goooboooobgon

11200 1999 O

151-160

Spanning Trees Crossing Few Barriers

Tetsuo Asano
JAIST
Tatsunokuchi, Ishikawa, Japan

Mark de Berg
Utrecht University
Utrecht, the Netherlands

Otfried Cheong
HKUST
Kowloon, Hong Kong.

Hisao Tamaki
Meiji University
Tama-ku, Kawasaki, 214 Japan

Leonidas J. Guibas Jack Snoeyink
Stanford University UBC
Stanford, CA 94305 USA Vancouver, Canada

Abstract We consider the problem of finding low-cost spanning trees for sets of n
points in the plane, where the cost of a spanning tree is defined as the total number
of intersections of tree edges with a given set of m barriers. We obtain the following

151

results:

1. if the barriers are possibly intersecting line segments, then there is always a
spanning tree of cost O(min(m?,m/n));

2. if the barriers are disjoint line segments, then there is always a spanning tree of

cost O(m);

3. if the barriers are disjoint fat objects, discs for example, then there is always a

spanning tree of cost O(n + m).

All our bounds are worst-case optimal.

Key words and phrases spanning tree, barriers, minimum crossing

1 Introduction

Consider the problem of batched point loca-
tion, where the goal is to efficiently locate n
given points in a planar subdivision defined
by m line segments. This problem arises in
many applications, and in particular in the
linear-time reconstruction of common geomet-
ric structures such as Voronoi and Delaunay
diagrams, or convex hulls [6]. In these appli-
cations the desired diagram is constructed by
adding the points in stages. In each stage,
the group of points currently being added
must be located among the regions of the di-
. agram defined by all the previously inserted
points. This batched point location can eas-
ily be solved by standard point location meth-
ods, or by line-sweep methods, at a logarith-
mic cost per point, but this would defeat the

linear-time reconstruction goal. One way to
avoid these logarithmic factors is to connect
the points together by a structure, such as a
spanning tree, that crosses the edges of the di-
agram only linearly many times. Then, once
one of the points is located, the spanning
structure can be traversed and the remaining
points located as they are encountered.

The construction of such spanning trees mo-
tivated the current investigation, in which we
generalize the subdivision edges to more gen-
eral classes of geometric objects. Let P be
a set of n points in the plane, which we call
sites , and let B be a set of m geometric ob-
jects, which we call barriers. We assume that
no site lies inside any of the barriers. An edge
e, which is a straight line segment joining two
sites, has a cost c(e) that equals the number of
barriers that e intersects. The cost of a span-

ning tree 7 for P is the sum of the costs of its
edges:

ecT

(It would be more precise to speak of the cost
with respect to B, but since the barrier set will
always be fixed and clear from the context,
we omit this addition.) We are interested in
cheap spanning trees, that is, spanning trees
with small cost, for several types of barriers.
We obtain the following results.

Section 2 deals with the case where the
barriers are possibly intersecting line seg-
ments. Here we show that there are con-
figurations where any spanning tree has cost
Q(min(m?,my/n)). We also show how to con-
struct a spanning tree with this cost.

Section 3 deals with various types of dis-
joint barriers. Here it turns out that much
cheaper spanning trees can be constructed.
For instance, we are able to obtain a bound of
O(n + m) when the barriers are fat objects—
discs for example. This bound is tight in the
worst case.

The major result in this paper is given in
Section 4, where we prove that for any set
of n sites and any set of m barriers that
are (interior-)disjoint line segments, there is
a spanning tree of cost O(m), which is opti-
mal in the worst case. QOur proof shows in
fact that a spanning tree is always possible
in which no barrier segment is crossed more
than four times. Such a linear cost spanning
tree solves the batched point location problem
we started with above (where the subdivision
edges are the barriers).

All our proofs are constructive. Our con-
struction in Section 3 indeed leads to an effi-
cient O((n +m) log m) algorithm to produce a
spanning tree of low cost. The existence proofs
are more interesting, however, since a simple
greedy algorithm will always construct a span-
ning tree of minimal cost (and for the linear-
time reconstruction goal the computation of
the tree happens during the preprocessing in
any case).

The bounds mentioned above are signifi-

152

cantly better then the naive O(nm) bound.
We close this introduction by noting that if
we wish to comstruct a triangulation on the
sites , not just a spanning tree, then the naive
bound cannot be improved in the worst case.
This can be seen by the example in in Fig. 1.

° e
e °
¢ °
.. @ ® .
/2 points o o V2 points
° °
° °
o® °,
m segments

Figure 1: Any triangulation of the point set
will have cost Q(nm).

2 Intersecting segments

We start with the case where the barriers in B
are possibly intersecting line segments.

Theorem 2.1 (i) For any set P of n sites
and any set B of m possibly intersecting

segments in the plane, a spanning tree for
P eaists with a cost of O(min(m?, m/n)).

(ii) For any n and m there is a set P of n
sites and a set B of m segments in the

plane, such that any spanning tree for P
has a cost of Q(min(m?,my/n)).

Proof:

(i) First, extend the line segments in B to
full lines. For each cell in the resulting
arrangement, if the cell contains sites ,
choose a representative site and connect
all sites in that cell to the representa-
tive. The edges used for this have zero
cost, since the cells are convex and con-
tain no barriers. Finally, compute a span-
ning tree on the set of representative sites

with the property that any line intersects
O(Vn') edges of the spanning tree [?],
where n' is the number of representatives.
The cost of the spanning tree is O(m\/ﬁ—').
This proves part (i) of the theorem, since
n' < min(r,m?).

First consider the case where m > 2/n —
2. We assume for simplicity that n is
a square. We place the sites in a reg-
ular /n X 4/n grid. In between any
two consecutive rows we place a bun-
dle of |m/(24/n — 2)| horizontal barrier
_segments, and in between any two con-
secutive columns we place a bundle of
[m/(2y/n — 2)| vertical segments. The
remaining segments are placed arbitrar-
ily. Figure 2(a) shows the construction for
the case n = 25 and m = 16. Any edge
connecting two sites crosses at least one
bundle. Hence, the cost of any spanning
tree is at least (n — 1)|m/(2y/n — 2)| =
Now consider the case where m < 2v/n —
2. We arrange the barrier segments as
shown in Fig. 2(b) for the case m = 8:
we have a group of |m/2| vertical seg-
ments and a group of [m/2] horizontal
segments, such that any vertical segment
intersects any horizontal segment. We
place a site in each of the resulting “cells”;
the remaining sites are placed in any cell.
Any spanning tree for P will have cost

Q(m?).

(i)

3 Disjoint uncluttered

barriers

Let P be a set of n sites in the plane, B a set of
m disjoint barriers. We give an algorithm that
uses a binary space partition (BSP) for the set
of barriers to construct a spanning tree for P.
We analyze the cost of the resulting spanning

153

tree, assuming the BSP is orthogonal. Com-
bining our results with known results on BSPs
will then give us cheap spanning trees for so-
called uncluttered scenes (defined below).

Given a BSP, our algorithm constructs a
spanning tree for P recursively. Suppose we
come to a node v in the BSP with a set P, of
sites we wish to connect into a spanning tree;
initially v is the root of the BSP and P, = P.
There are three cases to consider.

(i) If P, contains at most one site , then no
spanning tree edges need to be added and
we are done.

If P, contains more than one site but v
is a leaf of the BSP, then we connect the
sites into a spanning tree in an arbitrary
manner.

(i)

The remaining case is where P, contains
more than one site and v is an internal
node of the BSP. Let £, be the splitting
line stored at v. The line £, partitions
P, into two subsets. (Points on the split-
ting line all go to the same subset, say
the right one.) We recursively construct
a spanning tree for each of these subsets
by visiting the children of v with the rel-
evant subset. Finally, if both subsets are
non-empty we connect the two spanning
subtrees by adding an edge between the
sites closest to £, on either side of £,,.

(iii)

We now analyze the cost of the spanning tree
constructed in this manner for the special case
of orthogonal BSPs. (An orthonal BSP for B
is a BSP whose splitting lines are all horizontal
or vertical.) We assume that the leaves of the
BSP store at most ¢ objects, for some constant
¢; thus the cells of the final subdivision are
intersected by at most ¢ objects. (Note that
we cannot require ¢ = 0 unless we restricted
our attention to orthogonal barrier segments.)

The following result will imply the existance
of spanning trees of linear cost for several
classes of barriers, including orthogonal seg-
ments and convex fat objects.

(a)

154

(b)

Figure 2: The lower bound constructions

Theorem 3.1 Let B be a set of disjoint
simply-connected barriers in the plane, and let
P be a set of n sites in the plane. Suppose
an orthogonal BSP for B exists that generates
f fragments and whose leaf cells intersect at
most ¢ barriers. Then there is a spanning tree
for P with cost at most O(f +k+cn), where k
is the total number of vertical and horizontal
tangencies on barrier boundaries.

Proof: The spanning-tree edges added in
case (ii) intersect at most ¢ barriers, so their
total cost sums to at most ¢(n — 1).

Now consider an edge pq added in case (iii).
Assume that the splitting line £, is vertical.
Let region(v) denote the region corresponding
to v. Since the BSP uses only horizontal and
vertical splitting lines, region(v) is a rectangle,
possibly unbounded to one or more sides. De-
fine R, to be the intersection of region(v) with
the slab bounded by vertical lines through the
sites p and ¢—see Fig. 3. Let b be a barrier
intersected by pq. We will show how to charge
this crossing to certain features of the barri-
ers. These features are:

e The intersections between barrier bound-
aries and splitting lines. The number of
these features is linear in the number of
fragments f.

e Vertical and horizontal tangencies of bar-
rier boundaries. There are k such fea-
tures.

The charging of the intersection of pg with b

region(v)

Figure 3: [lustration for the proof of Theo-
rem 3.1.

is done as follows.

e If the boundary of b has a vertical tangent
in the interior of R,, then we charge the
intersection to this feature.

e Otherwise the boundary of b either inter-
sects £, in a point r lying in the interior
of region(v), or it intersects the boundary
of region(v) in a point 7' that is also on
the boundary of R,. Now we charge the
intersection to r or 7', respectively. Ob-
serve that both » and r’ are features of

b.

Fig. 3 shows for each of the three intersected
barriers a feature to which the intersection can
be charged. (Notice that there are actually
more choices.) To bound the number of times
a feature gets charged, we observe that the re-
gions R, of nodes v whose splitting line is ver-
tical have disjoint interiors. It follows that a

vertical tangency is charged at most once, and
an intersection of a barrier boundary with a
splitting line is charged at most twice (namely
at most once for both fragments that have
the point as a vertex). Similarly, a feature
is charged at most twice from a node whose
splitting line is horizontal. OA

k-cluttered scene in the plane is a set B of ob-
jects such that any square whose interior does
not contain a bounding-box vertex of any of
the the objects in B is intersected by at most
k objects in B. A scene is called uncluttered
if it is k-cluttered for a (small) constant . It
is known that any set of disjoint fat objects,
discs for instance, is uncluttered—see the pa-
per by de Berg et al. [2] for a overview of these
models and the relations between them.

Theorem 3.2 Let B be a set of m disjoint ob-
Jjects in the plane, each with a constant number
of vertical and horizontal tangents, that forms
a k-cluttered scene, for a (small) constant k.
Let P be a set of n sites . Then there is a
spanning tree for P with cost O(m + n). This
bound is tight in the worst case, even for unit
discs. A spanning tree with this cost can be
computed in time O((m + n)logm).

Proof: De Berg [1] has shown that a «-
cluttered scene admits an orthogonal BSP that
generates O(m) fragments such that any leaf
cell of the BSP is intersected by at most O(k)
fragments. Then by Theorem 3.1 there is a
spanning tree of cost O(m + &n).

To see that this bound is tight, take a disc as
the only barrier and place the sites around the
disc and so close to it that any edge connecting
two sites crosses the disc. In this situation any
spanning tree must have cost {(n). A row
of m discs with two sites on either side is an
example where any spanning tree must have
cost 2(m).

De Berg gives an algorithm that constructs
the orthogonal BSP in time O(mlogm), given
only the corners of the bounding boxes of the
barriers. The BSP induces a planar subdi-
vision consisting of O(m) boxes. We assign
each site to the box containing it in time

155

O(nlogm) [1], and then construct the span-
ning tree from the leaves of the BSP upwards.
Since we only need to maintain the leftmost,
rightmost, topmost, and bottommost site in
each node of the BSP, this can be done in time
O(n + m). ,]

Theorem 3.1 also implies that we can always
find-a spanning tree of cost O(m) when the
barriers are disjoint orthogonal segments, be-
cause Paterson and Yao [5] have shown that
any set of orthogonal line segments in the
plane admits an orthogonal BSP of size O(m)
whose leaf cells are empty. We can construct
such a spanning tree in time O((n+m)logm):
we need O(mlogm) time to construct the
BSP [3], plus O((n + m)logm) time to locate
the sites in the BSP subdivision using an opti-
mal point location structure [4], and O(n +m)
for the bottom-up construction of the span-
ning tree.

In the next section we will show that a
linear-cost spanning tree exists for any set of

~ disjoint barrier segments (even if they are not

orthogonal), however, we do not know of an
equally efficient way to construct the tree in
the general case.

4 Disjoint segments

We now present the main result of our paper:
Given any set P of n sites in the plane and
any set B of m disjoint segments in the plane,
there is a spanning tree for P whose cost is
O(m). :

There are several ways in which we can ob-
tain a spanning tree of cost O(m log(n + m)).
One possibility is to analyze a slightly adapted
version of the BSP-based algorithm in terms
of the depth of the underlying BSP, and use
the fact that any set of m disjoint segments
in the plane allows a BSP of size O(mlogm)
and depth O(logm) [5]. Another possibility
is to use a divide-and-conquer approach based
on cuttings. With neither of these two ap-
proaches we have been able to cbtain a linear
bound. The solution presented next therefore

uses a different, incremental approach.

We assume that the segments and the sites
are all strictly contained in a fixed bounding
box, say an axis parallel unit square. We de-
note the upper-left and the upper-right corners
of the bounding box by ¢; and ¢, respectively.
We will assume in the following that the sites
, the endpoints of the segments of B, and the
two points ¢; and ¢, are in a general position
collectively. This is not a serious restriction,
but does make the description easier.

Let 7 be a spanning tree on P U {¢,¢,}
with straight edges and no self-intersections.
(Note that the minimum cost spanning tree
may require self-intersections. Our approach
proves that self-intersections are not necessary
to achieve the linear bound.) We call the path
between ¢; and ¢, in 7 the spine of 7.

The spine of 7 partitions the bounding box
into two parts: the part above the spine which
is bordered by the spine and the upper edge
of the bounding box, and the remaining part
below the spine. Note that a point above the
spine, in this definition, may see some edge of
the spine above it since we are not assuming
z-monotonicity of the spine. We say that the
tree T is spined if

(1) all the sites are either on or above the
spine, and
(2) both ¢; and c, are leaves of 7.

" Lemma 4.1 Let P be a set of sites and B a
set of straight segments both strictly contained
in the bounding box. Then there is a spined
tree T of P U {ci,c,} such that each segment
s € B is stabbed by T at most 2 + u(s) times
where u(s) denotes the number of endpoints of
s that are above the spine of T (and hence is
at most two).

Before proving the lemma, we show an exam-
ple in Fig. 4. It consists of 5 segments and 9
sites , including the artificial sites ¢; and c,.
The spine of the spined tree 7 is depicted by
solid bold lines. Proof: The proof is by in-
duction on the number of sites . We fix the
segment set B throughout.

e site

segment
spine edge
- - - - non-spine edge

Figure 4: Spined tree

If P is empty, there are only two sites ¢; and
¢,. The edge between ¢; and ¢, does not stab
any segment of B, so the claim holds.

Assume now that P contains at least one
site . Let p be the lowest site , that is, the
site with the smallest y-coordinate, and let
P = P\ p. Let 7' be the spined tree of
P' U {c,c,} provided by the induction hy-
pothesis. For two sites g,r of 7', we denote
by path(q,r) the path of 7’ between ¢ and
r. This notation will always be used where
g and r are sites on the spine of 7' so that
path(q,r) is a subpath of the spine. We will
also write Ipath(q) for path(ci,q) and rpath(q)
for path(q,c,). We will abuse these notations
allowing ¢ or r to be an arbitrary point (not
necessarily a site) on the spine of 7' consid-
ered as a geometric curve.

We say that a point ¢ in the bounding box
is visible from p if the segment pg does not
intersect the spine of 7' except possibly at q.
Let Q@ = {q1,4z,. -, 4} denote the set of sites
of the spine of 77 that are visible from p, listed
in order from ¢; to ¢,. Note that ¢1 = ¢ if ¢
is visible from p and ¢: = ¢, if ¢, is.

We say that a segment s € B blocks a site
g € Q if s intersects both the segment pq and
the spine of 7'. In this case, the maximal
subsegment b of s lying below the spine of 7'
and being stabbed by pq is called a blocker of

g; we also say that s supports the blocker b and
b blocks g. We call an endpoint of a blocker b
that is on the spine of 7’ an anchor of &.

Suppose v is an anchor of a blocker of g. We
call v a right anchor of the blocker if v is in
rpath(q); a left anchor if it is in Ipath(q). See
Fig. 5 for pictorial illustration.

A blocker may have one anchor (left or
right) or two anchors (both left and right).
Note that, when a blocker has both left and
right anchors, the left anchor may lie geomet-
rically to the right of the right anchor, since
the spine may not be z-monotone.

We say that two consecutive visible sites ¢ =
¢, T = ¢iy1 in () and an edge e in path(q,r)
form a good triple (¢, r,e) if the following three
conditions hold (see Fig. 6).

(1) ¢ and r do not have a common blocker.

(2) If any blocker of r has a left anchor then
it is on e; if any blocker of ¢ has a right
anchor then it is also on e.

(3) If ¢ = ¢ then e is incident to ¢; if r = ¢,
then e is incident to c,.

u: left anchor of blocer s
v: right anchor of blocker t

Figure 5: Blockers

Claim 4.2 There is at least one good triple
(q’ r, e)’ q’ T E Q?e e path(q’ r)'

We defer the proof of the claim and first
show how we construct the spined tree of

157

Figure 6: A good triple

P U {c,c.} based on the claim. Let (p,q,e)
be a good triple in). Our spined tree 7 is
obtained from 7' by adding two edges pq and
pr and removing e. Since ¢ and r are visible
from p, we do not create any self-intersections,
and since e is in path(q,r), 7 remains a tree.
The new spine goes through the edges pg and
pr and it is clear that all sites are either on or
above this spine. Condition (3) above guar-
antees that ¢; and ¢, remain leaves of the
tree. Therefore, 7 is indeed a spined tree of
PU{er, e}

New stabbings are created when a segment
s € B is stabbed by pg or pr. We consider
three cases: (a) s is stabbed by both pg and
pr, (b) s is stabbed by pg but not by pr, and
(c) s is stabbed by pr but not by pg. Since
case (c) is symmetric to case (b), we consider
cases (a) and (b).

In case (a), s is not stabbed by any edge of
7' because otherwise s would support a com-
mon blocker of ¢ and r contradicting condition
(1) of a good triple. Thus, the stabbing num-
ber of s is two without violating the induction
hypothesis. ‘

Next consider case (b): s is stabbed by pq
but not by pr. Let C' denote the closed curve
formed by edges pq, pr and path(q,r).

First suppose that s is not stabbed by
path(q,r). Then, one endpoint of s is in the
interior of the cycle C. Since the interior of C
is below the spine of 7’ and above the spine
of T, the number of endpoints of s above the
spine is increased by one, accounting for the
new stabbing and maintaining the induction
hypothesis.

Next suppose that s is stabbed by path(g,r).
This means that s supports a blocker of ¢ that
has a right anchor. Condition (2) of a good
triple implies that this right anchor lies in e,
that is, e is the edge in path(g,r) that stabs s.
Since e is removed in forming 7, the induction
hypothesis is maintained in this case as well.

0

Before we prove the claim, we introduce
some more notation. Let B denote the set of
all blockers (the site p € P is still fixed as the
lowest site in P).

For each blocker b € B and each site ¢ €
Q visible from p, we define a line segment
seg(q,b) as follows: If b blocks ¢, then seg(q, b)
denotes the line segment qq’, where ¢’ is the
point at which pq stabs b. When b does not
block g, we use the convention that seg(g,b)
is empty.

For any site ¢ € @ visible from p, we can
now introduce a partial order <, on B as fol-
lows: b <, by if and only if b and b, both
block ¢ and seg(g, b1) is properly contained in
seg(g,by) (see Fig. 7).

Finally, we define < to be the transitive clo-
sure of the union of <, over all ¢ € Q. We
claim that < is anti-symmetric and is there-
fore indeed a partial order on B. To see this,
consider a chain by <, by =g ... A sim-
ple induction shows that seg(q,b;) contains
Uici<j s€9(9, b;) for every ¢ € @ blocked by
b;.” Therefore, by < b; implies that b; <, by
does not hold for any ¢q. Therefore, < is anti-
symmetric.

158

Figure 7: The partial order b; <, bs.

The following proposition will be used later.

Proposition 4.3 Let b, and b; be two block-
ers with b, < by and assume that by blocks
q. Then, the left anchor of by, if any, 1s in
Ipath(q) and the right anchor of by, if any, s
in rpath(q).

Proof: of Claim 4.2. If there is no blocker
then the existence of a good triple is trivial.
So assume that the set of blockers B is non-
empty. Without loss of generality, we may as-
sume that at least one of the blockers that is
maximal with respect to < has a right anchor
(otherwise we argue symmetrically, swapping
left and right). Among all the maximal block-
ers with a right anchor, choose the one whose
right anchor is the closest to ¢, in the spine
of T' and call it by. Let vy denote the right
anchor of by and e the spine edge of 7' that
contains vo. We define ¢ (r, resp.) to be the
first site visible from p when we traverse the
spine of 7' from v towards ¢ (¢, resp.).

We study the three conditions of (¢, r,€) be-
ing a good triple.

(1) q and r do not have a common blocker,
since such a common blocker would contradict
the maximality of by.

(2) Let ¢, be the points on path(gq,r) such
that path(q’,r’) is the maximal subpath of
path(q,r) that is visible from p. Note that
p,q,q are collinear with possibly ¢ = ¢’ and
p,r,r’ are colinear with possibly r = r'.¢ Note
therefore that if any blocker of ¢ has a right an-
chor then it is on rpath(q’) and if any blocker
of r has a left anchor then it is on Ipath(r).

bo p

b ;: blocker of q with right anchor
b,: blocer of r with left anchor

Figure 8: Case 1

Suppose r has a blocker b with left anchor
v (see Fig. 8). Since by is maximal, b cannot
block g. Therefore, v must lie on path(vo,r).
Combined with the above note, v must lie on
path(vo,r’). Since vg is on rpath(q'), it follows
that path(vo,v) is entirely visible from p. This
in turn implies that vy and v are on the same
spine edge, namely e. This establishes the first
half of condition (2). For the second half, that
is the condition that the right anchor of any
blocker of ¢ lies in e, first note that the max-
imality of by, combined with the above note,
implies that any such right anchor must lie on
path(q',v0). Thus, if ¢’ is on e, we are done.
So suppose ¢’ is not on e. This implies that
e lies entirely within path(r’,r). Therefore we
must have r # 7’ in this case. Moreover, r does
not have a blocker with a left anchor since any
such anchor must lie on path(ve,r) N Ipath(r'),
which is empty in this case. We conclude that

159

condition (2) is satisfied as long as r = r or r
has a blocker with a left anchor (see Fig. 9).

Figure 9: Case 2

(3) If ¢ = ¢; then e is incident to ¢ because
it is impossible for the spine edge incident to
¢; to be invisible from p in the neighborhood
of ¢; while ¢ is visible. If r = ¢, then e is
incident to ¢, for an analogous reason.

To deal with the remaining case where con-
dition (2) may not be satisfied by the triple
(g,7,€), suppose that r # ' and that r does
not have a blocker with a left anchor. In this
case, the last edge of path(vo,r) is invisible
from p so that the first edge f of rpath(r) is
visible from p at least locally at r. Let w be
the next visible site in the spine of 77 after
r. We claim that (r,w, f) is a good triple (see
Fig. 9).

We first argue that r does not have a blocker
at all. Suppose r did have a blocker b. Let 6*
be the maximal blocker such that b < b*. If
b* had a right anchor, then by Proposition 4.3
this anchor would have to be in rpath(r), con-
tradicting the choice of b,. Therefore, b* must
have a left anchor u. By Proposition 4.3 again,
u must lie on Ipath(r). However, u cannot
lie on Ipath(vg) because this would contradict
the maximality of by. Therefore, u must lie

on path(ve,r), but this implies that b* is a
blocker of r with a left anchor, contradicting
our assumption. Therefore, r does not have
a blocker at all. This trivially implies that r
and w do not have a common blocker, con-
dition (1) of (r,w, f) being a good triple. For
condition (2) we need only consider blockers of
w with left anchors. Since f is the only edge in
path(r,w) that has a part visible from p and
f is incident to r, such left anchors must all
lie on f. Finally, a reasoning analogous to the
one for (g,r,e) shows that the triple (r,w, f)
satisfies condition (3). 0

Now we come to our main theorem.

Theorem 4.4 Given

a set B of non-intersecting line segments and
a set P of sites in the plane, there is always
a straight-edge spanning tree of P that stabs
each line segment of B at most 4 times.

Proof: We first compute a bounding box
that properly contains all the objects of B
and P. Let ¢; and ¢, be the upper-left and
upper-right corners of the bounding box, re-
spectively. Then, applying the lemma to B
and P U {c, ¢, }, we obtain a spined tree 7.
Removing the artificial sites ¢; and ¢, from 7,
it remains a tree since ¢; and ¢, are leaves of
T . Tt follows from the statement of the lemma
that the resultant tree is a spanning tree over
P that stabs each line segment of B at most 4
times. a

5 Conclusions

In this paper we have studied spanning trees
among n points whose edges cross few among a
given set of m barriers. When the barriers are
disjoint, near-linear bounds for the cost of such
a tree can be obtained by several simple argu-
ments. Using more sophisticated techniques,
we were able to show that a linear cost span-
ning tree is possible in many cases.

One of the techniques we used is the con-
struction of certain BSPs on the barriers. This

160

raises the question of whether our other meth-
ods, by ‘reverse-engineering,’ can help resolve
some open questions about BSPs, including
the long-standing one about the existence of a
linear space BSP for disjoint line segments in
the plane.

We note that the number of barriers crossed
by linking two points is not a distance func-
tion and does not satisfy the triangle inequal-
ity. This means that the existence of other
low-cost structures among the points, such as
Hamiltonian tours and matchings, remains an
interesting research problem.

References

[1] M. de Berg. Linear size binary space parti-
tions for uncluttered scenes. Technical Re-
port UU-CS-1998-12, Utrecht University,
1998

[2] M. de Berg, M. J. Katz, A. F. van der
Stappen, and J. Vleugels. Realistic in-
put models for geometric algorithms. In
Proc. 18th Annu. ACM Sympos. Comput.
Geom., 294-303, 1997

[3] F. d’Amore and P. G. Franciosa. On the
optimal binary plane partition for sets of
isothetic rectangles. Inform. Process. Lelt.,

44:255-259, 1992

[4] H. Edelsbrunner, L. J. Guibas, and
J. Stolfi. Optimal point location in a
monotone subdivision. SIAM J. Comput.,
15(2):317-340, 1986

[5] M. S. Paterson and F. F. Yao. Efficient
binary space partitions for hidden-surface
removal and solid modeling. Discrete Com-
put. Geom., 5:485-503, 1990

[6] J. Snoeyink and M. van Kreveld. Linnear-
time reconstruction of Delaunay trian-
gulations with applications. In Proc.
Annu. European Sympos. Algorithms, Lec-
ture Notes in Computer Science 1284, 459-
471, Springer-Verlag, 1997.

