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1. Introduction. We are interested in a motion of a hypersurface by its
mean curvature with right angle boundary condition in a cylindrical domain. In
particular, we would like to know how does behave the surface as time tends to
infinity.

Let $\Omega’$ be a convex bounded domain in $R^{N-1}$ with smooth boundary, where
$N\geq 2$ . We set a cylindrical domain $\Omega:=\Omega’\cross R$ . Suppose that $\Omega_{+}(t)$ and
$\Omega_{-}(t)$ are open sets in $\Omega$ at time $t$ and $\Omega_{+}(t)\cap\Omega_{-}(t)=\emptyset$ . We set a hypersurface
$\Gamma_{t}:=\partial\Omega_{+}(t)\cap\partial\Omega_{-}(t)\subset\overline{\Omega}$ at time $t;\Gamma_{t}$ intersects the lateral boundary of $\Omega$ . Let
$n$ be a unit normal vector on $\Gamma_{t}$ from $\Omega_{+}(t)$ to $\Omega_{-}(t)$ ; of course $n$ depends on time
$t$ . We consider the mean curvature flow equation

$V=\kappa$ on $\Gamma_{t}$ , (l.la)

$<n,$ $\nu>=0$ on $b\Gamma_{t}:=\partial\Omega\cap\Gamma_{t}$ , (l.lb)

where $V$ is normal velocity on $\Gamma_{t}$ in the direction $n$ , $\kappa$ is mean curvature on $\Gamma_{t}$

and $\nu$ is an outward unit normal vector on $\partial\Omega$ . We are interested in the behaviour
of $\Gamma_{t}$ as time tends to infinity. If $\Gamma_{0}$ is the graph of a function on $\Omega’$ , then there is
a global-in-time graph-like smooth solution $\Gamma_{t}$ of the mean curvature flow equation

with right angle boundary condition starting from $\Gamma_{0}$ . Moreover, the solution $\Gamma_{t}$

converges to a hyperplane perpendicular to $\partial\Omega$ in $C^{\infty}$ topology. These results are
due to Huisken [H]. It is interesting to study the large time behaviour of generalized

interface evolution with a given initial (compact) hypersurface $\Gamma_{0}$ not necessarily a
graph-like surface. It is too naive to guess that the limit of $\Gamma_{t}$ as $tarrow\infty$ is always

a single hyperplane. Consider an initial hypersurface $\Gamma_{0}$ given by $r=r(x_{N})$ where
$r$ is a distance from $x_{N}$-axis and $\Omega’$ is a ball in $R^{N-1}$ centered at the origin. If
$r=r(x_{N})$ is an even convex function, we expect that $\Gamma_{t}$ pinches in a finite time
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if $r(\mathrm{O})$ is very small so that $\Gamma_{0}$ has a thin neck near the origin of $R^{N}$ provided
that $N\geq 3$ . Then it is natural to guess that $\Gamma_{t}$ becomes two pieces and each
piece converges to a different hyperplane. This suggests that the limit of $\Gamma_{t}$ may
consist of several hyperplanes perpendicular to $\partial\Omega$ . As already pointed out in [ES]
$\Gamma_{t}$ may have interior even if $\Gamma_{0}$ has no interior; see also [G1], [G2] for the boundary
value problems and references therein. This suggests that the limit of $\Gamma_{t}$ may have
interior. So the best we conjecture for general initial $\Gamma_{0}$ is that the limit of $\Gamma_{t}$ as
$tarrow\infty$ is a closed set in $\overline{\Omega}$ and that the boundary of $\Gamma_{\infty}$ consists of hyperplanes
parallel to $\Omega’$ .

To treat a hypersurface $\Gamma_{t}$ we apply the level set approach as in [CGG] and [ES].
Roughly speaking, the level set approach is to regard $\Gamma_{t}$ as the zero-level set of an
auxiliary function $u:(0, \infty)\cross\overline{\Omega}arrow R$ ; say

$\Gamma_{\iota=}\{X\in\overline{\Omega};u(t, X)=0\}$ ,

$\Omega_{\pm}(t)=\{_{X\in\overline{\Omega}};\pm u(t, X)>0\}$

and each level set of $u$ moves by $(1.\mathrm{l}\mathrm{a})-(1.\mathrm{l}\mathrm{b})$ . Then we obtain the level set equation
of $(1.\mathrm{l}\mathrm{a})-(1.\mathrm{l}\mathrm{b})$

$u_{t}-|\nabla u|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla u/|\nabla u|)=0$ in $(0, \infty)\cross\Omega$ , (1.2a)

$\partial u/\partial\nu=0$ on $(0, \infty)\mathrm{x}\partial\Omega$ . (1.2b)

This is a degenerate parabolic equation. So we consider this equation in viscos-
ity sense. This equation $(1.2\mathrm{a})-(1.2\mathrm{b})$ was initially studied by [S] then by [GS].

They established a comparison principle to $(1.2\mathrm{a})-(1.2\mathrm{b})$ . Moreover, for each given

bounded uniformly continuous function $g$ such that

$u(\mathrm{O}, x)=g(x)$ on $\overline{\Omega}$ , (1.2c)

they proved existence of global-in-time solution and uniqueness of solution to $(1.2\mathrm{a})-$

$(1.2\mathrm{c})$ . Instead of studying $\Gamma_{t}$ directly, we study the large time behaviour of solution
of $(1.2\mathrm{a})-(1.2\mathrm{c})$ . Then we have two sub problems:

(i) Does $u(t, x)$ converge as $tarrow+\infty$?

(ii) What is property of the limit function?

2. Results. Before to state our results, we have to say assumptions on $g(x)$ .

45



Assumptions on $g$ . We assume that $g(x)$ is constant where $|x_{N}|$ is sufficiently

large; i.e., there exist constants $c_{1},$ $c_{2}$ and positive constant $m>0$ so that

$g(x’, xN)=c_{1}$ for all $x_{N}\geq m,$ $x’\in\overline{\Omega’}$ ,
(2.1)

$g(x’, xN)=c_{2}$ for all $x_{N}\leq-m,$ $x’\in\overline{\Omega’}$ .

For a compact $\Gamma_{0}$ this condition is not restrictive. Now we shall state our results.

Theorem 2.1(Convergence). Assume that $\Omega’$ is a smoothly bounded convex
domain in $\mathrm{R}^{N-1}$ . Assume that $g\in C(\overline{\Omega})$ is as above. Then the unique viscosity

solution $u\in C([0, \infty)\cross\overline{\Omega})$ of $(\mathit{1}.\mathit{2}a)-(\mathit{1}.\mathit{2}c)$ satisfying (2.1) with the same $m,$ $c_{1},$ $c_{2}$

at each time converges uniformly on $\overline{\Omega}$ to a function $v\in C(\overline{\Omega})$ as $tarrow\infty$ that

satisfies the level set minimal surface equation with the Neumann condition

$-|\nabla v|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla v/|\nabla v|)=0$ in $\Omega$ , (2.2a)

$\partial v/\partial\nu=0$ on $\partial\Omega$ (2.2b)

in the viscosity sense. (If $g$ is Lipschitz continuous, so is $v$). Moreover, $v$ fulfills
(2.1) with the same $m,$ $c_{1}$ and $c_{2}$ .

Remark 2.2. The uniqueness of solution of $(1.2\mathrm{a})-(1.2\mathrm{c})$ satisfying (2.1) is proved by

the comparison theorem [S], [GS]. We take continuous functions $g-,$ $g\mathrm{e}\mathrm{p}+_{\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{d}}\mathrm{e}\mathrm{n}\mathrm{t}$

of $x’$ such that

$g^{-}(x)\leq g(x)\leq g^{+}(x)$ on $\overline{\Omega}$ ,

$g^{-}(x)=g(x)=g^{+}(x)$ for all $|x_{N}|\geq m,$ $x’\in\overline{\Omega’}$ .

Since $g^{-}$ and $g^{+}$ are stationary solution of $(1.2\mathrm{a})-(1.2\mathrm{b})$ , comparison yields $g^{-}\leq$

$u(t, \cdot)\leq g^{+}$ for all $t\geq 0$ . This implies $u$ satisfies (2.1) at each time.

Remark 2.3. For the Dirichlet boundary condition motion of $\Gamma_{t}$ was studied by [SZ]

and [ISZ] when $\Omega$ is bounded, mean convex. The same convergence theorem was
proved by [ISZ] except the statement related to (2.1).

Remark 2.4. The assertion is still valid for arbitrary smoothly bounded convex
domain $\Omega$ not necessarily a cylinder in $R^{N}$ except the statement related to (2.1).

The proof goes as well as that of [ISZ].
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Theorem 2.5 (Strong maximum principle). Let $\Omega’$ be a smoothly bounded
domain in $\mathrm{R}^{N-1}$ . Assume that $v\in C(\overline{\Omega})$ is a viscosity solution of $(\mathit{2}.\mathit{2}a)-(\mathit{2}.\mathit{2}b)$ .
If $v(x’, xN)$ is a constant for sufficiently large $x_{N}(or-X_{N})$ , then $v$ is independent

of $x’$ as a function in $\overline{\Omega}$ .

Remark 2.6. We cannot completely remove that $v$ is a constant for sufficiently
large $x_{N}$ . If we remove this condition, we can make a counter example. Let $N=2$ ,
$\Omega’=(0,1)$ and $v(x)=x_{1}$ . We easily see that $v$ is a viscosity solution of $(2.2\mathrm{a})-$

$(2.2\mathrm{b})$ . However, each level set of $v$ is parallel to $x_{2}$ -axis. This means $v$ is not a
constant where $x_{2}$ is sufficiently large.

Combining Theorems 2.1 and 2.5 we have:

Theorem 2.7. Under the same hypothesis of Theorem 2.1 the solution $u(t, x)$

converges to a function $v=v(x_{N})$ (satisfying (2.1)) uniformly in $\overline{\Omega}$ as $tarrow\infty$ . In
particular for each $c\in \mathrm{R}$

$\lim_{tarrow\infty}\sup\{\mathrm{d}\mathrm{i}_{\mathrm{S}}\mathrm{t}(x, \mathrm{r}_{\infty});x\in\Gamma_{t}\}=0$ (2.3)

with

$\Gamma_{\infty}=\{(_{X’x},N)\in \mathrm{R}^{N}; v(x_{N})=c, x’\in\overline{\Omega’}\}$ ,

$\Gamma_{t}=\{(xxN)’,\in \mathrm{R}^{N}; u(t, X’, XN)=C\}$ ,

where dist $(x, A)= \inf\{|x-y|;y\in A\}$ .

We conjecture that

$\lim_{tarrow\infty}\sup\{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(y, \Gamma_{t});y\in\Gamma_{\infty}\}=0$. (2.4)

We can prove (2.4) when $\Gamma_{\infty}$ consists of a finite collection of parallel hyperplanes
(perpendicular to $x_{N}$-axis). If (2.4) is proved, combining (2.3) and (2.4) implies
that $\Gamma_{t}$ converges to $\Gamma_{\infty}$ in the topology of the Hausdorff distance as $tarrow\infty$ .

3. Sketch of proof of Theorem 2.5. To prove Theorem 2.5 we establish a
kind of strong maximum principle for $(2.2\mathrm{a})-(2.2\mathrm{b})$ .

Lemma 3.1 (Propagation of maximum, interior version). Let $D’$ be a
domain in $\mathrm{R}^{N-1}$ and let $D=D’\cross(\alpha, \beta)$ with $\alpha,$ $\beta\in$ R. Let $w$ be an upper
semicontinuous viscosity subsolution of

$-|\nabla w|\mathrm{d}\mathrm{i}\mathrm{V}(\nabla w/|\nabla w|)=0$ in $D$ .
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Assume that $w$ attains its maximum $K$ in $D$ .
Let $M\in \mathrm{R}$ be of form

$M= \sup${ $x_{N}\in(\alpha,$ $\beta);w(x’,$ $x_{N})=K$ for some $x’\in D’$ }

If $M<\beta$ and $w(\cdot, M)$ attain8 its maximum $K$ at some (interior) point $\xi’\in D’$ ,

then $w(x’, M)=K$ for all $x’\in D’$ .

Lemma 3.2 (Boundary version). Let $D$ and $D’$ be as in Lemma 3.1. $A_{S\mathit{8}}ume$

that $\partial D’$ is $C^{2}$ . Let $w$ be an upper semicontinuous viscosity subsolution of

$-|\nabla w|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla w/|\nabla w|)=0$ in $D$ ,

$\partial w/\partial\nu=0$ on $\partial D’\cross(\alpha, \beta)$ .

Assume that $w$ attains its maximum $K$ in $\overline{D}$ . Let $M\in \mathrm{R}$ be of form

$M= \sup${ $x_{N}\in(\alpha,$ $\beta);w(x’,$ $xN)=K$ for some $x’\in\overline{D’}$}.

If $M<\beta$ and $w(\cdot, M)$ attains its maximum $K$ at some point $\xi’\in\partial D’$ , then
$w(x’, M)=K$ for all $x’\in\overline{D’}$ .

Sketch of proof of Theorem 2.5. We may assume that $v=v(X’, XN)$ is a constant
$c_{1}$ for sufficiently large $x_{N}$ , say $x_{N}\geq m$ . We set

$A_{\lambda}^{+}=\{x\in\overline{\Omega};v(x)\geq\lambda\},$ $A_{\lambda}^{-}=\{x\in\overline{\Omega};v(x)\leq\lambda\}$ .

To show that $v$ is independent of $x’$ , it suffices to prove that $A_{\lambda}^{+}$ and $A_{\lambda}^{-}$ are
perpendicular to $x_{N}$-axis for all $\lambda>c_{1}$ and $\lambda<c_{1}$ , respectively. Here a set $A$

in $\overline{\Omega}$ is called perpendicular to $x_{N}$-axis if $(x’, x_{N})\in A$ for some $x’\in\overline{\Omega’}$ implies
$(z, x_{N})\in A$ for all $z\in\overline{\Omega’}$ .
Claim. If $A_{\lambda}^{+}$ and $A_{\lambda}^{-}$ are perpendicular to $x_{N}$-axis for all $\lambda>c_{1}$ and $\lambda<c_{1}$ ,

respectively, then $A_{\mathrm{c}_{1}}^{+}$ and $A_{c_{1}}^{-}$ are perpendicular to $x_{N}$-axis.

We can check this by contradiction. There would exist $\hat{x}_{N}\in A_{c_{1}}^{+}$ such that
$v(\overline{x}’,\hat{x}N)\neq v(\overline{y}’,\hat{x}_{N})$ for some $\overline{x}’,\overline{y}’\in\overline{\Omega’}$ with $\overline{x}’\neq\overline{y}’$ . We may assume that
$v(\overline{y}’,\hat{x}N)=c_{1}$ and we set $\mu=v(\overline{x}’,\hat{x}N)$ . We consider the case $\mu<c_{1}$ . Since $\hat{x}_{N}\in$

$A_{\mu}^{-}$ and $\mu<c_{1}$ , we see that $A_{\mu}^{-}$ is perpendicular to $x_{N}$-axis; i.e., $v(x’,\hat{x}_{N})=\mu$ for

all $x’\in\overline{\Omega’}$. However, this contradicts that there exists $\overline{y}’$ such that $v(\overline{y}’,\hat{x}_{N})=c_{1}$ .

We can prove the case $\mu>c_{1}$ similarly.
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We shall only give a proof that $A_{\lambda}^{+}$ is perpendicular to $x_{N}$-axis for all $\lambda>c_{1}$

since the proof for $A_{\lambda}^{-}$ is symmetric by taking $-v$ instead of $v$ . We may assume
that $v\leq\lambda$ on $\overline{\Omega}$ by replacing $v$ by $\min(v, \lambda)$ since $(1.2\mathrm{a})-(1.2\mathrm{b})$ is geometric so that
$\min(v, \lambda)$ is still a viscosity solution of $(1.2\mathrm{a})-(1.2\mathrm{b})$ [CGG, $\mathrm{S}$]. By these reduction
it suffices to prove that

$A_{\lambda}^{+}=\{X\in\overline{\Omega};v(X)=\lambda\}$

is perpendicular to $x_{N}$-axis, when $v\leq\lambda$ on $\overline{\Omega}$ and $v=c_{1}<\lambda$ for $x_{N}\geq m$ . We
may assume that $A_{\lambda}^{+}$ is nonempty.

Let $\Sigma$ be the projection of $A_{\lambda}^{+}$ on $x_{N}$-axis, i.e.,

$\Sigma=\{x_{N}\in \mathrm{R};(x’, x_{N})\in A_{\lambda}^{+}\}$ .

Since $\overline{\Omega\prime}$ is compact and $A_{\lambda}^{+}$ is closed by continuity of $v$ , it is easy to see that $\Sigma$ is
a closed set in R. Since $v=c_{1}<\lambda$ for $x_{N}\geq m,$ $\Sigma$ is bounded from above. We
have to take care of the case $\Sigma$ is like a cantor set. For simplicity, we consider the
case $\Sigma$ is a bounded closed interval.
Step 1. At the boundary of $\Sigma$ . If $v(X’, XN)$ is a viscosity subsolution of $(2.2\mathrm{a})-$

$(2.2\mathrm{b})$ then so is $v(x’, -X_{N})$ . We apply Lemmas around the maximum of $\Sigma$ and the
minimum of $\Sigma$ . We see that $v(x’, xN)=\lambda$ for all $x_{N}\in\partial\Sigma,$ $x’\in\overline{\Omega’}$ .
Step 2. On the interior of $\Sigma$ . There would exist a set

$A_{-\lambda_{\mathrm{O}}}^{-}:=\{x\in\overline{\Omega};v(x)\leq-\lambda_{0}\}\subset\overline{\Omega’}\cross\Sigma$ with $-\lambda_{0}<\lambda$ .

We may assume that $v(x)\geq-\lambda_{0}$ in $\overline{\Omega}$ by replacing $v$ by $\max(v, -\lambda_{0})$ . We set
$w(x):=-v(x)$ then $w(x)\leq\lambda_{0}$ in $\overline{\Omega}$ . We see $w$ is a viscosity subsolution of
$(2.2\mathrm{a})-(2.2\mathrm{b})$ since $v$ is a viscosity supersolution of $(2.2\mathrm{a})-(2.2\mathrm{b})$ . Let $\Sigma^{-}$ be the
projection of $A_{-\lambda_{0}}^{-}$ on $x_{N}$-axis. Applying Lemmas on the boundary of $\Sigma^{-}$ implies

that $v(x’, x_{N})=-\lambda_{0}$ for all $x_{N}\in\partial\Sigma^{-},$ $x’\in\overline{\Omega’}$. This is a contradiction.

We only give the proof of Lemma 3.1. Then we can prove Lemma 3.2. However,

we do not give it here.

Proof of Lemma 3.1. We may assume that $K=0$ since $w$ plus a constant is
still a subsolution when $w$ is a subsolution. We may also assume that $M=0$ by a
translation.
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We argue by contradiction. Suppose that there would exist $\zeta’\in D’$ such that
$w(\zeta’, 0)<0=K$ . The basic strategy for the proof is to find a domain $E$ in $D$ and
a test function $\varphi\in C^{2}(E)$ that satisfies

$\max_{E}(w-\varphi)=(w-\varphi)(\hat{X}\hat{x}_{N})/,$ , (3.1)

$-|\nabla\varphi|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla\varphi/|\nabla\varphi|)>0$ at $(\hat{x}’,\hat{x}_{n})$ (3.2)

for some $\hat{x}=(\hat{x}’,\hat{x}_{N})\in E$ . This evidently contradicts the assumption that $w$ is a
subsolution in $D$ . Our construction of $\varphi$ and $E$ reflects the proof of the classical

strong maximum principle in [PW], [GT].

1. Choice of a test function. Let $w_{0}$ be a function on $D’$ of form

$w_{0}(X’)=w(X’, 0)$ .

Since $w_{0}$ is upper semicontinuous, there is an open ball $B_{0}$ with $\overline{B_{0}}\subset D’$ that

satisfies

$w_{0}<0$ in $B_{0}$ and

$w_{0}(y’)=0$ for some $y’\in\partial B_{0}$ .

This is standard; see e.g. [PW]. (Indeed, we take a curve $\gamma$ starting from $\zeta’$ to $\xi’$

and denote by $\eta’$ the first point attaining $w_{0}=0$ on $\gamma$ starting from $\zeta’$ . Then there

exists a point $\zeta_{1}’$ on the arc $\zeta’\eta’$ such that

$\zeta_{1}’\in B(\eta’, d/2)\subset D’$ ,

where
$d=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\gamma, \partial D’)$

and $B(\eta’, \sigma)$ denotes the open ball in $\mathrm{R}^{N-1}$ of radius $\sigma$ centered at $\eta’$ . We set

$r_{0}= \sup${$r;w_{0}(X’)<0$ for all $x’\in B(\zeta_{1}^{;},$ $r)\subset D’$ }

so that
$r_{0}<|\zeta_{1}’-\eta|<d/2$ .

If we set $B_{0}=B(\zeta_{1}’, r_{0})$ , then $B_{0}$ satisfies all desired properties.)
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Let $B_{1}$ be a little bit smaller open ball in $B_{0}$ such that $\partial B_{0}\cap\partial B_{1}=\{y’\}$ . Let
$a$ be the center of $B_{1}$ and $r_{1}(<r_{0})$ be the radius of $B_{1}$ . We take

$\varphi(x’, XN)=-\epsilon_{1}z(x’)-\epsilon_{2}x_{N}$ ,

$z(x’)=e^{-\gamma|x’}-a|^{2}-e^{-\gamma r_{1}^{2}}$

with positive parameters $\epsilon_{1},$ $\epsilon_{2}$ and $\gamma$ to be determined later. By definition one
observe that

$0<z(x)’<1$ in $B_{1}=B(a, r_{1})$ ,

$z(x’)=0$ on $\partial B_{1}$ , } (3.3)

$-1<z(x)’<0$ outside $\overline{B_{1}}$ .

2. Choice of $\gamma$ . For each $\mu=\epsilon_{2}/\epsilon_{1}$ there is $\gamma_{0}=\gamma_{0}(\mu)$ such that for $\gamma\geq\gamma_{0}$ it
holds

$-|\nabla\varphi|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla\varphi/|\nabla\varphi|)>0$ at all $(x’, x_{N})$ (3.4)

with
$\frac{r_{1}}{2}\leq|x’-a|\leq\frac{3r_{1}}{2},$ $x_{N}\in \mathrm{R}$ .

Since
$-|\nabla\varphi|\mathrm{d}\mathrm{i}\mathrm{v}(\nabla\varphi/|\nabla\varphi|)=\epsilon 1(|\nabla\prime z(X’)|^{2}+\mu^{2})^{1/}2H(z)$

with $H(z)=\mathrm{d}\mathrm{i}\mathrm{v}’\{\nabla_{Z(x)}’’/(\mu^{2}+|\nabla’Z(x’)|^{2})1/2\}$, it suffices to prove that $H(z)(x’)>$
$0$ for $x’$ with $r1\leq 2|x’-a|\leq 3r_{1}$ when $\gamma$ is sufficiently large. Here $\nabla’$ denotes the
gradient in $x’$ and $\mathrm{d}\mathrm{i}\mathrm{v}’$ denotes the divergence in $x’$ .

Since $z(x)$’ is radial, i.e.,

$z(x)’=g(|x’-a|)$ with $g(\rho)=e^{-\gamma\rho^{2}}-e^{-\gamma r_{1}^{2}}$ ,

$H(z)=( \frac{g’}{((g’)^{2}+\mu)^{1}2/2})’+\frac{N-2}{\rho}\frac{g’}{((g’)^{2}+\mu^{2})^{1}/2}|_{\rho=|x^{i}-}a|$

Since $g’(\rho)=-2\gamma\beta e-\gamma\rho,//(g\beta)=-22\gamma e^{-\gamma}\rho 2+4\gamma\rho e22-\gamma\rho^{2}$ , we obtain

$H(z)= \frac{\{4\mu^{2}\gamma^{2}\beta-22(N-1)\mu\gamma-8(2N-2)\gamma^{3}\rho 2-2e\gamma\rho\}2e^{-\gamma\rho}2}{(4\gamma^{2}\rho^{22}e^{-}\gamma\beta+\mu)22((g’)2+\mu 2)^{1/}2}$

with $\rho=|x’-a|$ . The quantity in $\{\}$ is $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}_{\mathrm{o}\mathrm{r}}\mathrm{I}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{y}$ positive for $\rho,$ $r_{1}\leq 2\rho\leq 3r_{1}$

provided that $\gamma$ is sufficiently large say $\gamma>\gamma_{0}(\mu)$ .
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3. Choice of the domain $E,$ $\epsilon_{1},$ $\epsilon_{2}$ . Let $y’$ be the point as in Step 1. By definition

$w_{0}<0$ in $\overline{B_{1}}\backslash \{y’\}$ and $w_{0}(y’)=0$ .

We set $B_{2}=B(y’, r1/2)$ . Since $r_{1}<r_{0}<d/2,$ $B_{2}$ is contained in $D’$ . We take
$\delta>0$ so small that

$\partial(B(a, r_{1}+\delta))\cap\partial B2\subset B_{0}$ .

We then divide the boundary of $B_{2}$ into two pieces:

$C_{2}’=\partial B_{2}\mathrm{n}\overline{B(a,\Gamma_{1}+\delta)},$ $C_{2’}’=\partial B_{2}\backslash \overline{B(a,r_{1}+\delta)}$;

clearly $\partial B_{2}$ is a disjoint union of $C_{2}’$ and $C_{2}^{\prime/}$ . Since $w_{0}<0$ on a compact set $C_{2}’$ ,

there exists a constant $\ell>0$ that satisfies $w_{0}\leq-\ell$ on $C_{2}’$ by upper semicontinuity

of $w_{0}$ . Since $w$ is upper semicontinuous,

$w\leq-\ell/2$ on $C_{2}’\cross[\alpha’, \beta’],$ $[\alpha’, \beta’]\subset(\alpha, \beta)$

for $\alpha’<0<\beta’$ sufficiently close to zero. We first fix $\alpha’<0$ since $|z(x’)|$ on $\overline{B_{2}}$ is
bounded by 1 by (3.3), we take $\mu>(-\alpha’)^{-1}$ so that

$\sup\{z(x^{;});x’\in B_{2}\}(-\alpha)^{-1}’<\mu$ (3.5)

for all $\gamma>0$ . We fix $\gamma$ with $\gamma>\gamma \mathrm{o}(\mu)$ so that (3.4) holds. We then take $\beta^{\prime_{\mathrm{S}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}}}\mathrm{r}$

so that
$- \sup\{z(x’);x’\in C_{2}^{\prime/}\}/\beta’>\mu$ . (3.6)

We set

$\sigma_{1}=\sup\{w(X’, X_{N});x’\in C_{2}’, \alpha’<x_{N}<\beta’\}$ ,

$\sigma_{2}=\sup\{w(X’, \beta’);x’\in\overline{B_{2}}\}$.

By definition of $C_{2}’$ and $M=0$ we see that $\sigma_{1}\leq-\ell/2,$ $\sigma_{2}<0$ . Choose $\epsilon_{1},$ $\epsilon_{2}$

sufficiently srnall so that

$\max\{\sigma_{1}, \sigma_{2}\}+\epsilon_{1}+\epsilon_{2}\beta/<0$ (3.7)

keeping $\mu=\epsilon_{2}/\epsilon_{1}$ . We take $E=B_{2}\cross(\alpha’, \beta’)$ and fix $\alpha’,$
$\mu,$ $\gamma,$

$\beta’,$
$\epsilon_{1},$ $\epsilon_{2}$ satisfying

$(3.5)-(3.7)$ with $\gamma>\gamma_{0}(\mu)$ .
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4. Completion of the proof. To show (3.1) it suffices to prove

$\max(w-\partial E\varphi)<0$ (3.8)

since $(w-\varphi)(y^{\prime,\mathrm{o}})=0$ and $(y’, \mathrm{o})\in E$ . We divide $\partial E$ into four pieces

(a) $x’\in C_{2}’$ and $\alpha’<x_{N}<\beta’$ ,
(b) $x’\in C_{2}’’$ and $\alpha’<x_{N}<\beta’$ ,

(c) $x’\in\overline{B_{2}}$ and $x_{N}=\alpha’$ ,
(d) $x’\in\overline{B_{2}}$ and $x_{N}=\beta’$ .

On the part (a) because of a bound $w\leq-\ell/2$ we conclude $w-\varphi$ is negative if
$\epsilon_{1},$ $\epsilon_{2}$ is taken by (3.7); note that $|z|$ is bounded independent of $\gamma$ by (3.3). On the
part (b) by (3.3)

$\sup\{Z(X’);x’\in C_{2}//\}<0$ .
The negativity of $w-\varphi$ follows from (3.6). On the part (c) the negativity of $w-\varphi$

follows from (3.5). On the part (d) since $\sigma_{2}<0,$ $(3.7)$ implies the negativity of
$w-\varphi$ . Thus we have proved (3.8). Since (3.4) holds on $B_{2}\cross \mathrm{R}$ , we get desired $\varphi$

and $E$ satisfying (3.1) and (3.2). $\square$

Remark 3.3. Our Theorem 2.5 as well as Lemmas 3.1 and 3.2 applies more general
equation than (2.2a). We may replace (2.2a) by

$F(\nabla u, \nabla^{2}u)=0$ (3.9)

with $F$ satisfying

(i) $F:(\mathrm{R}^{N}\backslash \{0\})\mathrm{x}\mathrm{S}^{N}arrow \mathrm{R}$ is continuous and geometric in the sense of [CGG].
(ii) $F(p, O)=0$ for all $p\in \mathrm{R}^{N}\backslash \{0\}$ .
(iii) For each $\lambda_{0}>0$ there exists $N_{0}>0$ such that if $\lambda_{\max}(Q_{\overline{p}}(x))\leq\lambda_{0}$ and
$\lambda_{\min}(Q_{\overline{p}}(x))\leq-N_{0}$ (resp. $\lambda_{\min}\geq-\lambda_{0},$ $\lambda_{\max}\geq N_{0}$ ) then $F(p, Q_{\overline{p}}(X))>0$ (resp.
$<0)$ for all $X\in \mathrm{S}^{N}$ and $p\in \mathrm{R}^{N}\backslash \{0\}$ , where $Q_{\overline{p}}(X)=(I-\overline{p}\otimes\overline{p})X(I-\overline{p}\otimes\overline{p})$ with
$\overline{p}=p/|p|$ .

Here $\mathrm{S}^{N}$ denotes the space of all real symmetric matrices and $\lambda_{\min}(\mathrm{Y})$ and $\lambda_{\max}(\mathrm{Y})$

are the smallest and the largest eigenvalues of $Y\in \mathrm{S}^{N}$ , respectively. Even if (2.2a)
is replaced by (3.9) the proof of Lemma 3.1 is the same except step 2 where we
have to replace (3.4) by

$F(\nabla\varphi, \nabla^{2}\varphi)>0$ at all $(x’, xN)$ $(3.4^{})$
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satisfying $r_{1}\leq 2|x’-a|\leq 3r_{1},$ $x_{N}\in$ R. To prove (3.4) for large $\gamma\geq\gamma_{0}(\mu)$ the

property (iii) is invoked. For example,

$F(p, X)=-\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{e}\{A(-\overline{p})Q_{\overline{p}}(x)\}$

satisfies the above conditions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ , where $A(\overline{p})$ is a given matrix in $S^{N}$ and
positive definite for $p\neq 0$ . This $F$ appear when we study a level set equation of

the anisotropic mean curvature flow equation (for the anisotropic mean curvature

equation see e.g. [Gur] and for its level set equation see e.g. [CGG].) Here we shall

check the conditions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ . For (i) and (ii) we can check easily. It remains to

show (iii). We may assume that $Q_{\overline{p}}(X)$ is a diagonal matrix. Let $A(-\overline{p})=(a_{ij})$

and let $\lambda_{1},$ $\lambda_{2},$
$\ldots$ , $\lambda_{N}$ be eigenvalues of $Q_{\overline{p}}(X)$ with $\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{N}$ . Then we

see
$- \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{e}\{A(-\overline{p})Q_{\overline{p}}(X)\}=-\sum_{i=1}^{N}\lambda iaii$ .

From the assumption $\lambda_{N}=\lambda_{\mathrm{m}\mathrm{a}\mathrm{o}\mathrm{C}}(Q\overline{p}(X))\leq\lambda_{0}$ and $\lambda_{1}=\lambda_{\min}(Q_{\overline{p}}(x))\leq-N_{0}$ we
observe that

$- \sum_{i=1}^{N}\lambda_{i}a_{i}i\geq-\lambda_{1}a_{11}-\sum\lambda_{0}ai=N2ii$ .

If $|\lambda_{1}|$ is sufficiently large then the condition (iii) holds. A similar remark applies

Lemma 3.2. (Geometricity is not invoked for Lemmas 3.1 and 3.2.) To extend The-

orem 2.5 for (3.9) we notice that properties $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ are invariant under translation

in space independent variables and order-preserving change of the dependent vari-
able of (3.9); $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ are invariant under multiplication with $-1$ to the dependent

variable by taking $\tilde{F}(p, X)=F(-p, -X)$ .

This extended theory applies level set equations of anisotropic mean curvature

flow equations (see e.g. [Gur]) provided that the Frank diagram of interfacial energy

is strictly convex in the sense that its all (inward) principal curvatures are positive.

Remark 3.4. Recently, a strong maximum principle for degenerate elliptic equations

in viscosity sense was established by Bardi and Da Lio. Although they study fully

nonlinear partial differential equation of the form

$F(x, u, \nabla u, \nabla^{2}u)=0$ ,

here we only explain thier results on the strong maximum principle for the equation

(3.9). Let $F:(\mathrm{R}^{N}\backslash \{0\})\cross \mathrm{S}^{N}arrow \mathrm{R}$ be continuous and be lower semicontinuous on
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$\mathrm{R}^{N}\cross \mathrm{S}^{N}$ . Assume that $F$ is degenerete elliptic, i.e.,

$F(p, X)\leq F(p, Y)$ if $X\geq \mathrm{Y}$ and for all $p\neq 0$ .

Moreover, they assume two properties on $F$ . One is the nondegeneracy property,
that is, there exist $\gamma 0>0$ such that

$F(\nu, I-\gamma\nu\otimes\nu)>0$ for all $\gamma>\gamma_{0},$ $\nu\neq 0$ . (3.10)

The other is the scaling property, that is, there exist a function $\varphi>0$ such that

$F(\xi s, \xi X)\geq\varphi(\xi)F(s, X)$ for all $\xi>0,$ $s_{J}\in[-1,0]$ . (3.11)

There are many equations satisfying the above conditions. For example, the minus
$p$-Laplacian, the minus $\infty$-Laplacian and the graph minimal surface equation. How-
ever, the level set minimal surface equation does not satisfy the conditon (3.10).
Generally, geometric equations does not fulfill it. Thier proof of the strong maxi-
mum principle reflects the proof of the classical strong maximum principle in [PW],
[GT] as same as our Lemma 3.1.
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