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2. Given a convex polygon P in the plane and an integer n, we consider the problem of
triangulating P using n Steiner points under the following optimality criteria: (1) minimizing
the ratio of the maximum edge length to the minimum one, (2) minimizing the maximum
edge length, and (3) minimizing the maximum triangle perimeter. We establish a relation
of these problems to a certain extreme packing problem for P. Based on this relationship,
we develope a heuristic producing constant approximations for any of the optimality criteria
above (provided n is chosen sufficiently large). That is, the triangular mesh produced is
uniform in these respects. The method is casy to implement and runs in O(n?logn) time
and O(n) space. The observed runtime is much less. Moreover, for criterion (1) the method
works — within the same complexity and approximation bounds - for arbitrary polygons with
possible holes, and for criteria (2) and (3) it does »o for a large subclass.

F—7—RK: triangulation, meshgeneration. Voronoi diagram, approximation algorithm

1 Introduction length, and (3) maximum triangle perimeter. Let
I(¢) denote the (Euclidean) length of edge e, and

(Yiven a convex polygon P in the plane and a pos- let peri(A) be the perimeter of triangle A. The
itive integer n. we consider the problem of gener- problems under these three criteria read as fol-
ating a triangular mesh for the interior of P us- lows.
ing n Steiner points such that certain optimality
criteria concerning uniformity of edge lengths are  Problem 1:
satisfied. In other words, under certain optimal- I e)
ity criteria, we want to find a set S, of n points min min max ——=.
inside P as well as a triangulation of P using S,,. SucPTeT e.feT I(f)
The problems we consider are formalized as fol-
lows: Let V be the set of vertices of P, and let ~Problem 2:
T denote the set of all possible triangulations of
5, V. When a point set S, inside P is fixed.
we suppose that we want to minimize the respec-
tive objective function over all triangulations in
T. We shall consider the following three objec-
tive functions: (1) ratio of the maximum edge

A , . min mm max peri(A).
length to the minimum one, (2) maximum edge s, cPT

min_minmax{(e).
Sln,CP TeT ecT

Problem 3:



We will first develope a heuristic called canoni-
cal Voronoi insertion which approximately solves
& certain extreme packing problem for point sets
within P. The method is similar to the one used
in Gonzalez [10] and Feder and Greene [8] de-
veloped for clustering problems. ‘We then show
how to modify the heuristic, to produce a set
of n points whose Delaunay triangulation within
P constitutes a constant approximation for any
of the three problems stated above. Respective
approximation factors of 6, 4v/3, and 6v/3 are
proven, provided n is sufficiently large. As a
byproduct, the solution we construct is a trian-
gulation of constant vertex degree. With mi-
nor modifications, our method works for arbitrary
polygons (with possible holes), and yields the
saime approximation result for Problem 1. Con-
cerning Problems 2 and 3, the approximation fac-
tors above can be guaranteed for a restricted class
of non-convex polygons.

Generating triangulations is one of fundamen-
tal problems in computational geometry, and has
been extensively studied; see e.g. the survey ar-
ticle by Bern and Eppstein [3]. Main fields of
applications are finite element methods and coni-
puter aided design. In finite element methods.
for example, it is desirable to generate triangu-
lations that do not have too large or too small
angles. Along this direction, various algorithms
have been reported [4, 13, 6, 2, 5, 16]. Restricting
angles means bounding the edge length ratio for
the individual triangles, but not necessarily for
a triangulation in global, which might be desir-
able in some applications. That is, the produced
triangulation need not be uniform concerning the
edge ratio or the perimeter ratio of its triangles.
Chew [6] and Melisseratos and Souvaine [13] con-
struct uniform triangular meshes in the weaker
sense that only upper bounds on the triangle size
are required.

A particular application of uniform triangula-
tion arises in designing structures such as plane
trusses with triangular units, where it is required
to determine the shape from aesthetic points of
view under the constraints concerning stress and
nodal displacement. The plane truss can be
viewed as a triangulation of points in the planc
by regarding truss members and nodes as edges
and points, respectively. When focusing on the
shape, edge lengths should be as equal as possi-
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ble from the viewpoint of design, mechanics and
manufacturing; see [14, 15]. In such applications,
the locations of the points are usually not fixed,
but can be viewed as decision variables. In view
of this application field, it is quite natural to con-
sider Problems 1, 2, and 3. To the knowledge of
the authors, the problems dealt with in this pa-
per have not been studied in the field of computa-
tional geometry. The mesh refinement algorithms
in Chew [6] and in Ruppert [16] are similar in
spirit to our Voronoi insertion method, but aim at
different optimality criteria. A general advantage
of the meshes generated by their methods as well
as ours is the absence of favoured edge orienta-
tions. This advantage is not shared by grid-based
or quadtree-based methods which are frequently
used.

Finding an optimal solution for any of the three
problems seems to be difficult in view of the NP-
completeness of packing problems in the plane;
sec e.g. Johnson [12]. For the case of a fixed
point set, minimizing the maximum edge length is .
known to be solvable in quadratic time; see Edels-

‘brunner and Tan [7]. Nooshin et al. [14] developed

a potential-based heuristic method for Problem 2,
but did not give a theoretical guarantee for the
obtained solution.

The following notation will be used throughout.
For two points & and y in the plane, let {(z,y)
denote their Euclidean distance. The minimum
(non-zero) distance between two point sets X and
Y is defined as I(X,Y) = min{l(z,y) |z € X,y €
Yo # y}. When X is a singleton set {z} we
simply write [(X,Y) as I(z,Y). Note that [(X, X)
defines the minimum interpoint distance among
the point set X.

2 Canonical Voronoi Insertion
and Extreme Packing

In this section, we consider the following extreme
packing problem. Let P be a (closed) convex poly-
gon with vertex set V.

. Maximize [(V U S,,V U S,)
subject to a set S, of n points within P.

In other words, the problem asks for a pack-
ing of n circles with centers in P such that the



smallest radius is maximum. We shall give a 2-
approximation algorithm for this problem using
canonical Voronoi insertion. In Section 3 we then
show that the point set S, produced by this algo-
rithm, as well as the Delaunay triangulation in-
duced by S, within P, can be modified to give
an approximate solution for the three problems
addressed in Section 1.

The algorithm determines the location of the
point set S, in a greedy manner. Namely, start-
ing with an empty set S, it repeatedly places a
new point inside P at the position which is far-
thest from the set V U S. The idea of the al-
gorithm originates with Gonzalez [10] and Feder
and Greene [8], and was developed for approx-
imating minimax k-clusterings. Comparable in-
sertion strategies are also used for mesh genera-
tion in Chew [6] and in Ruppert [16], there called
Delaunay refinement. Their strategies aim at dif-
ferent quality measures, however, and insertion
does not take place in a canonical manner.

For approximation results concerning packings
where the size of the objects rather than their
number is prescribed see e.g. Hochbaum and
Maass [11]. Various results on the size of circle
packings are summarized in Fejes Té6th [9].

The algorithm is formally described below. It
uses the Voronoi diagram of the current point set
to select the next point to be inserted. We assume
familiarity with the basic properties of a Voronoi
diagram and its dual, the Delaunay triangulatior.
and refer to the survey paper [1].

Algorithm INSERT
Step 1: Initialize S := 0.

Step 2: Compute the Voronoi diagram Vor(VUS)
of VUS.

Step 3: Find the set B of intersection points be-
tween edges of Vor(V U S) and the boundary of
P. Among the points in B and the vertices of
Vor(V U S) inside P, choose the point u which
maximizes [(u, V U S).

Step 4: Put S := SU {u} and return to Step 2 if
|S] < n.

Let p; and S;, respectively, denote the point cho-
sen in Step 3 and the set obtained in Step 4 at the
j-th iteration of the algorithm. For an arbitrary
point z € P define the weight of x with respect
to S; as wj(x) = l(z,S; UV). That is, wj(x) is
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the radius of the largest circle centered at  which
does not enclose any point from S;UV. By defini-
tion of a Voronoi diagram, the point p; maximizes
wj- 1 (x) over all x € P. Let

dp = (S UV, S, UV) (1)

be the minimum interpoint distance realized by
S,UV . Furthermore, denote by Sy, the optimal so-
lution for the extreme packing problem for P and
let d¥ denote the corresponding objective value.
The following approximation result might be of
interest in its own right. Its proof is an adaptation
of techniques in [10, 8] and contains observations
that will be used in our further analysis.

Theorem 1 The solution S, obtained by Algo-
rithm INSERT is a 2-approximation of the ex-
treme packing problem for P. That is, dp, > dy /2.

Proor. We claim that p,, realizes the minimum
(non-zero) distance from S, to S, UV. Equiva-
lently, the claim is

wWn—-1(pn) = U(Sn, SR UV). (2)

To see this, assume that the minimum distance
is realized by points py and p; different from py,.
Without loss of generality, let p; be inserted af-
ter p; by the algorithm. Then we get wy_1(px) <
](PA»-P]‘) < l(pn,Snfl U V) = wn—l(pn)‘ On the
other hand, the sequence of weights chosen by the
algorithm must be non-increasing. More exactly,
Wi - l(pk) z U’k~1(pn) 2> wn—](pn)' This is a con-
tradiction.

From the trivial observations dj, =
min{l(S,, S, UV),I(V,V)} and [(V,V) > d}, > d,
we now get d, = min{w,-1(pn),ds} by (2). As
pp, maximizes wy_1(x) for all points x € P, the
lemma below completes the proof of the theorem.

Lemma 1 For any set S C P of n — 1 points
there exists a point x € P with l(z, SUV) > dy, /2.

PROOF. Suppose that the lemma is not true.
Then the point z € P farthest from S satisfies

(z,SUV) < d;y/?. (3)

Let r be the value of the left-hand side of (3). For
each point p € SUV draw a circle centered at p



with radius r + €, where ¢ is a sufficiently small
positive number that satisfies r + € < d¥ /2. The
union of these circles covers the whole area of P as
each uncovered point would be farther from SUV
than is . On the other hand, one of these circles
must cover two points of Sy UV, as the number of
points in this set is by one larger than the number
of circles. The distance between these two points
is at most 2(r + ¢€), which is less than d by (3).
This contradicts the definition of d}. gu)

3 Delaunay Triangulation of

Bounded Edge Ratio

Our aim is to show that Algorithm INSERT is
capable of producing a point set appropriate for
Problems 1, 2, and 3. To this end, we first in-
-vestigate the Delaunay triangulation DT(S, U V)
of 8, UV. This triangulation is implicitly con-
structed by the algorithm, as being the dual struc-
ture of Vor(S, UV). However, DT(S,, UV) need
nor exhibit good edge length properties. We
therefore prescribe the placement of the first % in-
serted points, and show that Algorithm INSERT
completes them to a set of n points whose Delau-
nay triangulation has its edge lengths controlled
by the minimum interpoint distance d,, for S,UV.

For 1 < j < n, consider the triangulation
DT(S; UV). Let us classify a triangles A of
DT(S; UV) as either critical or non-critical, de-
pending on whether the Voronoi vertex dual to
A (i.e., the circumcenter of A) lies outside of the
polygon P or not. Whereas edges of critical tri-
angles can be arbitrarily long, edge lengths are
bounded in non-critical triangles.

Lemma 2 No edge e of a non-critical triangle A
of DT(S; UV ) is longer than 2 - w;_1(p;).

PROOF. Let e = (p,q) and denote with z the
Voronoi vertex dual to A. As z lies inside of P, we
get i(z,p) = l(z,q) = wj-(x) < w;_1(p;), by the
choice of point p; in Step 3 of Algorithm INSERT.
The triangle inequality now implies I(p,q) < 2 -
wj-1(p;)-

We make an observation on critical triangles.
Consider some edge e of DT(S;UV) on the bound-
ary of P. Edge e cuts off some part of the diagram
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Vor(S5;UV) that is outside of P. If that part con-
tains Voronoi vertices then we define the critical -
region, R(e), for e as the union of all the (critical) -
triangles that are dual to these vertices. Notice
that each critical triangle of DT(S; U V') belongs
to a unique critical region.

Lemma 3 No edge f of a critical triangle in R(e)
is longer than I(e). '

PROOF. Let p be an endpoint of f. Then the
region of p in Vor(S; U V) intersects e. Let x be
a point in this region but outside of P. There
is a circle around z that encloses p but does not
enclose any endpoint of e. Within P, this circle is
completely covered by the circle C with diameter
e. 'This implies that p lies in C. As the distance
between any two points in C' is at most I(e), we
get 1(f) < I(e).

Let us further distinguish between interior tri-
angles and non-interior ones, the former type
having no two endpoints on the boundary of P.
The shortest edge of an interior triangle can be
bounded as follows.

Lemma 4 FEach edge e of an interior triangle A
of DT(S; UV ) has a length of at least w;_;(p;).

PrROOF. We have l(e) > I(5;,5; UV), because A
has no two endpoints on P’s boundary. But from
(2) we know I1(S;,5; UV) = w;_1(p;).

We are now ready to show how a triangulation
with edge lengths related to d,, can be computed.
First. Algorithm INSERT is run on P, in order
to compute the value d,,. We assume than n is
chosen sufficently large to assure d, < I[(V,V)/2.
This assumption is not unnatural as the short-
est edge of the desired triangulation cannot be
longer than the shortest edge of P. After hav-
ing dy available, k points pi, ..., pj are placed on
the boundary of P, with consecutive distances be-
tween 2-d,, and 3-d,,, and such that [(V', V') > d,
holds, for V! = VU{p!,...,p}.}. Notice that such
a placement is always possible. Finally, n — k ad-
ditional points p}_ ,...,p}, are produced by re-
running Algorithm INSERT after this placement.

For 1 < j < m, let §} = {p’l,..';,p;-}. Define
w(x) = U(z,S],UV) for a point € P. The value
of w(py,) will turn out to be crucial for analyz-
ing the edge length behavior of the triangulation



DT(S,UV). The lemma below asserts that w(p;,)
is small if n exceeds twice the number k of pre-
scribed points.

Lemma 5 Supposen > 2k. Then w(p),) < 3-dy.

PRroOF. The point set S,, produced by Algorithm
INSERT in the first run is large enough to ensure
dn, < 1(V,V). So we get dy, = wp_1(pp) from (2).
As point p, maximizes wy,_1(z) for all z € P, the
n + |V] circles centered at the points in S, UV
and with radii d,, completely cover the polygon
P. Let d,, = 1 for the moment. Then

AP)<n(n+|V])— A (4)

where A(P) is the area of P, and A" denotes the
area outside of P which is covered by the circles
centered at V.

Assume now w(p),) > 3-d,. Draw a circle with
radius 2d, around each point in 5, \ S}. Since
w(ph) = (S}, \ Sk, S, UV) by (2), these circles arc
pairwise disjoint. By the same reason, and be-
cause boundary distances defined by V' = V U5
are at most 3 - d,, these circles all lie completely
inside P. Obviously, these circles are also dis-
joint from the |V| circles of radius d,, centered at
V. Finally, the latter circles are pairwise disjoint,
since d, <I(V,V)/2. Consequently,

A(P) > Z—'fr(n -k + A" . (5)

where A” denotes the area inside of P which is
covered by the circles centered at V. Combining
(4) and (5), and observing A’ + A" = 7 - |V| now
implies n < 2k, a contradiction.

It has to be observed that the number k depends
on n. The following fact guarantees the assump-
tion in Lemma 5, provided n is sufficently large.
Let B(P) denote the perimeter of P.

Lemma 6 The condition d,, < A(P)/(w - B(P))
implies n > 2k.

PROOF. From (4) we obtain
A(P)

~ e (dn)?

To get a bound on k, observe that at most

I(e)/2d,, — 1 points are placed on each edge e of
P. This sums up to

_

n

B(P)
2dy,

k< - VI
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Simple calculations now show that the condition
on d,, stated in the lemma implies n > 2k.

Theorem 2 Suppose n is large enough to assure
the conditions dn, < 1(V,V)/2 and d,, < A(P)/(n-
B(P)). Then no edge in the triangulation Tt =
DT(S! UV ) is longer than 6 - dn. Moreover, T
exhibits an edge length ratio of 6.

PROOF. Two cases are distinguished, according
to the value of w(py,).

Case 1: w(p),) < dy. Concerning upper bounds,
Lemma 2 implies I(e) < 2 w(p},) < 2 - d, for all
edges e belonging to non-critical triangles of T,
If ¢ belongs to some critical triangle, Lemma 3
shows that I(e) cannot be larger than the maxi-
mum edge length on the boundary of P, which is
at most 3 - d,, by construction. Concerning lower
bounds, Lemma 4 gives {(e) > w(p),) for edges
of interior triangles. We know w(p),) > dj /2
from Lemma 1, which implies [(e) > d, /2 because
d* > dy. For edges spanned by V', we trivially
obtain I(e) > d,, as [(V', V') > d, by construc-
tion.

Case 2: w(pl,) > dy. The upper bound 2-w(py,)
for non-critical triangles now gives l(e) < 6 - dp,
due to Lemmas 5 and 6. The lower bound for in-
terior triangles becomes I(e) > w(p,) > dy. The
remaining two bounds are the same as in the for-
mer ¢ase.

The time complexity of computing the triangu-
lation T is dominated by the runtime of Algo-
rithim INSERT. Let us see how fast this algorithm
can be implemented.

It is sufficient to consider Steps 2 and 3. In the
very first iteration of the algorithm, both steps
can be accomplished in O(|V]log|V]|) time. In
each further iteration j we update the current
Voronoi diagram under the insertion of a new
point p; in Step 2, as well as a set of weights for
the Voronoi vertices and relevant polygon bound-
ary points in Step 3.

C'onsider Step 2. Since we already know the lo-
cation of the new point p; in the current Voronoi
diagram, the region of p; in the updated dia-
gram can be integrated in time proportional to
the number of edges of this region. This num-
ber is the degree of p; in the resulting Delaunay
triangulation, deg(p;).



In Step 3 we need to assign the current weight
w(u) to each new Voronoi vertex or boundary in-
tersection point u. Clearly w(u) can be deter-
mined in constant time by calculating the radius
of the corresponding empty circle. The current
set of weights is organized in some priority queue.
When processing the point p; we need to insert
and delete O(deg(p;)) weights, and then select the
laigest one in the next iteration. This gives a run-
time of O(deg(p;) - log(j + |V])) for updating the
weights, and thus dominates Step 2.

The following lemma bounds the number of

constructed triangles, of a certain type. Let us
call a triangle good if it is both interior and non-
critical.

Lemma 7 The insertion of each point p;j creates
only a constant number of good triangles.

ProoF. Consider the endpoints of all good trian-
gles incident to p; in DT(S; U V), and let X be
the set of all such endpoints interior to P. Then
UX,X) > 1(55,8;) > wj-1(p;), due to (2). On
the other hand, by Lemma 2, X lies in the circle of
radius 2 - w;_1(p;) around p;. As a consequence,
|X| is constant. The number of good triangles
incident to p; is at most 2-|X|, as one such trian-
gle would have two endpoints on P’s boundary.
otherwise.

For most choices of P and n, the good triangle
type will be most frequent. This is supported by
the following fact.

Lemma 8 Let A be a critical triangle of DT(S;U
V), and let g be any endpoint of A. The normal
distance of q from the boundary of P is at most

wj-1(p;)-

PROOF. As A is critical, there is an edge of the
region of ¢ in Vor(S; U V') which intersects the
boundary of P. Consider such an intersection
point z. We have I(q,r) = w;_1(x) < wj_1(p;).
from the way p; is selected by Algorithm INSERT.
On the other hand, the normal distance of g from
the boundary of P cannot be larger than i(q, z).
=]

The number of critical or non-interior triangles in-
cident to p; in DT(S;UV') might be high, however.
Still, the degree of each point in the final triangu-
lation Tt is constant, as the longest edge in 7"
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is bounded by a constant multiple of the respec-
tive minimum interpoint distance (which equals
the shortest edge length in 77 because Tt is De-
launay)..

In conclusion, we obtain a runtime bound of
O(n?logn) and a space complexity of O(n). How-
ever, Lemmas 7 and 8 suggest a runtime of
Oflogn) in most iterations.

Coucerning the choice of n, Theorem 2 may
hold for much smaller values of n than is required
by the sufficient condition d, < I(V,V)/2 and
dn < A(P)/(m - B(P)). In a particular applica-
tion. this can be tested efficiently, by repeatedly
doubling the chosen value of n and each time ex-
amining the edge lengths in 7.

4 Approximation Results

Let us now return to the three optimization prob-
lems for the polygon P posed in the introduction.
We will rely on Theorem 2 in the following. Re-
call that, in order to make the theorem hold, we
have to choose n sufficiently large.

Theorem 3 The triangulation TV approzimates
the optimal solution for Problem 1 by a factor of
0.

Proor. Theorem 2 guarantees for Tt an edge
length ratio of 6, and for no triangulation this
ratio can be smaller than 1. :

We now turn our attention to Problem 2. Let
the point set S in conjunction with the triangu-
lation T of S UV be the corresponding optimum
solution. Let dj,,g denote the optimum objective
value, that is, dj,n, measures the longest edge in
T. The lemma below relates djong to the optimum
value dy, for the extreme packing problem for P.

Lemma 9

V3

dlong = "’Z)“d; .

PROOF. Suppose the lemma is not true. Let r =
—\}?(l/(,,,,g. For each point p € SUV draw a circle

with radius r around p. Let C denote the set of
these circles. For each triangle A of T its area is
entirely covered by the circles of C centered at its
three endpoints. This is because’ the maximum
distance from a point within A to its endpoints is



at most 1/1/3 times the length of its longest edge.
So C entirely covers the area of P.

Next, consider the optimal solution S for the
extreme packing problem. Again, around each
point in S} UV draw a circle with radius . Let C*
be the resulting set of circles. Circles in C* neither
overlap nor touch each other since r < dy,/2 holds
by our assumption that the lemma is false. So C*
does not entirely cover the area of P.

Let @ be the convex hull of C (and thus of
C*). We now consider what happens in the re-
gion Q \ P. Let e be an arbitrary edge of P,
and let R denote the rectangle spanned by e and
the boundary edge of Q parallel to e. Since P
is convex, these rectangles are mutually disjoint.
For edge e we have %dl(mg < d} <l(e). So there

must exist points from S on e such that the dis-
tance between consecutive points is at most djong-
Their number is at least [I(e)/diong] — 1. Conse-
quently, the number of circles of C whose centers
are on e is at least [l(e)/djong] + 1. As these cir-
cles overlap if their centers are neighbored on ¢.
the area of R covered by circles of C satisfies

2 - (dlong)2

R> ’ ”(e)/dltmg}- <6)

On the other hand, we claim that the num-
ber of circles of C* that intersect e is at most
[l(e)/diong] + 1. Let qi,...,q, be the verti-
cal projections of their centers pi,...,pp onto e
{in consecutive order). Consider the two circles
C;,Ciz1 € C* around p; and pi41, respectively:
see Figure 1.
Since C; and (4 are disjoint, we have

2
l(pi,Pi+1) > ﬁdlong- (7)

Both C; and Cj4 intersect e hence
1 v
ll(ps, @) = Upiv1, Giv1)] £ ‘\/§dlong- (8)

With (7) and (8), the Pythagorean theorem im-
plies ‘
g, gis1) > dlong~
Therefore the claimed upper bound on the num-
ber of circles that intersect e follows. Since the
circles in C* are pairwise disjoint, the area in R

covered by C* satisfies

- 2
R« T o) ) g (9)
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Thus. from (6) and (9), R* < R follows.

We conclude that the total area covered by C*
is less than the total area covered by C. But this is
a contradiction because the cardinalities of these
sets are the same, and circles in C overlap whereas
circles in C* do not.

We strongly conjecture that the statement of
Lemma 9 can be strengthened to diong > dj,
which will improve the approximation ratio in

Theorems 4 and 5 below.

Theorem 4 The triangulation TV constitutes a
43 approximation for Problem 2.

PROOF. Let €0, denote the longest edge in T.
By Theorem 2 we have l(emaz) < 6 - dy,. Trivially
d,, < d¥ holds, and Lemma 9 implies the theorem,
l((’mnx)/dlong < 4\/3_ =i}

Finally let us consider Problem 3. Let dper; de-
note the optimum objective value for this prob-
lem. We show the following:

Theorem 5 The triangulation T gives a 6v/3-
approximation for Problem 3.

PRroOOF. For any triangulation of P with n Steiner
points, its longest edge cannot be shorter than
%«l;‘[ by Lemma 9. This implies dper; > \/§de by
the triangle inequality. On the other hand, for the
longest edge emaz of TT we have l(emqz) < 6-d},
due to Theorem 2. The longest triangle perimeter
Omar that occurs in 71 is at most 3 - l(emaz). In
summary, dmaz/dpers < 6+ V3.

We conclude this section by mentioning an ap-
proximation result concerning minimum-weight
triangulations.

Theorem 6 Let ST be the vertex set of T and
let MWT(S™) denote the minimum-weight trian-
gulation of ST. Then T'" is a 6-length approwi-
mation for MWT(ST).

PROOF. Let e, be the shortest edge in TF.
Then ey ) is the minimum interpoint distance
in 51, because T'" is Delaunay. So any edge e of
MW'T(ST) satisfies [(€) > l(emin). On the other
hand, any edge e’ of T fulfills [(e/) < 6 - l(emin),
by Theorem 2. It remains to be observed that ev-
ery triangulation of ST realizes the same number
of edges.



5 Discussion and Extensions

We have considered the problem of generating
length-uniform triangular meshes for the interior
of convex polygons. A unifying algorithm capable

of computing constant approximations for these

problems has been developed. The basic idea is to
relate the length of triangulation edges to the op-
timum extreme packing distance. The proposed
heuristic is easy to implement and seems to pro-
duce acceptably good triangular meshes as far as
computational experiments are concerned.

In practical applications, more general input
polygons need to be triangulated. In fact, our
algorithm works with minor modification for ar-
bitrary polygons with possible holes. Convexity is
used solely in the proof of Lemma 9. As a conse-
quence, Theorems 1 and 2, the approximation re-
sult for Problem 1, and Theorem 6 still hold. The
modification needed is that visible distances in a
non-convex polygon P should be considered only.
in the proofs as well as concerning the algorithm.
That is, for the point sets § C P in question, the
Delaunay triangulation of SUV constrained by P
has to be utilized rather than DT(SU V).

The proof of Lemma 9 (and with it the ap-
proximation results for Problems 2 and 3) still go
through for non-convex polygons P with interior
angles of at most 3—2-75, provided n is large enough
to make the value —\%dlmg fall short of the mini-
mum distance between non-adjacent edges of P.
The bottleneck is inequality (9) which need not
hold if the rectangular regions around P overlap.
We pose the question of establishing a version of
Lemma 9 for general non-convex polygons, and of
improving the respective bound @ for the convex
case.

From the viewpoint of applications to design of
structures, it is also important to generate a tri-
angular mesh for approximating surfaces such as
large-span structures. This topic is left to further
research.
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