .
Furthermore, $0<u\leq 1$ in $\Omega$ and $\partial u/\partial n<0$ on $\partial\Omega$ , where $n$ denotes an outer
normal at $\partial\Omega$ .

Lemma 2.1. For $\mathit{8}ufficiently$ small $\lambda>0$ , there exists a maximal $soluti_{on}\overline{u_{\lambda}.}$ such
that $\mathcal{O}_{\lambda}$ is nonempty and

$\lim_{\lambdaarrow}\sup_{0}\lambda^{-}1/p$ dist $(\mathcal{O}_{\lambda}, \partial\Omega)\leq C(f,p)$ . (2.1)

Proof. Take $R>0$ and $x_{0}\in\Omega$ satisfying $B_{R}(X_{0})\subset\Omega$ , where $B_{R}(X_{0})$ is the ball with
radius $R$ and center at $x_{0}$ . To obtain a lower solution of $(\mathrm{P})_{\lambda,\Omega}$ , we will construct a
lower solution $v_{R,x_{0}}$ of $(\mathrm{P})_{\lambda,B(0}Rx)$ . It suffices to find a radially symmetric one, i.e.,
$v(\rho)=v_{R,x_{0}}(x)$ satisfying

$\{$

$\lambda(\rho^{N-1}|v_{\rho}|p-2v_{\rho})_{\rho}+\rho^{N-}1f(v)\geq 0$ in $(0, R)$ ,
(2.2)

$v_{\rho}(0)=v(R)=0$ ,

where $\rho=|x-x0|$ . By a change of variable $\xi=g(\rho)$ such that

$\xi=g(\rho)=\{$ $\frac{R^{\mathrm{l}-\theta}-\rho^{1-\theta}}{\log\frac{1-R}{\rho}\theta}$ $\mathrm{i}\mathrm{f}\theta=1\mathrm{i}\mathrm{f}\theta\neq 1,$

’

where $\theta:=(N-1)/(p-1),$ $(2.2)$ can be rewritten as follows:

$\{$

$\lambda(|w_{\xi}|p-2w_{\xi})_{\xi}+g^{-1}(\xi)p\theta f(w)\geq 0$ in $(0, T)$ ,
$w(0)=w_{\xi}(\tau)=0$ , (2.3)

where $w(\xi)=v(g^{-1}(\xi))$ and $T=+\infty$ if $\theta\geq 1,$ $= \frac{R^{1-\theta}}{1-\theta}$ if $\theta<1$ . In order to find
a function $w$ satisfying (2.3), we take any $b\in(0, T)$ and consider the following
auxiliary boundary value problem:

$\{$

$\lambda(|\phi_{\xi}|^{p-}2\phi\epsilon)_{\xi}+g^{-1}(b)^{p\theta}f(\phi)=0$ in $(0, b)$ ,
$\phi(0)=\phi(b)=0$ . (2.4)
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A change of scale $\xi=b\eta$ gives

$\{$

$\lambda(|\psi_{\eta}|^{p}-2\psi\eta)_{\eta}+\{bg-1(b)\theta\}^{p}f(\psi)=0$ in $(0,1)$ ,
$\psi(0)=\psi(1)=0$ ,

(2.5)

where $\psi(\eta)=\phi(b\eta)$ . Take $\lambda$ sufficiently small as

$\lambda\leq\{\frac{bg^{-1}(b)^{\theta}}{2C(f,p)}\}^{p}$

Then, we have already known from [18, Theorem 3.3] that (2.5) has a solution $\psi$

such that $\psi(x)=1$ in $[C_{\lambda,b}/b, 1-C_{\lambda,b}/b]$ and $0\leq\psi(x)<1$ otherwise, where

$C_{\lambda,b}= \frac{C(f,p)}{g^{-1}(b)^{\theta}}\lambda 1/p(\leq b/2)$ . (2.6)

Thus, (2.4) also has a solution $\phi$ such that $\phi(x)=1$ in $[C_{\lambda,b}, b-C_{\lambda,b}]$ and $0\leq\phi(x)<$

$1$ otherwise. Using $\phi$ , we construct a function $w$ satisfying (2.3) as follows: $w=\phi$

in $[0, C_{\lambda,b}),$ $=1$ in $[C_{\lambda,b}, T)$ . Indeed, since $g^{-1}$ is monotone decreasing,

$\lambda(|w_{\xi}|p-2w_{\xi})_{\xi}+g-1(\xi)^{p\theta}f(w)=\{g^{-}(1\xi)^{p}\theta-g^{-}(1b)p\theta\}f(\phi)\geq 0$ in $[0, C_{\lambda,b})$

and the boundary conditions are obviously satisfied. Therefore $v(p)=w(g(\rho))$

satisfies (2.2), hence the function

$v_{R,x0}(x)=\{$
1 if $0\leq|x-x_{0}|\leq g^{-1}(c_{\lambda,b})$ ,
$\phi(g(|x-x_{0}|))$ if $g^{-1}(c_{\lambda,b})<|x-x0|\leq R$

(2.7)

is a lower solution of $(\mathrm{P})_{\lambda,B(x0}R)$ .
Now, we define $\tilde{v}_{R,x_{0}}(x)=v_{R,x0}(x)$ in $B_{R}(x_{0}),$ $=0$ in $\Omega\backslash B_{R}(x\mathrm{o})$ . Then, one can

observe that $\tilde{v}$ is a lower solution of $(\mathrm{P})_{\lambda,\Omega}$ . Taking the function $u\equiv 1$ as an upper
solution, we obtain a maximal $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}0\mathrm{n}\overline{u}_{\lambda}$ of $(\mathrm{P})_{\lambda}$ such that $\tilde{v}_{R,x0}(x)\leq\overline{u}_{\lambda}(x)\leq 1$

for all $x\in\Omega$ by the monograph of Diaz [3, Theorem 4.14]. In particular, it follows
from (2.7) that $\overline{u}_{\lambda}(x)=1$ in $B_{\mathit{9}^{-1}}(C_{\lambda,b})(X_{0})$ . By the arbitrariness of $x_{0}$ satisfying
$B_{R}(X_{0})\subset\Omega$ and the uniqueness of maximal solution, it holds that $\overline{u}_{\lambda}(x)=1$ in
$\Omega\backslash \Omega_{R’}$ , where $R’=R’(\lambda, b)=R-g^{-1}(C_{\lambda},b)$ . Thus dist $(\mathcal{O}_{\lambda}, \partial\Omega)\leq R’$ . It follows
from (2.6) and l’Hospital’s theorem that $R’(\lambda, b)=R^{\theta}C_{\lambda,b}+o(\lambda^{1/}p)$ as $\lambdaarrow 0$ ; so we
obtain

$\lim_{\lambdaarrow}\sup_{0}\lambda^{-1/p}\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{t}}(\mathcal{O}_{\lambda}, \partial\Omega)\leq\lim_{\lambdaarrow 0}\lambda^{-1}/pR’(\lambda, b)=\{\frac{R}{g^{-1}(b)}\}^{\theta}C(f,p)$ .

Passing to the limit as $barrow \mathrm{O}$ , we conclude (2.1). $\square$

124



Proof of Theorem 1.1. Define

$\Lambda=\sup${ $\lambda>0;(\mathrm{P})_{\lambda}$ has a solution.}.
Since Lemma 2.1 implies A $>0$ , we will show A $<+\infty$ to see (i). Suppose that
there exists a sequence $\{\lambda_{m}\}_{m=1}^{\infty}$ such that $\lambda_{m}arrow\infty$ as $marrow\infty$ and $(\mathrm{P})_{\lambda_{m}}$ has
a solution $u_{m}=u_{\lambda_{m}}$ . Putting $\lambda=\lambda_{m}$ and $u=\varphi=u_{m}$ in (1.1), we have
$\lambda_{m}||\nabla u_{m}||_{p}^{p}=\int_{\Omega}u_{m}f(um)dx$ . Since $sf(s)\leq s^{p}$ for $s\in[0,1]$ if $p<q$ , it follows
that $\lambda_{m}||\nabla um||_{p}^{p}\leq||u_{m}||_{p}^{p}$ . Combining this inequality and the Poincar\’e inequality,
we obtain $C\lambda_{m}||u_{m}||_{p}^{p}\leq||u_{m}||_{p}^{p}$ , where $C$ is a positive constant. Since $||u_{m}||_{p}^{p}>0$ ,
the inequality is a contradiction for sufficiently large $m$ .

Next, we will prove (ii) and (iii). Consider the case $\lambda<\Lambda$ . bom the definition

of $(\mathrm{P})_{\lambda}$ , it follows from [3, Theorem 4.14] that $(\mathrm{P})_{\lambda}$ admits a maximal solution $\overline{u}_{\lambda}$

$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}\overline{u}_{\lambda}\geq u_{\mu}$ . (Note that the same arguments give the proof of $(\mathrm{i}\mathrm{i}\mathrm{i}).$ ) The case
$\lambda=\Lambda$ is treated as follow.s. Let $\{\lambda_{m}\}_{m=1}^{\infty}$ be a positive increasing sequence satisfying
$0<\lambda_{m}<\Lambda$ and $\lambda_{m}arrow\Lambda$ as $marrow\infty$ , and let $\overline{u}_{m}$ be the maximal solution of $(\mathrm{P})_{\lambda_{m}}$ .
From [11, Theorem 1], we know that $\{\overline{u}_{m}\}$ is uniformly bounded in $C^{1,\beta}(\overline{\Omega})$ for
some $\beta\in(0,1)$ . Thus, the Ascoli-Arzel\‘a theorem assures that there exist $u_{\Lambda}$ and
a subsequence of $\{\overline{u}_{m}\}$ , still denoted by $\{\overline{u}_{m}\}$ , such that $\overline{u}_{m}arrow u_{\Lambda}$ in $C^{1,\beta’}(\overline{\Omega})$ for
each $\beta’\in(0, \beta)$ . It is easy to see that $u_{\Lambda}\geq 0$ in $\Omega$ and that $u_{\Lambda}$ satisfies (1.1). To
observe that $u_{\Lambda}\not\equiv \mathrm{O}$ , we assume $u_{\Lambda}\equiv 0$ . Since $\{\overline{u}_{m}\}$ converges to $0$ uniformly in $\Omega$

as $marrow\infty$ , it follows from $p<q$ that for sufficiently large $m$

$C|| \overline{u}_{m}||^{p}\mathrm{p}\leq||\nabla\overline{u}_{m}||p\frac{1}{\lambda_{m}}p=\int_{\Omega}\overline{u}_{m}f(\overline{u}m)d_{X}\leq\frac{C}{2}||\overline{u}_{m}||^{p}p$ ;

which contradicts to $||\overline{u}_{m}||_{p}^{p}>0$ . Therefore, $u_{\Lambda}$ is a solution of $(\mathrm{P})_{\Lambda}$ . We have to show
the maximality of $u_{\Lambda}$ . Suppose that $u_{\Lambda}$ is not maximal. Then, $(\mathrm{P})_{\Lambda}$ has a maximal
solution $v_{\Lambda}\geq u_{\Lambda},$ $(\not\equiv u_{\Lambda})$ and there exists $x_{0}\in\Omega$ such that $u_{\Lambda}(X_{0})<v_{\Lambda}(x_{0})$ . By
(iii), since $\overline{u}_{m}$ decreases toward $u_{\Lambda}$ as $marrow\infty$ , it holds that $u_{\Lambda}(x_{0})\leq\overline{u}_{m}(x_{0})<$

$v_{\Lambda}(X_{0})$ for sufficiently large $m$ . On the other hand, it follows from (iii) and the fact
$\lambda_{m}<$ A that $v_{\Lambda}(x_{0})\leq\overline{u}_{m}(x_{0})$ . These inequalities contradict each other; so $u_{\Lambda}$ is
maximal, which can be written as $\overline{u}_{\Lambda}$ . Finally, one can $\mathrm{o}_{l}\mathrm{b}\mathrm{S}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}(\mathrm{i}\mathrm{v})$ in the similar
way as the proof for maximality of $u_{\Lambda}$ . $\square$

Proof of Theorem 1.2. The existence of $\lambda^{*}$ satisfying (i) is directly induced from
Lemma 2.1 and (ii) follows from (iii) of Theorem 1.1. Rom the proof of Lemma 2.1,
(iii) is obvious for sufficiently small $\epsilon>0$ such that $\Omega\backslash \Omega_{\epsilon}\neq\emptyset$ . It remains to show
(1.2), i.e., growth-order of $\mathcal{O}_{\lambda}$ as $\lambdaarrow 0$ near $\partial\Omega$ .
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Take any $x_{0}\in\partial\Omega$ . Let $a>0$ (resp. $R>0$) be sufficiently small (resp. large)
such that the annulus $A:=\{x\in \mathbb{R}^{N};a<|x-y0|<R\}$ , where $y_{0}:=x_{0}+an$ and
$n$ denotes the outer normal at $x_{0}$ , satisfies $\Omega\subset A$ . Define $\tilde{u}_{\lambda}$ by $\tilde{u}_{\lambda}:=\overline{u}_{\lambda}$ in $\Omega,$ $=0$

in $A\backslash \Omega$ . Then $\tilde{u}_{\lambda}$ is a lower solution of $(\mathrm{P})_{\lambda,A;}$ so a maximal solution $\overline{v}_{\lambda,A}$ of $(\mathrm{P})_{\lambda,A}$

exists and particularly

$\overline{u}_{\lambda}(x)\leq\overline{v}_{\lambda,A}(x)$ in $\Omega$ . (2.8)

$\mathrm{R}o\mathrm{m}$ the maximality, $\overline{v}_{\lambda,A}$ is radially symmetric on $A$ ; hence $v(\rho)=\overline{v}_{\lambda,A}(x)$ satisfies

$\{$

$\lambda(\rho^{N-1}|v\beta|^{p-2}v)_{\rho}\rho+\rho^{N-1}f(v)=0$ in $(a, R)$ ,

$v(a)=v(R)=0$ ,
(2.9)

where $\rho=|x-y_{01}$ . As in the proof of Lemma 2.1, we introduce a change of variable

$\xi=h(\rho)=\{$
$\mapsto^{1\theta}--1-\theta a^{1-\theta}$ if $\theta\neq 1$ ,

$\log_{a}^{\Delta}$ if $\theta=1$ ,

where $\theta:=(N-1)/(p-1)$ ; then (2.9) can be rewritten as

$\{$

$\lambda(|w_{\xi}|p-2w_{\xi})_{\xi}+h-1(\xi)p\theta f(w)=0$ in $(0, T)$ ,

$w(0)=w(T)=0$ ,

where $w(\xi)=v(h^{-1}(\xi))$ and $T=h(R)$ . It is easy to see that $w$ is a lower solution
of

$\{$

$\lambda(|\phi_{\xi}|p-2\phi_{\xi})_{\xi}+h^{-1}(b)^{p\theta}f(\phi)=0$ in $(0, b)$ ,
$\phi(0)=0,$ $\phi(b)=1$

(2.10)

for any $b\in(0, T)$ . Thus, (2.10) has a maximal $\mathrm{S}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\overline{\phi}$ such that

$w(\xi)\leq\overline{\phi}(\xi)$ in $(0, b)$ . (2.11)

In fact, we know from [18, Theorem 3.3] that $0<\overline{\phi}(\xi)<1$ in $(0, D_{\lambda,b}),$ $\overline{\phi}(\xi)=1$

otherwise, where $D_{\lambda,b}=C(f,p)\lambda^{1/p}/h^{-1}(b)^{\theta}(\leq b/2)$ . Hence, it follows from (2.8)
and (2.11) that $\overline{u}_{\lambda}(x)\leq\phi(h(|x-y0|))<1$ if $x\in\Omega$ and $a<|x-y0|<h^{-1}(D_{\lambda,b})$ .
This means that dist $(X0, \mathcal{O}_{\lambda})\geq h^{-1}(D_{\lambda,b})-a$ for each $x_{0}\in\partial\Omega$ . Making $a>0$
(resp. $R>0$ ) sufficiently small (resp. large), one can get an uniform estimate
dist $(\mathcal{O}_{\lambda}, \partial\Omega)\geq h^{-1}(D_{\lambda,b})-a$ . Since $h^{-1}(D_{\lambda,b})-a=a^{\theta}D_{\lambda,b}+o(\lambda^{1/p})$ as $\lambdaarrow 0$ , it
is possible to obtain that

$\lim_{\lambdaarrow}\inf_{0}\lambda-1/p\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{t}(\mathcal{O}_{\lambda}, \partial\Omega)\geq\{\frac{a}{h^{-1}(b)}\}^{\theta}C(f,p)$ .
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Passing to the limit $barrow \mathrm{O}$ , we have

$\lim_{\lambdaarrow}\inf_{0}\lambda-1/p\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{t}(\mathcal{O}_{\lambda}, \partial\Omega)\geq C(f,p)$ ; (2.12)

so combining (2.12) and (2.1) of Lemma 2.1, we conclude (1.2). $\square$

Remark 2.1. From (2.12) and more delicate analyses of (2.1), we can see

$\lim_{\lambdaarrow 0}\lambda^{-1/p}\sup_{x\in\partial\Omega}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, \mathcal{O}_{\lambda})=C(f,p)$ ,

which implies that $\mathcal{O}_{\lambda}$ uniformly spreads out toward the whole of $\Omega$ as the order of
$\lambda^{1/p}$ .

3 Proof of Theorem 1.3
In this section, we will show Theorem 1.3. Let us prepare some lemmas.

Lemma 3.1. For every $\lambda>0$ , the trivial solution $u=0$ is a local minimizer of $\Phi$

in $W_{0}^{1,p}$ .

Proof. Since $p<q$ , for any $\delta>0$ there exists $C_{\delta}>0$ such that $\overline{f}(s)\leq\delta s^{p-1}+$

$C_{\delta^{S^{q^{*}-1}}}$ , where $q^{*}$ is any number satisfying $p<q^{*}<p^{*}$ and $p^{*}:=Np/(N-p)$
if $p<N,$ $:=+\infty$ if $p\geq N$ . Then $\overline{F}(u)\leq\delta u^{p}/p+C_{\delta}u^{q^{\mathrm{r}}}/q^{*}$. Thus, the Sobolev
inequality assures

$\Phi(u)\geq\frac{\lambda}{p}||\nabla u||_{p}^{p}-\frac{\delta}{p}||u||_{p}p-\frac{C_{\delta}}{q}*||u||_{q}q^{*}*$

$\geq(\frac{\lambda-C_{1}\delta}{p}-\frac{C_{2}C_{\delta}}{q}|*|\nabla u||_{p)}q^{*}-p||\nabla u||^{p}p$

’

where $C_{1},$ $C_{2}$ are positive constants and $\delta\in(0, \lambda/C_{1})$ . Therefore, we see that there
exists a positive number $\rho$ such that $\Phi(u)\geq 0=\Phi(0)$ if $||\nabla u||_{p}\leq\rho$ .

Fix $\lambda\in(0, \Lambda)$ and let $\lambda_{i},$ $\epsilon_{i}(i=1,2)$ be numbers satisfying that $0<\lambda_{2}<$

$\lambda<\lambda_{1}\leq$ A and $( \lambda/\lambda_{1})^{1/(p)}q-<\epsilon_{1}<1<\epsilon_{2}<\min\{\xi, (\lambda/\lambda_{2})^{1/(q-}p)\}$, where $\xi$ is
the number appearing in the definition of $\overline{f}$. Then we can see that $u_{1}:=\epsilon_{1}\overline{u}_{\lambda_{1}}$ is
a lower solution and $u_{2}:=\epsilon_{2}\overline{u}_{\lambda_{2}}$ is an upper solution of $(\mathrm{P})_{\lambda}$ , respectively, where
$\overline{u}_{\lambda}.\cdot(i=1,2)$ is the maximal solution of $(\mathrm{P})_{\lambda_{i}}$ . Note that $\overline{u}_{\lambda}$ is an interior point of

$A:=$ { $u\in C_{0}^{1}(\overline{\Omega});u_{1}\leq u\leq u_{2}$ in $\Omega$ }, (3.1)

with respect to $C^{1}$-topology by Proposition 2.1, and that $f(u)=\overline{f}(u)\mathrm{f}_{\mathrm{o}\mathrm{r}}$. all $u\in A$ .
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Lemma 3.2. Let $\lambda\in(0, \Lambda)$ and assume that $\overline{u}_{\lambda}$ is a unique solution of $(\mathrm{P})_{\lambda}$ in $A$ .
Then $\overline{u}_{\lambda}$ is a local minimizer of $\Phi$ in $C_{0}^{1}$ .

Proof. Let $\tilde{f}$ be a truncated function $\mathrm{o}\mathrm{f}\overline{f}$ defined by

$\tilde{f}(x, s)$$:=$
and set $\tilde{F}(x, u):=\int_{0}^{u}\tilde{f}(x, s)dS$ . Using $\tilde{F}$ , we consider the following auxiliary func-
tional $\tilde{\Phi}$ associated with $\Phi$ :

$\tilde{\Phi}(u)=\frac{\lambda}{p}||\nabla u||_{p}p-\int_{\Omega}\tilde{F}(x, u)dX$.

It follows from the direct method that $\tilde{\Phi}$ has a global minimizer $u_{0}\in W_{0}^{1p}’$ . Therefore
$u_{0}$ satisfies

$\lambda\Delta_{p}u_{0}+\tilde{f}(x, u_{0})=0$ in $\Omega$ (3.2)

and we see $u_{0}\in C_{0}^{1}(\overline{\Omega})$ by Lieberman’s regularity result [11, The\‘Orem 1]. Moreover,
since $u_{1}$ and $u_{2}$ are a lower and an upper solution of $(\mathrm{P})_{\lambda}$ , respectively, and $u_{0}$ is
a solution of (3.2), we can prove $u_{1}\leq u_{0}\leq u_{2}$ in $\Omega$ (for details, see the proof of
[17, Lemma 2.2] $)$ . Therefore, $u_{0}\in A$ and (3.2) becomes $\lambda\Delta_{p}u_{0}+\overline{f}(u_{0})=0$ in

$\Omega$ ; consequently $u_{0}$ is a solution of $(\mathrm{P})_{\lambda}$ , which belongs to $A$ . By the assumption,
$u_{0}=\overline{u}_{\lambda},$ hence $\overline{u}_{\lambda}$ is a global minimizer of $\tilde{\Phi}$ in $W_{0}^{1,p}$ .

Now, if $\epsilon>0$ is sufficiently small, then any $u\in C_{0}^{1}(\overline{\Omega})$ with $||u-\overline{u}_{\lambda}||_{C}1<\epsilon$

satisfies $u\in A$ because $\overline{u}_{\lambda}$ is an interior point of $A$. Furthermore, for any $u\in A$

$\Phi(u)-\tilde{\Phi}(u)=\int_{\Omega}\int_{0}^{u(x)}(\overline{f}(s)-\tilde{f}(X, s))dSdx$

$= \int_{\Omega}\int_{0}^{u(x)}1(\overline{f}(S)-\overline{f}(u_{1}(X)))d_{Sd}x$

is a constant independent of $u.$ Since $\overline{u}_{\lambda}$ is a global minimizer of $\tilde{\Phi}$ , it consequently
becomes a local minimizer of $\Phi$ in $C_{0}^{1}$ . $\square$

Remark 3.1. The proof of Lemma 3.2 is essentially due to Br\’ezis and Nirenberg [2].

Lemma 3.3. Let $\lambda\in(0, \Lambda)$ and assume that $\overline{u}_{\lambda}$ is a unique solution of $(\mathrm{P})_{\lambda}$ in $A$ .
Then $\overline{u}_{\lambda}$ is a local minimizer of $\Phi$ in $W_{0}^{1,p}$ .
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Proof. Suppose that for any neighborhood $O\mathrm{o}\mathrm{f}\overline{u}_{\lambda}$ in $W_{0}^{1_{\mathrm{P}}}’$ , there exists $v\in O$ such
that $\Phi(v)<\Phi(\overline{u}_{\lambda})$ . Then, for sufficiently small $\epsilon>0$ there exists $v_{\epsilon}\in B_{\epsilon}$ such
that $\Phi(v_{\epsilon})<\Phi(\overline{u}_{\lambda})$ , where $B_{\epsilon}:=\{u\in W_{0}^{1,p}(\Omega);||u-\overline{u}_{\lambda}||2\leq\epsilon\}$ , because Sobolev’s
inequality allows us to take a neighborhood $O\subset B_{\epsilon}$ of $\overline{u}_{\lambda}$ in $W_{0}^{1,p}$ . Moreover, we
may assume that $v_{\epsilon}$ is a global minimizer of $\Phi$ in $B_{\epsilon}$ without loss of generality.

If $||v_{\epsilon}-\overline{u}_{\lambda}||_{2}<\epsilon$, then $v_{\epsilon}$ becomes a local minimizer of $\Phi$ in $W_{0}^{1,p}$ , and hence
$v_{\epsilon}$ is a solution of $(\mathrm{P})_{\lambda}$ and $0<v_{\epsilon}\leq 1$ . We next consider the case $||v_{\epsilon}-\overline{u}_{\lambda}||_{2}=\epsilon$ .
Then there exists Lagrange’s multiplier $\mu_{\epsilon}\leq 0$ (for the non-positivity, see the proof
of [17, Lemma 2.3] $)$ such that

$\lambda\int_{\Omega}|\nabla v_{\epsilon}|^{p}-2\nabla v\xi$ . $\nabla\zeta dX-\int_{\Omega}\overline{f}(v\epsilon)\zeta dX=\mu\epsilon\int_{\Omega}(v_{\epsilon}-\overline{u}_{\lambda})\zeta dx$

for all $\zeta\in W_{0}^{1,p}$ , i.e., $\lambda\triangle_{p}v_{\epsilon}+g(\mu\epsilon’ x, v_{\epsilon})=0$, where $g(a, x, s):=\overline{f}(s)+a(s-\overline{u}\lambda(x))$ .
Noting $\overline{u}_{\lambda}\leq 1$ , we can observe that $g(a, x, s)\geq 0$ in $\{a\leq 0\}\cross\Omega\cross\{s\leq 0\}$

and $g(a, x, s)\leq 0$ in $\{a\leq 0\}\cross\Omega\cross\{s\geq 1\}$ . These facts assure that $0\leq v_{\epsilon}\leq$

$1$ . Therefore, in any case, Lieberman’s regularity result [11, Theorem 1] yields
$||v_{\epsilon}||_{C}1,\beta\leq C$ for some constants $C>0$ and $\beta\in(0,1)$ independent of $\epsilon$ . Thus, the
Ascoli-Arzel\‘a theorem allows us to take a subsequence $\{v_{\epsilon’}\}$ of $\{v_{\epsilon}\}$ satisfying $v_{\epsilon’}arrow$

$\overline{u}_{\lambda}\mathrm{i}\mathrm{n}c1$ ( $\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ ,
$\mathrm{n}\mathrm{C}\mathrm{m}$

we have used $v_{\epsilon’}\in B_{\epsilon’}$ ). This result, together with
$\Phi(v_{\epsilon’})<\Phi(\overline{u}_{\lambda})$’

contradicts Lemma 3.2.

Remark 3.2. Br\’ezis and Nirenberg [2] have shown that for a certain functional cor-
responding to semilinear elliptic equations, its local minimizer in $C^{1}$ becomes a local
minimizer in $H^{1}=W^{1,2}$ . Lemma 3.3 is a $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{a}_{\wedge}\mathrm{I}$ extension of [2] to $W^{1,p}$ versus $C^{1}$ .

Proof of Theorem 1.3. As mentioned in Section 1, $\Phi$ satisfies the Palais-Smale con-
dition. Let $A$ be the set defined by (3.1). If there exists a solution distinct from

$\overline{u}_{\lambda}$ in $A$ , then we have nothing to prove. Thus we may assume that there exists
no solution in $A$ except for $\overline{u}_{\lambda}$ . Then, from Lemmas 3.1 and 3.3, we have obtained
two local minimizers $0$ and $\overline{u}_{\lambda}$ of $\Phi$ in $W_{0}^{1,p}$ . Therefore, it follows from an extended
Mountain pass theorem by Pucci and Serrin [13, Theorem 4] that there exists a third
critical point of $\Phi$ , which is a solution of $(\mathrm{P})_{\lambda}$ distinct from $0$ and $\overline{u}_{\lambda}$ . $\square$

Remark 3.3. With respect to multiplicity results for the p–Laplace operator, we have
the results of Ambrosetti, Garcia Azorero and Peral [1], Dr\’abek and Pohozaev [5],
and [16]. Theorem 1.3 is a maximal extension of [16, Theorem 1.3].

4 Remarks and Open Problems
In this section, we give some remarks and open problems with respect to $(\mathrm{P})_{\lambda}$ .
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Shape of Flat Core. The relation between the flat core and $\Omega$ is unknown. We
give an interesting question; when $\Omega$ is convex (resp. star-shaped), does the
flat core of maximal solution $u$ also become convex (resp. star-shaped) ? more
generally, also the level set $\{x\in\Omega;u(x)\geq c\}$ for any number $c\in[0,1]$ ? Such
problems have been considered for a class of semilinear equations (cf. Kawohl
[10] $)$ .

Radially Symmetric Case. As we have pointed out in Remark 1.3, Ouyang and
Shi [12] have considered the radially symmetric case when $2=p<q$ and ob-
tained the exact multiplicity result. In their studies, it is important to analyse
the corresponding linearized equation at turning points in the bifurcation dia-
gram. Since it seems that the idea of linearization for the $p$-Laplace operator
has not established, we can not trace their proofs.

However, when $\Omega$ is the unit ball in $\mathbb{R}^{N}$ , we can obtain an information about
the shape of maximal solution on the boundary of its flat core. Then, the
maximal solution (the unique solution if $p\geq q$) $u$ becomes radially symmetric
one; so that $u$ satisfies

$\{$

$\lambda(p^{N-1}|u_{\rho}|p-2u_{\rho})_{\rho}+\beta-1fN(u)=0$ in $(0,1)$ ,
$u_{\rho}(\mathrm{O})=0,$ $u(1)=0$.

For sufficiently small $\lambda>0,$ $u$ has a flat core: there exists $\rho_{0}\in(0,1)$ such
that $u(\rho)=1$ in $[0, \rho_{0}]$ and $u(\rho)<1,$ $u_{\rho}(\rho)<0$ in $(\rho_{0},1]$ . We can show the
following proposition (when $N=1$ , the same result has been shown in [15,
Lemma 2.1] by time-map method):

Proposition 4.1. The maximal solution $u$ satisfies that for any $\epsilon\in(0, r)$ ,
there exists $\delta>0$ such that if $\rho_{0}<p<p0+\delta$ , then

$C_{1}(\rho-p_{0)}\overline{p}\underline{\mathrm{r}}_{\overline{2}}\leq u(\rho_{0})-u(\rho)\leq C_{2}(p-p\mathrm{o})\overline{p}-\angle_{\overline{2}}$,

where

$C_{1}=( \frac{p-2}{p})^{\overline{p}\overline{2}}\underline{R}\{\frac{r-\epsilon}{2\lambda C(p,N,p\mathrm{o})}\}^{\frac{1}{p-2}}$ ,

$C_{2}=( \frac{p-2}{p})^{\overline{\mathrm{p}}-\overline{2}}f\{\frac{p(r+\mathcal{E})}{2\lambda(p-1)}\}^{\frac{1}{p-2}}$ ,

$C(p, N, p \mathrm{o})=\frac{p-1}{p}+(N-1)\frac{1-\rho 0}{p0}$.
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Parabolic Problem. The solutions of $(\mathrm{P})_{\lambda}$ are regarded as positive stationary so-
lutions of the following degenerate parabolic equation:

(4.1)

In one-dimensional case, the author and Yamada [18] have shown the existence
and uniqueness of global solution of (4.1) and the inclusion-relation of the $\omega-$

limit set into the set of stationary solutions $\phi$ , and studied stability properties
of $\phi$ . In connection with stability property, the author [15] has investigated the
local behavior (in the space-variable) of solutions. For any $(x, t)$ where solution
$u$ of (4.1) intersects flat hats of $\phi$ , the reaction effect for $u$ disappears and there
exists only the diffusion effect for $u$ , whose coefficient is $\lambda(p-1)|ux|p-2$ . When
$u_{0}$ touches $\phi$ anywhere in its flat hats, we can expect that $u(t;u0)$ keeps on
touching $\phi$ there and that the touching area does not spread out. We claim
that this is right if $u_{0}$ , which touches the flat hats, is very close to $\phi$ in a certain
sense. In case $u_{0}$ crosses a flat hat transversely, the diffusion may cause their
intersection points to change as a function of $t$ along $u(t;u_{0})$ . The paper [15]
assures that the area on which the intersections may change, is uniformly
bounded for $t$ . These phenomena will arise in high-dimensional case.
More generally, it is interesting to purchase the behavior of flat place of so-
lutions, which has flat cores when $t=0$. This is related to the waiting time
problem for the porous medium equation, and the studies which have been
done for the equation will be useful to observe flat cores for the p-Laplace
operator.
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