Large time behaviour of a generalized mean curvature flow

徳島大学 総合科学部 大沼 正樹（Masaki Ohnuma）

This is a joint work with Professor Yoshikazu Giga of Hokkaido University and Professor Moto－Hiko Sato of Muroran Institute of Technology［GOS］．

1．Introduction．We are interested in a motion of a hypersurface by its mean curvature with right angle boundary condition in a cylindrical domain．In particular，we would like to know how does behave the surface as time tends to infinity．

Let Ω^{\prime} be a convex bounded domain in \boldsymbol{R}^{N-1} with smooth boundary，where $N \geq 2$ ．We set a cylindrical domain $\Omega:=\Omega^{\prime} \times \boldsymbol{R}$ ．Suppose that $\Omega_{+}(t)$ and $\Omega_{-}(t)$ are open sets in Ω at time t and $\Omega_{+}(t) \cap \Omega_{-}(t)=\emptyset$ ．We set a hypersurface $\Gamma_{t}:=\partial \Omega_{+}(t) \cap \partial \Omega_{-}(t) \subset \bar{\Omega}$ at time $t ; \Gamma_{t}$ intersects the lateral boundary of Ω ．Let \boldsymbol{n} be a unit normal vector on Γ_{t} from $\Omega_{+}(t)$ to $\Omega_{-}(t)$ ；of course \boldsymbol{n} depends on time t ．We consider the mean curvature flow equation

$$
\begin{align*}
V=\kappa & \text { on } \quad \Gamma_{t} \tag{1.1a}\\
<\boldsymbol{n}, \nu>=0 & \text { on } \quad b \Gamma_{t}:=\partial \Omega \cap \Gamma_{t}, \tag{1.1b}
\end{align*}
$$

where V is normal velocity on Γ_{t} in the direction n, κ is mean curvature on Γ_{t} and ν is an outward unit normal vector on $\partial \Omega$ ．We are interested in the behaviour of Γ_{t} as time tends to infinity．If Γ_{0} is the graph of a function on Ω^{\prime} ，then there is a global－in－time graph－like smooth solution Γ_{t} of the mean curvature flow equation with right angle boundary condition starting from Γ_{0} ．Moreover，the solution Γ_{t} converges to a hyperplane perpendicular to $\partial \Omega$ in C^{∞} topology．These results are due to Huisken $[\mathrm{H}]$ ．It is interesting to study the large time behaviour of generalized interface evolution with a given initial（compact）hypersurface Γ_{0} not necessarily a graph－like surface．It is too naive to guess that the limit of Γ_{t} as $t \rightarrow \infty$ is always a single hyperplane．Consider an initial hypersurface Γ_{0} given by $r=r\left(x_{N}\right)$ where r is a distance from x_{N}－axis and Ω^{\prime} is a ball in \boldsymbol{R}^{N-1} centered at the origin．If $r=r\left(x_{N}\right)$ is an even convex function，we expect that Γ_{t} pinches in a finite time

[^0]if $r(0)$ is very small so that Γ_{0} has a thin neck near the origin of \boldsymbol{R}^{N} provided that $N \geq 3$. Then it is natural to guess that Γ_{t} becomes two pieces and each piece converges to a different hyperplane. This suggests that the limit of Γ_{t} may consist of several hyperplanes perpendicular to $\partial \Omega$. As already pointed out in [ES] Γ_{t} may have interior even if Γ_{0} has no interior; see also [G1], [G2] for the boundary value problems and references therein. This suggests that the limit of Γ_{t} may have interior. So the best we conjecture for general initial Γ_{0} is that the limit of Γ_{t} as $t \rightarrow \infty$ is a closed set in $\bar{\Omega}$ and that the boundary of Γ_{∞} consists of hyperplanes parallel to Ω^{\prime}.

To treat a hypersurface Γ_{t} we apply the level set approach as in [CGG] and [ES]. Roughly speaking, the level set approach is to regard Γ_{t} as the zero-level set of an auxiliary function $u:(0, \infty) \times \bar{\Omega} \rightarrow \boldsymbol{R}$; say

$$
\begin{aligned}
\Gamma_{t} & =\{x \in \bar{\Omega} ; u(t, x)=0\}, \\
\Omega_{ \pm}(t) & =\{x \in \bar{\Omega} ; \pm u(t, x)>0\}
\end{aligned}
$$

and each level set of u moves by (1.1a)-(1.1b). Then we obtain the level set equation of (1.1a)-(1.1b)

$$
\begin{array}{cl}
u_{t}-|\nabla u| \operatorname{div}(\nabla u /|\nabla u|)=0 & \text { in }(0, \infty) \times \Omega \\
\partial u / \partial \nu=0 & \text { on }(0, \infty) \times \partial \Omega \tag{1.2b}
\end{array}
$$

This is a degenerate parabolic equation. So we consider this equation in viscosity sense. This equation (1.2a)-(1.2b) was initially studied by [S] then by [GS]. They established a comparison principle to (1.2a)-(1.2b). Moreover, for each given bounded uniformly continuous function g such that

$$
\begin{equation*}
u(0, x)=g(x) \text { on } \bar{\Omega}, \tag{1.2c}
\end{equation*}
$$

they proved existence of global-in-time solution and uniqueness of solution to (1.2a)(1.2c). Instead of studying Γ_{t} directly, we study the large time behaviour of solution of (1.2a)-(1.2c). Then we have two sub problems:
(i) Does $u(t, x)$ converge as $t \rightarrow+\infty$?
(ii) What is property of the limit function?
2. Results. Before to state our results, we have to say assumptions on $g(x)$.

Assumptions on g. We assume that $g(x)$ is constant where $\left|x_{N}\right|$ is sufficiently large; i.e., there exist constants c_{1}, c_{2} and positive constant $m>0$ so that

$$
\begin{array}{lll}
g\left(x^{\prime}, x_{N}\right)=c_{1} & \text { for all } & x_{N} \geq m, x^{\prime} \in \overline{\Omega^{\prime}} \\
g\left(x^{\prime}, x_{N}\right)=c_{2} & \text { for all } & x_{N} \leq-m, x^{\prime} \in \overline{\Omega^{\prime}} . \tag{2.1}
\end{array}
$$

For a compact Γ_{0} this condition is not restrictive. Now we shall state our results.
Theorem 2.1(Convergence). Assume that Ω^{\prime} is a smoothly bounded convex domain in \mathbf{R}^{N-1}. Assume that $g \in C(\bar{\Omega})$ is as above. Then the unique viscosity solution $u \in C([0, \infty) \times \bar{\Omega})$ of (1.2a)-(1.2c) satisfying (2.1) with the same m, c_{1}, c_{2} at each time converges uniformly on $\bar{\Omega}$ to a function $v \in C(\bar{\Omega})$ as $t \rightarrow \infty$ that satisfies the level set minimal surface equation with the Neumann condition

$$
\begin{array}{cl}
-|\nabla v| \operatorname{div}(\nabla v /|\nabla v|)=0 & \text { in } \Omega \\
\partial v / \partial \nu=0 & \text { on } \partial \Omega \tag{2.2b}
\end{array}
$$

in the viscosity sense. (If g is Lipschitz continuous, so is v). Moreover, v fulfills (2.1) with the same m, c_{1} and c_{2}.

Remark 2.2. The uniqueness of solution of (1.2a)-(1.2c) satisfying (2.1) is proved by the comparison theorem [S], [GS]. We take continuous functions g^{-}, g^{+}independent of x^{\prime} such that

$$
\begin{aligned}
& g^{-}(x) \leq g(x) \leq g^{+}(x) \quad \text { on } \bar{\Omega}, \\
& g^{-}(x)=g(x)=g^{+}(x) \quad \text { for all } \quad\left|x_{N}\right| \geq m, x^{\prime} \in \overline{\Omega^{\prime}} .
\end{aligned}
$$

Since g^{-}and g^{+}are stationary solution of (1.2a)-(1.2b), comparison yields $g^{-} \leq$ $u(t, \cdot) \leq g^{+}$for all $t \geq 0$. This implies u satisfies (2.1) at each time.

Remark 2.3. For the Dirichlet boundary condition motion of Γ_{t} was studied by [SZ] and [ISZ] when Ω is bounded, mean convex. The same convergence theorem was proved by [ISZ] except the statement related to (2.1).

Remark 2.4. The assertion is still valid for arbitrary smoothly bounded convex domain Ω not necessarily a cylinder in \boldsymbol{R}^{N} except the statement related to (2.1). The proof goes as well as that of [ISZ].

Theorem 2.5 (Strong maximum principle). Let Ω^{\prime} be a smoothly bounded domain in \mathbf{R}^{N-1}. Assume that $v \in C(\bar{\Omega})$ is a viscosity solution of (2.2a)-(2.2b). If $v\left(x^{\prime}, x_{N}\right)$ is a constant for sufficiently large $x_{N}\left(o r-x_{N}\right)$, then v is independent of x^{\prime} as a function in $\bar{\Omega}$.

Remark 2.6. We cannot completely remove that v is a constant for sufficiently large x_{N}. If we remove this condition, we can make a counter example. Let $N=2$, $\Omega^{\prime}=(0,1)$ and $v(x)=x_{1}$. We easily see that v is a viscosity solution of (2.2a)(2.2b). However, each level set of v is parallel to x_{2}-axis. This means v is not a constant where x_{2} is sufficiently large.

Combining Theorems 2.1 and 2.5 we have:
Theorem 2.7. Under the same hypothesis of Theorem 2.1 the solution $u(t, x)$ converges to a function $v=v\left(x_{N}\right)$ (satisfying (2.1)) uniformly in $\bar{\Omega}$ as $t \rightarrow \infty$. In. particular for each $c \in \mathbf{R}$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \left\{\operatorname{dist}\left(x, \Gamma_{\infty}\right) ; x \in \Gamma_{t}\right\}=0 \tag{2.3}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Gamma_{\infty}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbf{R}^{N} ; v\left(x_{N}\right)=c, x^{\prime} \in \overline{\Omega^{\prime}}\right\} \\
& \Gamma_{t}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbf{R}^{N} ; u\left(t, x^{\prime}, x_{N}\right)=c\right\}
\end{aligned}
$$

where dist $(x, A)=\inf \{|x-y| ; y \in A\}$.
We conjecture that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \left\{\operatorname{dist}\left(y, \Gamma_{t}\right) ; y \in \Gamma_{\infty}\right\}=0 \tag{2.4}
\end{equation*}
$$

We can prove (2.4) when Γ_{∞} consists of a finite collection of parallel hyperplanes (perpendicular to x_{N}-axis). If (2.4) is proved, combining (2.3) and (2.4) implies that Γ_{t} converges to Γ_{∞} in the topology of the Hausdorff distance as $t \rightarrow \infty$.
3. Sketch of proof of Theorem 2.5. To prove Theorem 2.5 we establish a kind of strong maximum principle for (2.2a)-(2.2b).

Lemma 3.1 (Propagation of maximum, interior version). Let D^{\prime} be a domain in \mathbf{R}^{N-1} and let $D=D^{\prime} \times(\alpha, \beta)$ with $\alpha, \beta \in \mathbf{R}$. Let w be an upper semicontinuous viscosity subsolution of

$$
-|\nabla w| \operatorname{div}(\nabla w /|\nabla w|)=0 \quad \text { in } D
$$

Assume that w attains its maximum K in D.
Let $M \in \mathbf{R}$ be of form

$$
M=\sup \left\{x_{N} \in(\alpha, \beta) ; w\left(x^{\prime}, x_{N}\right)=K \quad \text { for some } x^{\prime} \in D^{\prime}\right\}
$$

If $M<\beta$ and $w(\cdot, M)$ attains its maximum K at some (interior) point $\xi^{\prime} \in D^{\prime}$, then $w\left(x^{\prime}, M\right)=K$ for all $x^{\prime} \in D^{\prime}$.

Lemma 3.2 (Boundary version). Let D and D^{\prime} be as in Lemma 3.1. Assume that ∂D^{\prime} is C^{2}. Let w be an upper semicontinuous viscosity subsolution of

$$
\begin{aligned}
-|\nabla w| \operatorname{div}(\nabla w /|\nabla w|)=0 & \text { in } \quad D \\
\partial w / \partial \nu=0 & \text { on } \quad \partial D^{\prime} \times(\alpha, \beta)
\end{aligned}
$$

Assume that w attains its maximum K in \bar{D}. Let $M \in \mathbf{R}$ be of form

$$
M=\sup \left\{x_{N} \in(\alpha, \beta) ; w\left(x^{\prime}, x_{N}\right)=K \quad \text { for some } \quad x^{\prime} \in \overline{D^{\prime}}\right\}
$$

If $M<\beta$ and $w(\cdot, M)$ attains its maximum K at some point $\xi^{\prime} \in \partial D^{\prime}$, then $w\left(x^{\prime}, M\right)=K$ for all $x^{\prime} \in \overline{D^{\prime}}$.

Sketch of proof of Theorem 2.5. We may assume that $v=v\left(x^{\prime}, x_{N}\right)$ is a constant c_{1} for sufficiently large x_{N}, say $x_{N} \geq m$. We set

$$
A_{\lambda}^{+}=\{x \in \bar{\Omega} ; v(x) \geq \lambda\}, A_{\lambda}^{-}=\{x \in \bar{\Omega} ; v(x) \leq \lambda\}
$$

To show that v is independent of x^{\prime}, it suffices to prove that A_{λ}^{+}and A_{λ}^{-}are perpendicular to x_{N}-axis for all $\lambda>c_{1}$ and $\lambda<c_{1}$, respectively. Here a set A in $\bar{\Omega}$ is called perpendicular to x_{N}-axis if $\left(x^{\prime}, x_{N}\right) \in A$ for some $x^{\prime} \in \overline{\Omega^{\prime}}$ implies $\left(z, x_{N}\right) \in A$ for all $z \in \overline{\Omega^{\prime}}$.
Claim. If A_{λ}^{+}and A_{λ}^{-}are perpendicular to x_{N}-axis for all $\lambda>c_{1}$ and $\lambda<c_{1}$, respectively, then $A_{c_{1}}^{+}$and $A_{c_{1}}^{-}$are perpendicular to x_{N}-axis.
We can check this by contradiction. There would exist $\hat{x}_{N} \in A_{c_{1}}^{+}$such that $v\left(\bar{x}^{\prime}, \hat{x}_{N}\right) \neq v\left(\bar{y}^{\prime}, \hat{x}_{N}\right)$ for some $\bar{x}^{\prime}, \bar{y}^{\prime} \in \overline{\Omega^{\prime}}$ with $\bar{x}^{\prime} \neq \bar{y}^{\prime}$. We may assume that $v\left(\bar{y}^{\prime}, \hat{x}_{N}\right)=c_{1}$ and we set $\mu=v\left(\bar{x}^{\prime}, \hat{x}_{N}\right)$. We consider the case $\mu<c_{1}$. Since $\hat{x}_{N} \in$ A_{μ}^{-}and $\mu<c_{1}$, we see that A_{μ}^{-}is perpendicular to x_{N}-axis; i.e., $v\left(x^{\prime}, \hat{x}_{N}\right)=\mu$ for all $x^{\prime} \in \overline{\Omega^{\prime}}$. However, this contradicts that there exists \bar{y}^{\prime} such that $v\left(\bar{y}^{\prime}, \hat{x}_{N}\right)=c_{1}$. We can prove the case $\mu>c_{1}$ similarly.

We shall only give a proof that A_{λ}^{+}is perpendicular to x_{N}-axis for all $\lambda>c_{1}$ since the proof for A_{λ}^{-}is symmetric by taking $-v$ instead of v. We may assume that $v \leq \lambda$ on $\bar{\Omega}$ by replacing v by $\min (v, \lambda)$ since (1.2a)-(1.2b) is geometric so that $\min (v, \lambda)$ is still a viscosity solution of (1.2a)-(1.2b) [CGG, S]. By these reduction it suffices to prove that

$$
A_{\lambda}^{+}=\{x \in \bar{\Omega} ; v(x)=\lambda\}
$$

is perpendicular to x_{N}-axis, when $v \leq \lambda$ on $\bar{\Omega}$ and $v=c_{1}<\lambda$ for $x_{N} \geq m$. We may assume that A_{λ}^{+}is nonempty.

Let Σ be the projection of A_{λ}^{+}on x_{N}-axis, i.e.,

$$
\Sigma=\left\{x_{N} \in \mathbf{R} ;\left(x^{\prime}, x_{N}\right) \in A_{\lambda}^{+}\right\} .
$$

Since $\overline{\Omega^{\prime}}$ is compact and A_{λ}^{+}is closed by continuity of v, it is easy to see that Σ is a closed set in R. Since $v=c_{1}<\lambda$ for $x_{N} \geq m, \Sigma$ is bounded from above. We have to take care of the case Σ is like a cantor set. For simplicity, we consider the case Σ is a bounded closed interval.
Step 1. At the boundary of Σ. If $v\left(x^{\prime}, x_{N}\right)$ is a viscosity subsolution of (2.2a)(2.2b) then so is $v\left(x^{\prime},-x_{N}\right)$. We apply Lemmas around the maximum of Σ and the minimum of Σ. We see that $v\left(x^{\prime}, x_{N}\right)=\lambda$ for all $x_{N} \in \partial \Sigma, x^{\prime} \in \overline{\Omega^{\prime}}$.
Step 2. On the interior of Σ. There would exist a set

$$
A_{-\lambda_{0}}^{-}:=\left\{x \in \bar{\Omega} ; v(x) \leq-\lambda_{0}\right\} \subset \overline{\Omega^{\prime}} \times \Sigma \quad \text { with } \quad-\lambda_{0}<\lambda .
$$

We may assume that $v(x) \geq-\lambda_{0}$ in $\bar{\Omega}$ by replacing v by $\max \left(v,-\lambda_{0}\right)$. We set $w(x):=-v(x)$ then $w(x) \leq \lambda_{0}$ in $\bar{\Omega}$. We see w is a viscosity subsolution of (2.2a)-(2.2b) since v is a viscosity supersolution of (2.2a)-(2.2b). Let Σ^{-}be the projection of $A_{-\lambda_{0}}^{-}$on $x_{N^{-}}$-axis. Applying Lemmas on the boundary of Σ^{-}implies that $v\left(x^{\prime}, x_{N}\right)=-\lambda_{0}$ for all $x_{N} \in \partial \Sigma^{-}, x^{\prime} \in \overline{\Omega^{\prime}}$. This is a contradiction.

We only give the proof of Lemma 3.1. Then we can prove Lemma 3.2. However, we do not give it here.

Proof of Lemma 3.1. We may assume that $K=0$ since w plus a constant is still a subsolution when w is a subsolution. We may also assume that $M=0$ by a translation.

We argue by contradiction. Suppose that there would exist $\zeta^{\prime} \in D^{\prime}$ such that $w\left(\zeta^{\prime}, 0\right)<0=K$. The basic strategy for the proof is to find a domain E in D and a test function $\varphi \in C^{2}(E)$ that satisfies

$$
\begin{align*}
& \max _{E}(w-\varphi)=(w-\varphi)\left(\hat{x}^{\prime}, \hat{x}_{N}\right), \tag{3.1}\\
& -|\nabla \varphi| \operatorname{div}(\nabla \varphi /|\nabla \varphi|)>0 \quad \text { at } \quad\left(\hat{x}^{\prime}, \hat{x}_{n}\right) \tag{3.2}
\end{align*}
$$

for some $\hat{x}=\left(\hat{x}^{\prime}, \hat{x}_{N}\right) \in E$. This evidently contradicts the assumption that w is a subsolution in D. Our construction of φ and E reflects the proof of the classical strong maximum principle in [PW], [GT].

1. Choice of a test function. Let w_{0} be a function on D^{\prime} of form

$$
w_{0}\left(x^{\prime}\right)=w\left(x^{\prime}, 0\right) .
$$

Since w_{0} is upper semicontinuous, there is an open ball B_{0} with $\overline{B_{0}} \subset D^{\prime}$ that satisfies

$$
\begin{aligned}
& w_{0}<0 \quad \text { in } \quad B_{0} \quad \text { and } \\
& w_{0}\left(y^{\prime}\right)=0 \quad \text { for some } y^{\prime} \in \partial B_{0}
\end{aligned}
$$

This is standard; see e.g. [PW]. (Indeed, we take a curve γ starting from ζ^{\prime} to ξ^{\prime} and denote by η^{\prime} the first point attaining $w_{0}=0$ on γ starting from ζ^{\prime}. Then there exists a point ζ_{1}^{\prime} on the $\operatorname{arc} \zeta^{\prime} \eta^{\prime}$ such that

$$
\zeta_{1}^{\prime} \in B\left(\eta^{\prime}, d / 2\right) \subset D^{\prime}
$$

where

$$
d=\operatorname{dist}\left(\gamma, \partial D^{\prime}\right)
$$

and $B\left(\eta^{\prime}, \sigma\right)$ denotes the open ball in \mathbf{R}^{N-1} of radius σ centered at η^{\prime}. We set

$$
r_{0}=\sup \left\{r ; w_{0}\left(x^{\prime}\right)<0 \quad \text { for all } \quad x^{\prime} \in B\left(\zeta_{1}^{\prime}, r\right) \subset D^{\prime}\right\}
$$

so that

$$
r_{0}<\left|\zeta_{1}^{\prime}-\eta\right|<d / 2
$$

If we set $B_{0}=B\left(\zeta_{1}^{\prime}, r_{0}\right)$, then B_{0} satisfies all desired properties.)

Let B_{1} be a little bit smaller open ball in B_{0} such that $\partial B_{0} \cap \partial B_{1}=\left\{y^{\prime}\right\}$. Let a be the center of B_{1} and $r_{1}\left(<r_{0}\right)$ be the radius of B_{1}. We take

$$
\begin{aligned}
& \varphi\left(x^{\prime}, x_{N}\right)=-\varepsilon_{1} z\left(x^{\prime}\right)-\varepsilon_{2} x_{N} \\
& z\left(x^{\prime}\right)=e^{-\gamma\left|x^{\prime}-a\right|^{2}}-e^{-\gamma r_{1}^{2}}
\end{aligned}
$$

with positive parameters $\varepsilon_{1}, \varepsilon_{2}$ and γ to be determined later. By definition one observe that

$$
\begin{align*}
0<z\left(x^{\prime}\right)<1 & \text { in } \quad B_{1}=B\left(a, r_{1}\right) \\
z\left(x^{\prime}\right)=0 & \text { on } \partial B_{1} \tag{3.3}\\
-1<z\left(x^{\prime}\right)<0 & \text { outside } \overline{B_{1}}
\end{align*}
$$

2. Choice of γ. For each $\mu=\varepsilon_{2} / \varepsilon_{1}$ there is $\gamma_{0}=\gamma_{0}(\mu)$ such that for $\gamma \geq \gamma_{0}$ it holds

$$
\begin{equation*}
-|\nabla \varphi| \operatorname{div}(\nabla \varphi /|\nabla \varphi|)>0 \quad \text { at all } \quad\left(x^{\prime}, x_{N}\right) \tag{3.4}
\end{equation*}
$$

with

$$
\frac{r_{1}}{2} \leq\left|x^{\prime}-a\right| \leq \frac{3 r_{1}}{2}, x_{N} \in \mathbf{R}
$$

Since

$$
-|\nabla \varphi| \operatorname{div}(\nabla \varphi /|\nabla \varphi|)=\varepsilon_{1}\left(\left|\nabla^{\prime} z\left(x^{\prime}\right)\right|^{2}+\mu^{2}\right)^{1 / 2} H(z)
$$

with $H(z)=\operatorname{div}^{\prime}\left\{\nabla^{\prime} z\left(x^{\prime}\right) /\left(\mu^{2}+\left|\nabla^{\prime} z\left(x^{\prime}\right)\right|^{2}\right)^{1 / 2}\right\}$, it suffices to prove that $H(z)\left(x^{\prime}\right)>$ 0 for x^{\prime} with $r_{1} \leq 2\left|x^{\prime}-a\right| \leq 3 r_{1}$ when γ is sufficiently large. Here ∇^{\prime} denotes the gradient in x^{\prime} and div ${ }^{\prime}$ denotes the divergence in x^{\prime}.

Since $z\left(x^{\prime}\right)$ is radial, i.e.,

$$
\begin{aligned}
& z\left(x^{\prime}\right)=g\left(\left|x^{\prime}-a\right|\right) \quad \text { with } \quad g(\rho)=e^{-\gamma \rho^{2}}-e^{-\gamma r_{1}^{2}} \\
& H(z)=\left(\frac{g^{\prime}}{\left(\left(g^{\prime}\right)^{2}+\mu^{2}\right)^{1 / 2}}\right)^{\prime}+\left.\frac{N-2}{\rho} \frac{g^{\prime}}{\left(\left(g^{\prime}\right)^{2}+\mu^{2}\right)^{1 / 2}}\right|_{\rho=\left|x^{\prime}-a\right|}
\end{aligned}
$$

Since $g^{\prime}(\rho)=-2 \gamma \rho e^{-\gamma \rho^{2}}, g^{\prime \prime}(\rho)=-2 \gamma e^{-\gamma \rho^{2}}+4 \gamma^{2} \rho^{2} e^{-\gamma \rho^{2}}$, we obtain

$$
H(z)=\frac{\left\{4 \mu^{2} \gamma^{2} \rho^{2}-2(N-1) \mu^{2} \gamma-8(N-2) \gamma^{3} \rho^{2} e^{-2 \gamma \rho^{2}}\right\} e^{-\gamma \rho^{2}}}{\left(4 \gamma^{2} \rho^{2} e^{-2 \gamma \rho^{2}}+\mu^{2}\right)\left(\left(g^{\prime}\right)^{2}+\mu^{2}\right)^{1 / 2}}
$$

with $\rho=\left|x^{\prime}-a\right|$. The quantity in $\left\}\right.$ is uniformly positive for $\rho, r_{1} \leq 2 \rho \leq 3 r_{1}$ provided that γ is sufficiently large say $\gamma>\gamma_{0}(\mu)$.
3. Choice of the domain $E, \varepsilon_{1}, \varepsilon_{2}$. Let y^{\prime} be the point as in Step 1. By definition

$$
w_{0}<0 \quad \text { in } \overline{B_{1}} \backslash\left\{y^{\prime}\right\} \quad \text { and } \quad w_{0}\left(y^{\prime}\right)=0 .
$$

We set $B_{2}=B\left(y^{\prime}, r_{1} / 2\right)$. Since $r_{1}<r_{0}<d / 2, B_{2}$ is contained in D^{\prime}. We take $\delta>0$ so small that

$$
\partial\left(B\left(a, r_{1}+\delta\right)\right) \cap \partial B_{2} \subset B_{0}
$$

We then divide the boundary of B_{2} into two pieces:

$$
C_{2}^{\prime}=\partial B_{2} \cap \overline{B\left(a, r_{1}+\delta\right)}, C_{2}^{\prime \prime}=\partial B_{2} \backslash \overline{B\left(a, r_{1}+\delta\right)}
$$

clearly ∂B_{2} is a disjoint union of C_{2}^{\prime} and $C_{2}^{\prime \prime}$. Since $w_{0}<0$ on a compact set C_{2}^{\prime}, there exists a constant $\ell>0$ that satisfies $w_{0} \leq-\ell$ on C_{2}^{\prime} by upper semicontinuity of w_{0}. Since w is upper semicontinuous,

$$
w \leq-\ell / 2 \quad \text { on } \quad C_{2}^{\prime} \times\left[\alpha^{\prime}, \beta^{\prime}\right],\left[\alpha^{\prime}, \beta^{\prime}\right] \subset(\alpha, \beta)
$$

for $\alpha^{\prime}<0<\beta^{\prime}$ sufficiently close to zero. We first fix $\alpha^{\prime}<0$ since $\left|z\left(x^{\prime}\right)\right|$ on $\overline{B_{2}}$ is bounded by 1 by (3.3), we take $\mu>\left(-\alpha^{\prime}\right)^{-1}$ so that

$$
\begin{equation*}
\sup \left\{z\left(x^{\prime}\right) ; x^{\prime} \in B_{2}\right\}\left(-\alpha^{\prime}\right)^{-1}<\mu \tag{3.5}
\end{equation*}
$$

for all $\gamma>0$. We fix γ with $\gamma>\gamma_{0}(\mu)$ so that (3.4) holds. We then take β^{\prime} smaller so that

$$
\begin{equation*}
-\sup \left\{z\left(x^{\prime}\right) ; x^{\prime} \in C_{2}^{\prime \prime}\right\} / \beta^{\prime}>\mu \tag{3.6}
\end{equation*}
$$

We set

$$
\begin{aligned}
& \sigma_{1}=\sup \left\{w\left(x^{\prime}, x_{N}\right) ; x^{\prime} \in C_{2}^{\prime}, \alpha^{\prime}<x_{N}<\beta^{\prime}\right\} \\
& \sigma_{2}=\sup \left\{w\left(x^{\prime}, \beta^{\prime}\right) ; x^{\prime} \in \overline{B_{2}}\right\} .
\end{aligned}
$$

By definition of C_{2}^{\prime} and $M=0$ we see that $\sigma_{1} \leq-\ell / 2, \sigma_{2}<0$. Choose $\varepsilon_{1}, \varepsilon_{2}$ sufficiently small so that

$$
\begin{equation*}
\max \left\{\sigma_{1}, \sigma_{2}\right\}+\varepsilon_{1}+\varepsilon_{2} \beta^{\prime}<0 \tag{3.7}
\end{equation*}
$$

keeping $\mu=\varepsilon_{2} / \varepsilon_{1}$. We take $E=B_{2} \times\left(\alpha^{\prime}, \beta^{\prime}\right)$ and fix $\alpha^{\prime}, \mu, \gamma, \beta^{\prime}, \varepsilon_{1}, \varepsilon_{2}$ satisfying (3.5)-(3.7) with $\gamma>\gamma_{0}(\mu)$.
4. Completion of the proof. To show (3.1) it suffices to prove

$$
\begin{equation*}
\max _{\partial E}(w-\varphi)<0 \tag{3.8}
\end{equation*}
$$

since $(w-\varphi)\left(y^{\prime}, 0\right)=0$ and $\left(y^{\prime}, 0\right) \in E$. We divide ∂E into four pieces
(a) $x^{\prime} \in C_{2}^{\prime}$ and $\alpha^{\prime}<x_{N}<\beta^{\prime}$,
(b) $x^{\prime} \in C_{2}^{\prime \prime}$ and $\alpha^{\prime}<x_{N}<\beta^{\prime}$,
(c) $x^{\prime} \in \overline{B_{2}}$ and $x_{N}=\alpha^{\prime}$,
(d) $x^{\prime} \in \overline{B_{2}}$ and $x_{N}=\beta^{\prime}$.

On the part (a) because of a bound $w \leq-\ell / 2$ we conclude $w-\varphi$ is negative if $\varepsilon_{1}, \varepsilon_{2}$ is taken by (3.7); note that $|z|$ is bounded independent of γ by (3.3). On the part (b) by (3.3)

$$
\sup \left\{z\left(x^{\prime}\right) ; x^{\prime} \in C_{2}^{\prime \prime}\right\}<0
$$

The negativity of $w-\varphi$ follows from (3.6). On the part (c) the negativity of $w-\varphi$ follows from (3.5). On the part (d) since $\sigma_{2}<0$, (3.7) implies the negativity of $w-\varphi$. Thus we have proved (3.8). Since (3.4) holds on $B_{2} \times \mathbf{R}$, we get desired φ and E satisfying (3.1) and (3.2).
Remark 3.3. Our Theorem 2.5 as well as Lemmas 3.1 and 3.2 applies more general equation than (2.2a). We may replace (2.2a) by

$$
\begin{equation*}
F\left(\nabla u, \nabla^{2} u\right)=0 \tag{3.9}
\end{equation*}
$$

with F satisfying
(i) $F:\left(\mathbf{R}^{N} \backslash\{0\}\right) \times \mathbf{S}^{N} \rightarrow \mathbf{R}$ is continuous and geometric in the sense of [CGG].
(ii) $F(p, O)=0$ for all $p \in \mathbf{R}^{N} \backslash\{0\}$.
(iii) For each $\lambda_{0}>0$ there exists $N_{0}>0$ such that if $\lambda_{\max }\left(Q_{\bar{p}}(X)\right) \leq \lambda_{0}$ and $\lambda_{\min }\left(Q_{\bar{p}}(X)\right) \leq-N_{0}\left(\right.$ resp. $\left.\lambda_{\min } \geq-\lambda_{0}, \lambda_{\max } \geq N_{0}\right)$ then $F\left(p, Q_{\bar{p}}(X)\right)>0$ (resp. $<0)$ for all $X \in \mathbf{S}^{N}$ and $p \in \mathbf{R}^{N} \backslash\{0\}$, where $Q_{\bar{p}}(X)=(I-\bar{p} \otimes \bar{p}) X(I-\bar{p} \otimes \bar{p})$ with $\bar{p}=p /|p|$.

Here $\mathbf{S}^{\boldsymbol{N}}$ denotes the space of all real symmetric matrices and $\lambda_{\min }(Y)$ and $\lambda_{\max }(Y)$ are the smallest and the largest eigenvalues of $Y \in \mathbf{S}^{N}$, respectively. Even if (2.2a) is replaced by (3.9) the proof of Lemma 3.1 is the same except step 2 where we have to replace (3.4) by

$$
F\left(\nabla \varphi, \nabla^{2} \varphi\right)>0 \quad \text { at all } \quad\left(x^{\prime}, x_{N}\right)
$$

satisfying $r_{1} \leq 2\left|x^{\prime}-a\right| \leq 3 r_{1}, x_{N} \in \mathbf{R}$. To prove (3.4') for large $\gamma \geq \gamma_{0}(\mu)$ the property (iii) is invoked. For example,

$$
F(p, X)=-\operatorname{trace}\left\{A(-\bar{p}) Q_{\bar{p}}(X)\right\}
$$

satisfies the above conditions (i)-(iii), where $A(\bar{p})$ is a given matrix in S^{N} and positive definite for $p \neq 0$. This F appear when we study a level set equation of the anisotropic mean curvature flow equation (for the anisotropic mean curvature equation see e.g. [Gur] and for its level set equation see e.g. [CGG].) Here we shall check the conditions (i)-(iii). For (i) and (ii) we can check easily. It remains to show (iii). We may assume that $Q_{\bar{p}}(X)$ is a diagonal matrix. Let $A(-\bar{p})=\left(a_{i j}\right)$ and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ be eigenvalues of $Q_{\bar{p}}(X)$ with $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N}$. Then we see

$$
-\operatorname{trace}\left\{A(-\bar{p}) Q_{\bar{p}}(X)\right\}=-\sum_{i=1}^{N} \lambda_{i} a_{i i} .
$$

From the assumption $\lambda_{N}=\lambda_{\max }\left(Q_{\bar{p}}(X)\right) \leq \lambda_{0}$ and $\lambda_{1}=\lambda_{\min }\left(Q_{\bar{p}}(X)\right) \leq-N_{0}$ we observe that

$$
-\sum_{i=1}^{N} \lambda_{i} a_{i i} \geq-\lambda_{1} a_{11}-\sum_{i=2}^{N} \lambda_{0} a_{i i}
$$

If $\left|\lambda_{1}\right|$ is sufficiently large then the condition (iii) holds. A similar remark applies Lemma 3.2. (Geometricity is not invoked for Lemmas 3.1 and 3.2.) To extend Theorem 2.5 for (3.9) we notice that properties (i)-(iii) are invariant under translation in space independent variables and order-preserving change of the dependent variable of (3.9); (i)-(iii) are invariant under multiplication with -1 to the dependent variable by taking $\tilde{F}(p, X)=F(-p,-X)$.

This extended theory applies level set equations of anisotropic mean curvature flow equations (see e.g. [Gur]) provided that the Frank diagram of interfacial energy is strictly convex in the sense that its all (inward) principal curvatures are positive.

Remark 3.4. Recently, a strong maximum principle for degenerate elliptic equations in viscosity sense was established by Bardi and Da Lio. Although they study fully nonlinear partial differential equation of the form

$$
F\left(x, u, \nabla u, \nabla^{2} u\right)=0
$$

here we only explain thier results on the strong maximum principle for the equation (3.9). Let $F:\left(\mathbf{R}^{N} \backslash\{0\}\right) \times \mathbf{S}^{N} \rightarrow \mathbf{R}$ be continuous and be lower semicontinuous on
$\mathbf{R}^{N} \times \mathbf{S}^{N}$. Assume that F is degenerete elliptic, i.e.,

$$
F(p, X) \leq F(p, Y) \quad \text { if } \quad X \geq Y \quad \text { and for all } \quad p \neq 0
$$

Moreover, they assume two properties on F. One is the nondegeneracy property, that is, there exist $\gamma_{0}>0$ such that

$$
\begin{equation*}
F(\nu, I-\gamma \nu \otimes \nu)>0 \quad \text { for all } \quad \gamma>\gamma_{0}, \nu \neq 0 \tag{3.10}
\end{equation*}
$$

The other is the scaling property, that is, there exist a function $\varphi>0$ such that

$$
\begin{equation*}
F(\xi s, \xi X) \geq \varphi(\xi) F(s, X) \quad \text { for all } \quad \xi>0, s \in[-1,0] \tag{3.11}
\end{equation*}
$$

There are many equations satisfying the above conditions. For example, the minus p-Laplacian, the minus ∞-Laplacian and the graph minimal surface equation. However, the level set minimal surface equation does not satisfy the conditon (3.10). Generally, geometric equations does not fulfill it. Thier proof of the strong maximum principle reflects the proof of the classical strong maximum principle in [PW], [GT] as same as our Lemma 3.1.

References

[BD] M. Bardi and F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, preprint.
[CGG] Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry 33 (1991), 749-786.
[ES] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geometry 33 (1991), 635-681.
[G1] Y. Giga, Evolving curves with boundary conditions, Proc. of "Curvature flow and related topics" (Levico, 1994)(eds. A. Damlamian et al.) GAKUTO Internat. Ser. Math. Sci. Appl. vol. 5, Gakkotosho, Tokyo (1995), pp. 99-109.
[G2] Y. Giga, A level set method for surface evolution equations, Sugaku 47(1995), 321-340. English translation, Sugaku Expositions, to appear.
[GOS] Y. Giga, M. Ohnuma and M.-H. Sato, On the strong maximum principle and the large time behaviour of generalized mean curvature flow with the Neumann boundary condition, J. Differential Equations 154 (1999), 107-131.
[GS] Y. Giga and M.-H. Sato, Neumann problem for singular degenerate parabolic equations, Differential and Integral Equations 6 (1993), 1217-1230.
[GT] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983.
[Gur] M. E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, The Clarendon Press, Oxford Univ. Press, New York, 1993.
[H] G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differential Equations 77 (1989), 369-378.
[ISZ] T. Ilmanen, P. Sternberg and W. Ziemer, Equilibrium solutions to generalized motion by mean curvature, J. Geom. Anal., to appear.
[PW] M. H. Protter and H. Weinberger, Maximum principles in differential equations, PrenticeHall, 1967.
[S] M.-H. Sato, Interface evolution with Neumann boundary condition, Adv. Math. Sci. Appl. 4 (1994), 249-264.
[SZ] P. Sternberg and W. P. Ziemer, Generalized motion by curvature with a Dirichlet condition, J. Differential Equations 114 (1994), 580-600.

Masaki Ohnurna
Department of Mathematical and Natural Sciences
Faculty of Integrated Arts and Sciences
The University of Tokushima
Tokushima 770-8502, JAPAN
E-mail: ohnuma@ias.tokushima-u.ac.jp

[^0]: This work of the author was completed when he was a JSPS Research Fellow．

