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ABSTRACT. In this paper we study the index of an isolated strictly log-canonical
singularity. As a result, we obtain the boundedness of indices of these singularities
of dimension 3 and determine all possible indices.

1. Introduction
A $\log$-canonical, $\mathrm{n}\mathrm{o}\mathrm{n}-\log$-terminal singularity is called strictly $\log$-canonical. Let

(X, $x$ ) be an isolated strictly $\log$-canonical singularity over $\mathbb{C}$ . If its dimension is 2,
then the index is 1, 2, 3, 4, or 6. This is observed by checking the list of the weighted
dual graphs of all strictly $\log$-canonical singularities. This is also proved by Shokurov
[14] by means of complements and by Okuma [13] by means of plurigenera. In the
3-dimensional case, the author heard that boundedness of indices of such singularities
is proved by Shokurov in [15]. In this paper, we study the quotient of isolated strictly
$\log$-canonical singularities by finite group actions. First, in case that the group acts
freely in codimension 1, we obtain the formula of the index of the quotient singularity
(Lemma 3.3). By this it follows a different proof of above fact on indices for dimension
2. We then prove that the index of 3-dimensional strictly $\log$-canonical singularity is
less than or equal to 66. More precisely, a positive integer $r$ is the index of such a
singularity if and only if $\varphi(r)\leq 20$ and $r\neq 60$ , where $\varphi$ is the Euler function. This is
related to finite automorphisms on $K3$-surfaces, Abelian surfaces and elliptic curves.
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for asking her the question on index, which gave th$\mathrm{e}$
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for providing her with useful information.

2. Isolated strictly $\log$-canonical singularities.

2.1. Isolated strictly $\log$-canonical singularities are studied in [5]. In this section we
summarize those results and add some basic facts on these singularities.
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Definition 2.2. Let (X, $x$ ) be a germ of normal singularity. If there is an integer $r$

such that $\omega_{X}^{[r]}$ is invertible, the singularity is called a $\mathbb{Q}$-Gorenstein singularity. We
call the minimum positive such number $r$ the index of (X, $x$ ) and denote by $\mathrm{I}\mathrm{n}\mathrm{d}(X, x)$ .

Definition 2.3. A $\mathbb{Q}$-Gorenstein singularity (X, $x$ ) is called a $log$-canonical singular-
$ity$ (resp.log-terminal singularity) if for a good resolution $f$ : $Yarrow X$ the canonical
divisor on $Y$ has an expression in $\mathrm{D}\mathrm{i}\mathrm{v}(Y)\otimes \mathbb{Q}$ :

$K_{Y}=f^{*}K_{X}+ \sum_{i}m_{ii}E$

with $m_{i}\geq-1$ (resp. $m_{i}>-1$ ) for every irreducible exceptional divisor $E_{i}$ with
$x\in f(E_{i})$ . Here a good resolution means a resolution whose exceptional set is a
normally crossing divisor with the non-singular irreducible components. We call $m_{i}$

the $\mathrm{d}is$crepan$cy$ over $X$ at $E_{i}$ or the $dis$crepancy for $f$ at $E_{i}$ for each irreducible
component $E_{i}$ .
2.4. In case of index 1, a strictly $\log$-canonical singularity is equivalent to a purely
elliptic singularity ([5]). In this case we define the essential divisor in the exceptional
divisor of a good resolution. It actually plays an essential role in the exceptional
divisor (cf. Lemma 3.7 [5]).

Definition 2.5. Let (X, $x$ ) be an isolated strictly $\log$-canonical singularity of index
1 and $f$ : $Yarrow X$ a good resolution. Then one has a representation

$K_{Y}=f^{*}Kx+ \sum_{Ii\in}m_{i}Ei-j\in\sum_{J}Ej$
,

with $m_{i}\geq 0,$ $I\cap J=\emptyset$ and $J\neq\emptyset$ . The divisor $E_{J}:=\Sigma_{j\in J}E_{j}$ is called the essential
divisor for a good resolution $f$ .

2.6. Let (X, $x$ ) be an $n$-dimensional isolated strictly $\log$-canonical singularity of index
$\hat{\perp}$ and $f$ : $Yarrow X$ a good resolution with the essential divisor $E_{J}$ . Since $E_{J}$ is a
complete variety with normal crossings,

$H^{n-1}(EJ, oE_{J})\simeq c_{r_{F}^{0}}H^{n-1}(EJ, \mathbb{C})=\oplus H-1(n)ni=0-10,iE_{J}$ ,

where $F$ is the Hodge filtration and $H_{m}^{i,j}(*)$ is the $(i, j)$ -Hodge-component of $H^{m}(*, \mathbb{C})$ .
As the left hand side is 1-dimensional $\mathbb{C}$-vector space (Lemma 3.7 [5]), it must coincide
with one of $H_{n-1}^{0,i}(E_{J})(i=0,1,2, \ldots, n-1)$ .

Definition 2.7. An $n$-dimensional isolated strictly $\log$-canonical singularity (X, $x$ )
of index 1 is called of type $(0, i)$ , if $H^{n-1}(EJ, \mathcal{O}E_{J})=H^{0,i}-1(nE_{J})$ .

2.8. The type is independent of the choice of a good resolution (Proposition 4.2 in
[5] $)$ .
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Example 2.9. A 2-dimensional srictly $\log$-canonical singularity (X, $x$ ) of index 1 is
of type $(0,1)$ if and only if (X, $x$ ) is a simple elliptic singularity and of type $(0,0)$ if
and only if it is a cusp singularity.

Proposition 2.10. Let (X, $x$ ) be a 3-dimensional isolated $\mathit{8}tri_{C}tlylog$-canonical 8in-
gularity of index 1 and of type $(0,2)$ and $f$ : $Yarrow X$ the canonical model, $i.e$ . $Y$ has
at worst canonical singularities and $K_{Y}$ is $f$ -ample. Let $D$ be the exceptional divisor
of $f$ with the reduced structure. Then $Y$ has at worst terminal singularities and $D$

is isomorphic to either a normal $K3$ -surface or an Abelian surface. Here a normal
$K3$ -surface is a normal surface whose minimal resolution is a K3-surface.

Proof. First note that $E_{J}$ is irreducible by Lemma 6, [7]. Since the discrepancy for
$f$ at each exceptional component is negative (the proof of Lemma 3.7 [7]), $D$ is
irreducible. Let $g$ : $Y’arrow Y$ be a proper birational morphism whose composite $f\mathrm{o}g$ :
$Y’arrow X$ is a good resolution. One sees that $Y$ has at worst terminal singularities.
Indeed, if not, there exists an exceptional divisor $E_{0}$ which is crepant for $g$ . Then
the discrepancy at $E_{0}$ for $f\circ g$ is less than $0$ , so $E_{0}$ becomes another component of
the essential divisor, which is a contradiction. Now one can prove that $Y$ is non-
singular away from finite points. If $D$ has 1-dimensional singular locus, then by the
blowing-up at a 1-dimensional irreducible component of the singular locus one obtains
a component $E_{1}$ whose discrepan$c\mathrm{y}$ for $f\circ g\mathrm{i}_{\mathrm{S}}-m+1<0$ , where $m$ is the multiplicity
of $D$ at a general point on the curve. It implies that $E_{1}$ is another component of the
essential divi $s\mathrm{o}\mathrm{r}$ , which is a contradiction. Therefore $D$ is non-singular away from
finite point $s$ . On the other hand, since $\omega_{Y}\simeq O_{Y}(-D)$ is Cohen-Macaulay, so is $D$ .
Hence by Serre’s criterion $D$ is normal. The condition $\omega_{Y}\simeq \mathcal{O}_{Y}(-D)$ yields that
$\omega_{D}\simeq O_{D}$ . A normal surface with this condition and $H^{2}(E_{J}, \mathcal{O}_{E_{j}})=\mathbb{C}$ , where $E_{J}$ is
a resolution of $D$ , is either a normal $K3$-surface or an Abelian surface ([16]). $\square$

Proposition 2.11. ([6]) Let (X, $x$ ) be a 3-dimensional isolated strictly log-canonical
singularity of index 1 and of type $(0,1)$ and a finite group $G$ act on (X, $x$). Then
either:

(i) for every good resolution $f$ : $\tilde{X}arrow X$ , the essential divisor $E_{J}$ is a cycle
$E_{1}+E_{2}+\ldots+E_{s\mathrm{z}}(s\geq 2)$ of elliptic ruled $surfaCeS_{f}$ where $E_{i}$ and $E_{i+1}$ intersect at
a section on each component for $i=1,$ $\ldots,$ $s(E_{s+1}=E_{1})$ or

(ii) there is a $G$ -equivariant good resolution $f\backslash .\tilde{X}arrow X$ such that the essential
divisor $E_{J}$ contains a $G$-invariant chain $E^{(0)}=E_{1}+\ldots+E_{s}(s\geq 1)$ of elliptic
ruled surfaces, where $E_{i}$ and $E_{i+1}$ intersect at a section on each component for $i=$
$1,$

$\ldots,$ $s-1$ . There are disjoint $subdivi\mathit{8}orsE^{\langle-)}$ and $E^{(+)}$ of $E_{J}$ such that $E_{J}=$

$E^{(-)}+E^{(0)}+E^{(+)}$ , where $E^{(-)}\cap E^{(0)}$ is a section of $E_{1}$ and $E^{(+)}\cap E^{(0)}$ is a section
of $E_{s}$ .
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3. Finite group$s$ which act freely in codimension 1.

Definition 3.1. Let $G$ be a group and (X, $x$ ) a germ of a singularity. We say that $G$

acts on (X, $x$ ) if $G$ acts on a neighbourhood of $x$ and fixes the point $x$ . We say that $G$

acts on (X, $x$ ) freely in codimension 1, if there exist $s$ a closed subset $S$ of codimension
greater than or equal to 2 on a neighbourhood $X$ such that $G$ acts freely on $X\backslash S$ .

3.2. We denote the set of non-singular points of $X$ by $X_{reg}$ . Let (X, $x$ ) be a $\mathbb{Q}-$

Gorenstein singularity of index $m$ and a group $G$ act on (X, $x$ ). We denote the germ
$(X/G, x’)$ by (X, $x$ ) $/G$ , where $x’\in X/G$ is the image of $x$ . Denote the maximal ideal
of $x$ by $\mathfrak{m}_{x}$ . Then it induces a canonical representation

$\rho:Garrow GL(\omega_{x^{m}}/[]\mathfrak{m}_{x}\omega_{x}[m])\simeq \mathbb{C}*$ .

because $G$ fixes the point $x$ .

Lemma 3.3. Let (X, $x$ ) be a $\mathbb{Q}$-Gorenstein normal singularity of index $m$ . Let
$G$ be a finite group which acts on (X, $x$ ) freely in codimension 1 and $\rho$ : $Garrow$

$GL(\omega_{\mathrm{x}^{m}}^{[]}/\mathfrak{m}x\omega_{X}^{[]})m\simeq \mathbb{C}^{*}$ the canonical representation. Then

$\mathrm{I}\mathrm{n}\mathrm{d}((x, X)/G)=m|Im\rho|$ .

In particular,
$\mathrm{I}\mathrm{n}\mathrm{d}((x, X)/G)\leq m|G|$ .

Proof. Denote the order of $G$ by $d,$ $|Im\rho|$ by $r$ and $\mathrm{I}\mathrm{n}\mathrm{d}((x, X)/G)$ by $I$ . Let $g$

be a generator of Imp and $\epsilon$ the primitive r-th root of 1 which corresponds to $g$ .

Let $\omega$ be a generator of $\omega_{X}^{[m]}$ . By the pull-back of a generator of $\omega_{x/c}^{[I]}$ , one has
a $G$-invariant $I$-ple $n$-form $\theta$ which is holomorphic and does not vanish on $X_{reg}$ .
Therefore $I=mm’$ for some $m’\in \mathrm{N}$ and $\theta=h\omega^{\otimes m’}$ , where $h$ is a

$\mathrm{n}\mathrm{o}\mathrm{w}_{I}\mathrm{h}[]\mathrm{e}\mathrm{r}\mathrm{e}$

vanishing
holomorphic function on $X$ . Since $\theta^{g}=\theta$ as an element of $\omega_{X}^{[I}/$

]
$\mathfrak{m}x\omega_{X}$ , one obtains

that $\epsilon^{m’}h(x)\omega\otimes m’=h(x)\omega\otimes m$
’ Hence $\epsilon^{m’}=1$ . This shows $I\geq mr$ . Next, to prove

$I\leq mr$ , we construct a $G$-invariant $mr$-ple $n$-form which is holomorphic and does not
vanish on $X_{reg}$ . Denote an element of $G$ which corresponds to $g\in Im\rho$ by the $s$ame
symbol $g$ . Let $\theta$ be an $mr$-ple $n$-form $\omega\otimes\omega^{\mathit{9}}\ldots\otimes\omega^{g^{r-1}}$ and $\tilde{\theta}$ be $(1/d) \sum_{\sigma\in c}\theta^{\sigma}$ .

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}[mr]$

$\tilde{\theta}$ is an invariant $mr$-ple $n$-form. Let $\rho(\sigma)=g^{i}$ for $\sigma\in G$ . Then in $\omega_{X}^{[mr]}/\mathfrak{m}x\omega_{X}$ ,
$\theta^{\sigma}=\epsilon^{ri+(r}\omega 1+2+\ldots+-1)\otimes r$ which is $\omega^{\otimes r}$ if $r$ is odd and $-\omega^{\otimes r}$ if $r$ is even. Therefore
$\tilde{\theta}=\pm\omega^{\otimes r}+\lambda$ , where $\lambda\in \mathfrak{m}_{x}\omega_{x^{r}}^{[m}$]. Since $\tilde{\theta}\not\in \mathfrak{m}_{x}\omega_{X}^{[mr}$ ], $\tilde{\theta}$ does not vanish on $X_{reg}$ ,

which show$s$ that $\tilde{\theta}$ is a required form. $\square$

Corollary 3.4. Let (X, $x$ ) be an isolated strictly $log$-canonical singularity of index
1 on which a finite group $G$ acts. Let $f$ : $\tilde{X}arrow X$ be a $G$ -equivariant resolution of
the singularities and $\rho$ : $Garrow GL(\omega_{X}/f_{*}\omega_{X})\simeq \mathbb{C}$ the induced representation. Then
$\mathrm{I}\mathrm{n}\mathrm{d}((x, X)/G)=|Im\rho|$ .
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Proof. For an isolated strictly $\log$-canonical singularity of index 1, it follows that
$\mathfrak{m}_{x}\omega_{X}=f_{*}\omega_{\tilde{x}}$ . $\square$

Corollary 3.5. Let (X, $x$ ) be an n-dimen8ional isolated strictly $log$-canonical singu-
larity of index 1 on which a finite group $G$ acts. Assume there exists the canonical
model $\varphi$ : $X’arrow X$ and let $E$ be the reduced exceptional divisor. Then the action
induces a representation $\rho:Garrow GL(H^{n-}1(E, O_{E}))$ and $\mathrm{I}\mathrm{n}\mathrm{d}(X, x)/G=|Im\rho|$ .

Proof. Take a $G$-equivariant resolution $f$ : $\tilde{X}arrow X.$ Then $\oplus_{m\geq 0}f_{*}\omega^{\bigotimes_{\overline{X}}}m$ admits the
action of $G$ . So the canonical model admits the equivariant action of $G$ , therefore
the exceptional divisor $E$ also does. Since $\omega_{X’}\simeq O_{X}’(-E)$ (proof of Lemma 7 of [7])
and $X’$ is Gorenstein in codimension 2, $E$ is Cohen-Macaulay and $\omega_{E}\simeq \mathcal{O}_{E}$ . These
yield that $H^{n-1}(E, \mathcal{O}_{E})=\mathbb{C}$ . As $R^{n-1}\varphi_{*}\mathcal{O}_{X}’\simeq R^{n-1}f_{*}\mathcal{O}_{\overline{X}}\simeq \mathbb{C}$ , the surjection
$R^{n-1}\varphi_{*}\mathit{0}_{X}’arrow H^{n-1}(E, OE)$ is an isomorphism. On the other hand $R^{n-1}f_{*}O_{\overline{X}}\mathrm{i}- \mathrm{S}$

dual to $\omega_{X}/f_{*}\omega_{\overline{X}}$ , on which one can apply Corollary 3.4. $\square$

Corollary 3.6. Let (X, $x$ ) be an $n$ -dimensional isolated strictly $log$-canonical singu-
larity of index 1 on which a finite group $G$ acts. Let $f$ : $Yarrow X$ be a G-equivariant
good resolution and $E_{J}$ the essential divisor. Then the action induces a representation
$\rho:Garrow cL(H^{n-1}(E_{J}, \mathit{0}_{E_{j}}))$ and $\mathrm{I}\mathrm{n}\mathrm{d}(X, x)/G=|Im\rho|$ .

Proof. It is clear that $G$ acts on $E_{J}$ . Since $E_{J}$ is the essential divisor, $R^{n-1}f_{*}\mathcal{O}_{X’}\simeq$

$H^{n-1}(E_{j}, O_{E_{J}})$ by Lemma 3.7 [5]. On the other hand $R^{n-1}f_{*}O_{\overline{x}}$ is dual to $\omega_{X}/f_{*}\omega_{\overline{X}}$ ,
on which one can apply Corollary 3.4. $\square$

4. Index of isolated strictly $\log$-canonical singularities

4.1. In thi$s$ section, one proves that the indices of isolated strictly $\log$-canonical sin-
gularities of dimension 2 and 3 are determined. Here one should note that the bound-
edness of indices does not hold for $\log$-terminal singularities and $\mathrm{n}\mathrm{o}\mathrm{n}-\log_{\mathrm{C}\mathrm{a}}- \mathrm{n}\mathrm{o}\mathrm{n}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$

singularities even for 2-dimensional case.

Example 4.2. (1) Let $(Z_{m}, z_{m})$ be the cyclic quotient singularity $\mathbb{C}^{2}/G$ , where $G$ is
generated by

Here $\epsilon$ is a primitive m-th root of unity. Then the exceptional curve on the min-
imal resolution is $\mathrm{P}^{1}$ and its self-intersection number is $-m$ . Therefore the index
of $(Z_{m}, z_{m})$ is $m$ if $m$ is odd and $m/2$ if $m$ is even. This shows that the indices of
$\log$-terminal singularities are not bounded.
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(2) Let (X, $x$ ) $\subset(\mathbb{C}^{3},0)$ be a hypersurface singularity defined by $x^{4}+y^{4}+z^{4}=0$

and $(Z_{m}, z_{m})$ is its quotient by the cyclic group generated by

where $\epsilon$ is a primitive m-th root of unity. Then the index of $(Z_{m}, z_{m})$ is $m$ . This
shows that the indices of $\mathrm{n}\mathrm{o}\mathrm{n}-\log- \mathrm{C}\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$ singularities are not bounded.

4.3. Let $\pi$ : (X, $x$ ) $arrow(Z, z)$ be a finite morphism \’etale in codimension 1. Then
(X, $x$ ) is strictly $\log$-canonical if and only if $(Z, z)$ is (see for example Proposition 1.7,
[?] $)$ . Hence by the canonical cover, an arbitrary strictly $\log$-canonical singularity is
regarded as the quotient of such a singularity of index 1 by a finite group which acts
on the singularity freely in codimension 1.

Definition 4.4. An isolated strictly $\log$-canonical singularity is called of $\mathrm{t}^{-}\mathrm{y}\mathrm{P}\mathrm{e}(0, i)$ ,
if its canonical cover is of type $(0, i)$ .

Theorem 4.5. An arbitrary dimensional isolated strictly $log$-canonical singularity of
type $(0,0)$ has index either 1 or 2.

Proof. This is proved in Theorem 3.10, [?]. One can also prove it by using 3.6.
Let $\pi$ : (X, $x$ ) $arrow(Z, z)$ be the canonical cover of an $n$-dimensional isolated strictly
$\log$-canonical singularity $(Z, z)$ and $G=<g>$ the associated cyclic group. Let
$f$ : $\tilde{X}arrow X$ be a $G$-equivariant good resolution of (X, $x$ ) such that $\pi\circ f$ factors
through a good resolution $g:\tilde{Z}arrow Z$ of $(Z, z)$ . Denote the essential divisor for $f$ by
$E_{J}$ and its dual $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{P}^{1}\mathrm{e}\mathrm{x}$ by $\Gamma$ . Then $g$ induces an automorphism $g^{*}$ on $H^{n-1}(\Gamma, \mathbb{Z})$ .
Since (X, $x$ ) is of type $(0,0),$ $\mathbb{C}\simeq H_{n-}^{0,0_{1}}(E_{J})$ and this is isomorphic to $H^{n-1}(\mathrm{r}, \mathbb{C})$ by
2.5, [9]. Therefore $H^{n-1}(\Gamma, \mathbb{Z})$ is of rank 1. Let $\lambda$ be a free generator of $H^{n-1}(\Gamma, \mathbb{Z})$

Then $g^{*}(\lambda)=\pm\lambda+(t_{orS}ion)$ in $H^{n-1}(\Gamma, \mathbb{Z})$ . Therefore $g^{*}(\lambda)=\pm\lambda$ in $H^{n-1}(\Gamma, \mathbb{C})$ .
Hence the order of the action of $G$ on $H^{n-1}(E_{J}, O_{E})J$ is 1 or 2. Now apply 3.6. $\square$

4.6. A non-singular projective variety $X$ is called a Calabi-Yau $\mathrm{v}\mathrm{a}r$iety, if it satisfies
that $\omega_{X}\simeq O_{X}$ . It is well known that a 1-dimensional Calabi-Yau variety is an
elliptic curve and 2-dimensional one is either a $K\mathit{3}$-surface or an Abelian surface. An
automorphism $g$ on $X$ induces a linear automorphism $g^{*}$ on $\Gamma(X, \omega_{X})=\mathbb{C}$ which is
dual to $H^{n}(X, O_{\mathrm{x}})$ , where $n=\dim X$ . Now let us introduce a conjecture on finite
automorphisms on Calabi-Yau varieties, which is essential to our problem.

Conjecture 4.7. For $n\in \mathbb{N}$ , there is a number $B_{n}$ such that $\mathrm{n}$-dimensional Calabi-
Yau variety $X$ and a finite automorphism $g$ on $X$ , the order of the induced automor-
phism $g^{*}$ on $H^{n}(X,$ $\mathcal{O}_{\mathrm{x})}=\mathbb{C}$ is bounded by $B_{n}$ .

For $n=1,2$ , the conjecture holds true.
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Proposition 4.8. For an arbitrary elliptic curve $X$ , denote the order $|Im\rho|$ by $r$ ,
where $\rho$ : $Aut(X)arrow GL(H^{1}(X, \mathcal{O}X))=\mathbb{C}^{*}i\mathit{8}$ the induced representation. Then
$\varphi(r)\leq 2$ , which means $r=1,2,3,4$ or 6.

Proof. This is a classical result and proved in various ways. For example, note that
an automorphism of $X$ is the composite of a group homomorphism and a translation.
Since the $\mathrm{t}r$anslation has no effect on $H^{1}(X, \mathcal{O}_{X})=\mathbb{C}$ , Imp is $\rho(Aut(x, 0))$ , where
$Aut(X, \mathrm{o})$ is the group of automorphisms. Since $Aut(X, \mathrm{o})$ fixes the zero element of
the group) it is a finite group of order 1, 2, 4 or 6 (see, for example, IV, 4.7, [4]). $\square$

Proposition 4.9. (i) $(\mathit{1}\mathit{0}.\mathit{1}.\mathit{2}_{y}[11])$ For an arbitrary $K\mathit{3}$-surface $X$ , denote the order
$|Imp|$ by $r$ , where $p:Aut(x)arrow GL(H^{2}(x, ox))=\mathbb{C}*i\mathit{8}$ the induced representation.
Then $\varphi(r)\leq 20$ , in particular $r\leq 66$ . Here $\varphi$ is the Euler function.

(ii) (3.2, [3]) For an arbitrary Abelian surface $X$ , the order $r$ of a finite auto-
morphism on $X$ satisfies $\varphi(r)\leq 4$ , which means that $r=1,2,\mathit{3},4,5,6,8_{f}10$ ,
12.

Now one obtains a new proof of the following result.

Theorem 4.10. A 2-dimensional strictly $log$-canonical singularity has index 1, 2, 3, 4
or 6.

Proof. Let $\pi$ : (X, $x$ ) $arrow(Z, z)$ be the canonical cover of the strictly log-canonical
singularity $(Z, z)$ and $G$ be the associated cyclic group. By 4.5, it is sufficient to
prove for the case that (X, $x$ ) is of type $(0,1)$ . Let $f$ : $Yarrow X$ be the minimal
resolution and $E$ the exceptional curve. Then $f$ is a $G$-equivariant good resolution
with the essential divisor $E$ which is an elliptic curve. By 4.8, $|Im\rho|=1,2,3,4$ , or
6, where $\rho$ : $Garrow GL(H^{1}(E, O_{E}))=\mathbb{C}^{*}$ is the induced representation. Now apply
3.6. $\square$

Theorem 4.11. An isolated 3-dimensional strictly $log$-canonical $\mathit{8}ingula7^{\cdot}ity$ of type
$(0,2)$ has index $r_{f}$ where $\varphi(r)\leq 20$ .

Proof. Let $\pi$ : (X, $x$ ) $arrow(Z, z)$ be the canonical cover of a 3-dimensional strictly
$\log$-canonical singularity $(Z, z)$ and $G$ the associated cyclic group. Let $E$ be the
exceptional divisor on the canonical model of $X$ . Then by 2.10 $E$ is either a normal
$K3$-surface or an Abelian surface. Note that the action of $G$ on $E$ is lifted onto
the minimal resolution $\tilde{E}$ of $E$ . Since the singularities on $E$ are at worst rational
double, one obtains that $\Gamma(E, \omega_{E})=\Gamma(\tilde{E}, \omega -)$ . By the Serre duality, the action of
$G$ on $H^{2}(E, \mathcal{O}_{E})$ is the same as the one on $H^{2}(\tilde{E}, O -)$ . Therefore by 3.5 and 4.9
$r=\mathrm{I}\mathrm{n}\mathrm{d}(Z, z)$ satisfies $\varphi(r)\leq 20$ . $\square$

Theorem 4.12. An $isol,ated3$ -dimensional strictly $log$-canonical singularity of type
$(0,1)$ has index 1, 2, 3, 4 or 6.
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4.13. For the proof of Theorem 4.12 one needs the discussion on the following divisor:
Let $E_{J}$ be a simple normal crossing divisor on a non-singular 3-fold. Assume $E_{J}=$

$E_{1}+E_{2}+\ldots+E_{s}$ is a cycle of elliptic ruled $s$urfaces $E_{i}$ and every intersection curve
is a section on the ruled surfaces. Decompose $E_{J}$ into two connected chains $E^{(i)}$

$(i=1,2)$ with no common components. Let $C_{1}$ and $C_{2}$ be the irreducible curves of
$E^{(1)}\cap E^{(2)}$ . Let $p:E^{(1)}arrow C$ and $q$ : $E^{(2)}arrow C$ be the rulings and $p_{i}$ : $C_{i}arrow C$ be
the restriction of $p$ on $C_{i}$ . Then one obtains the Mayer-Vietoris exact sequence:

$H^{1}(E^{(1)}, \mathbb{C})\oplus H1(E(2), \mathbb{C})arrow H^{1}(C_{1}, \mathbb{C})\oplus H1(C_{2}, \mathbb{C})arrow H^{2}(E_{J}, \mathbb{C})arrow 0$,

which is an exact sequence of mixed Hodge structure. By taking $Gr_{F}^{0}$ , where $F$ is
the Hodge filtration, one obtains the following:

$H^{1}(E^{(1}),$ $O)\oplus H1(E(2), \mathit{0})arrow H^{1}(\Phi)C_{1},$$O\oplus H1(C2, O)arrow H^{2}(\Psi E_{j}, \mathit{0})arrow 0$ .

Lemma 4.14. Assume that $H^{2}(E_{J}, O)=\mathbb{C}$ . Let $\Phi|_{H^{1}(E^{(})_{\mathcal{O})}}i,=\varphi_{i}$ and $\Psi|_{H^{1}(C_{i},\mathcal{O})}=$

$\psi_{i}$ . Then the following hold:
(i) $Im\varphi_{1}=Im\varphi_{2}=Im\Phi j$

(ii) $\psi_{i}$ is an isomorphism for $i=1,2$ and $Ker\Psi \mathrm{o}(p_{1}^{*}\oplus p_{2}^{*})=\triangle$ , where $\triangle$ is the
diagonal subspace of $H^{1}(C, O)\oplus H^{1}(C, O)$ ;

(iii) fix $C_{1}$ , then the isomorphism $\psi_{1}$ is independent of the choice of the decompo-
sition of $E_{J}$ as in 4.13.

Proof. If (i) does not hold, then $Im\Phi\neq Im\varphi_{1}$ , where $Im\varphi_{1}$ is of dimension 1,
because $\varphi_{1}$ is a non-zero map from 1-dimensional vector space. Therefore $\Phi$ becomes
surjective, a contradiction to $H^{2}(E_{J}, OE_{j})\neq 0$ . For (ii), consider the composite:

$H^{1}(E^{(i)}, o_{E}(i))arrow H\varphi_{i1}(c_{1}, Oc_{1})\oplus H^{1}(C_{2}, OC_{2})$

$p_{1_{arrow}^{-1}}^{*}\oplus p^{*}2-1H^{1}(C, Oc)\oplus H^{1}(C, \mathit{0}_{c})$ .

One obtains that $Im((p^{*}1^{-1}\oplus p_{2}^{*-1})0\varphi_{i})=\triangle$ . Therefore $\psi_{i}$ is not a zero map. For
(iii), take another $C_{2}’$ and $E^{(i})’(i=1,2)$ such that $E^{(1)’}\cap E^{(2)’}=C_{1}$ II $C_{2}’$ . One may
assume that $C_{2}’\subset E^{(1)}$ and $E^{(1)’}\subset E^{(1)}$ and $E^{(2)}\subset E^{(2)’}$ . Let $E^{(3)}$ be a subchain of
$E_{J}$ such that $E^{(1)}\cap E^{(2)’}=C_{1}$ II $E^{(3)}$ . Then $C_{2},$ $C_{2}’\subset E^{(3)}$ . By these inclusions, it
follow$s$ the commutative diagram :

$H^{1}(E^{(1}))\oplus H^{1}(E(2))$ $arrow$ $H^{1}(C1)\oplus H1(C_{2})$
$arrow\Psi$

$H^{2}(E_{J})$ $arrow 0$

$||$ $\uparrow l$ $||$ $\uparrow l$ $||$

$H^{1}(E^{(1})\iota_{l^{\oplus(}})H||1E^{(2)’})$

$arrow$

$H^{1}(c_{1})||\downarrow\oplus H1(E^{(3)})\iota$

$arrow$

$H^{2}(E_{J})||$

$arrow 0$

$H^{1}(E^{(1)’})\oplus H^{1}(E^{(2)’})$ $arrow$ $H^{1}(C_{1})\oplus H^{1}(C_{2}’)$
$arrow\Psi’$

$H^{2}(E_{J})$ $arrow 0$ .

So the restrictions of $\Psi$ and $\Psi’$ on $H^{1}(C_{1}, O)$ are the same. $\square$
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Proof of Theorem 4.12. Let $(Z, z)$ be an isolated strictly $\log$-canonical singularity
of type $(0,1),$ $\pi$ : (X, $x$ ) $arrow(Z, z)$ the canonical cover and $G$ the associated cyclic
group. Let $f$ : $Yarrow X$ be a $G$-equivariant good resolution and $E_{J}$ the essential
divisor. Then $E_{J}$ is either as in (i) or (ii) of Proposition 2.11.

Case 1. The case that $E_{J}$ is as in (ii) of Proposition 2.11.
Let $E_{J}=E^{(-)}+E^{(0)}+E^{(+)}$ be the decomposition as in (ii). Then there is a ruling

$p$ : $E^{(0)}arrow C$ over an elliptic curve $C$ . Since each fiber of $p$ is mapped to a fiber
of $p$ by the action of $G,$ $C$ admits the action of $G$ and $p$ becomes a G-equivariant
morphism. Now by Mayer-Vietoris exact sequence:

$H^{1}(E^{(-)}+E^{(0)}, \mathcal{O})\oplus H^{1}(E^{(0)}+E^{(+)}, \mathcal{O})arrow H^{1}(E^{(0)}, \mathit{0})$

$arrow H^{2}(E_{J}, O)arrow H^{2}(E^{(-)}+E^{(0)}, O)\oplus H^{2}(E^{(0)}+E^{(+)}, O)=0$ ,

one obtains a $G$-equivariant isomorphism $H^{1}(E(0), O)\simeq H^{2}(E_{J}, O)$ . On the other
hand there is a $G$-equivariant isomorphism $p^{*}$ : $H^{1}(C, O)arrow H^{1}(E(0), O)$ . Since the
action of $G$ on $H^{1}(C, O)$ is induced from that on $C$ , the order of the action on $G$ on
$H^{1}(C, O)$ is 1, 2, 3, 4, 6 by Proposition 4.8.

Case 2. The case that $E_{J}$ is as in (i) of Proposition 2.11.
If the intersection curves are all fixed under the action of $G$ , the generater $g$ of $G$

induces an automorphism of each intersection curve. Take $C_{i}$ and $E^{(i)}(i=1,2)$ as
in 4.13. Then one obtains the commutative diagram of isomorphisms:

$H^{1}(o_{1})$
$arrow\psi_{1}$

$H^{2}(E_{J})$

$g|_{C_{1}}^{*}\downarrow$ $\downarrow g^{*}$

$H^{1}(c_{1}\neg)$
$arrow\psi_{1}$

$H^{2}(E_{J})$ .

Since $g|_{C_{1}}^{*}$ is of order 1, 2, 3, 4, 6 by Proposition 4.8, so is $g^{*}$ .
If $g(C_{1})=C_{2}$ for $C_{1}\neq C_{2}$ , then under the notation in 4.13 let $h$ : $Carrow C$ be

an automorphism $p_{2}\mathrm{o}g|C_{1}\mathrm{O}p_{1}-1$ . By the definition of $h$ , it follows the commutative
diagram of isomorphisms:

$H^{1}(C)$
$arrow p_{2}^{*}$

$H^{1}(C_{2})$
$arrow\psi_{2}’$

$H^{2}(E_{J})$

$\downarrow h^{*}$ $g|_{C_{1}}^{*}\downarrow$ $\downarrow g^{*}$

$H^{1}(C)$
$arrow p_{1}^{*}$

$H^{1}(C_{1})$
$arrow\psi_{1}$

$H^{2}(E_{J})$ ,

where $\psi_{2}’$ is induced from $\psi_{1}$ through $g$ . Here, note that $H^{2}(E_{J}, O)=\mathbb{C}$ by the
assumption of the singularity. So one can apply Lemma 4.14, (iii) and obtains that
$\psi_{2}’=\psi_{2}$ . On the other hand, as $Ker\Psi\circ(p_{1}^{*}\oplus p_{2}^{*})=\triangle$ by Lemma 4.14, (ii), it follows
that $\psi_{1^{\circ p}}1*=-\psi_{2^{\circ}}p_{2}*$ . Hence, by the diagram above, the order of $g^{*}$ is 1, 2, 3, 4, 6
since that of $h^{*}$ is 1, 2, 3, 4, 6 by 4.8. $\square$
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Theorem 4.15. For a positive integer $r$ the following are equivalent:
(i) $r$ is the index of a 3-dimensional strictly $log$-canonical singularity;
(ii) $\varphi(r)\leq 20$ and $r\neq 60$ , where $\varphi$ is the Euler function.

Proof. First assume (i), then by theorems 4.5, 4.11 and 4.12, it follows that $\varphi(r)\leq 20$ .
If there exists a 3-dimensional strictly $\log$-canonical singularity $(Z, z)$ of index 60.
Then by 4.5 and 4.12, $(Z, z)$ must be of type $(0,2)$ . Let $E$ be the exceptional divisor
on the canonical model of the canonical cover (X, $x$ )

$)$ then $E$ is normal $K3$-surface.
Let $G$ be the corresponding group of the canonical cover, then $G$ acts on $E$ whose
induced action on $H^{2}(E, \mathcal{O}_{E})$ is of order 60. Since this action is lifted to the minimal
resolution $\tilde{E}$ of $E$ , one obtains a $K3$-surface $\tilde{E}$ which admits an automorphism whose
action on $H^{2}(\tilde{E}, O_{\overline{E}})$ is of order 60. However, it is proved by Machida-Oguiso [10]
that there is no $K\mathit{3}$-surface with such an automorphism.

Next assume (ii), then by [8] and [12], there is a $K\mathit{3}$-surface $E$ with an automor-
phism $g:Earrow E$ whose order and the order of induced automorphism on $H^{2}(E, O_{E})$

are both $r$ . Let $G=<g>,$ $\pi$ : $Earrow E’=E/G$ the quotient map and $\mathcal{L}$ an am-
ple invertible sheaf on $E’$ . Let $Y’$ and $Y$ be the line bundles $SpeC\oplus m\geq 0^{\mathcal{L}^{\otimes}}m$ and
$Spec\oplus_{m\geq 0^{\pi^{*}}}\mathcal{L}^{\otimes m}$ on $E’$ and on $E$ , respectively. Then $Yarrow E$ has the zero section
$F_{p}0$ whose normal bundle is $\pi^{*}\mathcal{L}^{-1}$ , so there is a contraction $f$ : $(Y, E_{0})arrow(X, x)$ of
$E_{0}$ . Since the exceptional divisor $E_{0}$ is $K3$-surface, the singularity (X, $x$ ) is strictly
$\log$-canonical of index 1 and of type $(0,2)$ by [7]. One defines an action of $G$ on (X, $x$ )
in the following way: Let a be the action of $G$ on $E$ . On the other hand there is also
an action $\tau$ of $G$ on $Y’$ which is trivial on $E’$ , because $Y’$ admits a canonical action of
$\mathbb{C}^{*}$ and $G$ is considered as a subgroup of $\mathbb{C}^{*}$ . Since $Y$ is the fiber product $E\cross_{E’}Y’$ ,
one obtains the action of $G$ on $Y$ which is compatible with $\sigma$ and $\tau$ . It is clear that
this action is free on $Y\backslash E_{0}$ and $E_{0}$ is $G$-invariant. Therefore one can introduce the
action of $G$ on (X, $x$ ). The quotient $(Z, z)=(X, x)/G$ is strictly $\log$-canonical of
index $r$ by Corollary 3.6. $\square$

4.16. Boundedness of indices of higher dimensional strictly $\log$-canonical singular-
ities is also ex$p$ected to follow from Conjecture 4.7. On the contrary, if indices of
$n$-dimensional strictly $\log$-canonical singularities are bounded, then Conjecture 4.7
holds for $(n-1)$-dimensional Calabi-Yau varieities. Indeed, as in the proof of The-
orem 4.15, for every Calabi-Yau $(n-1)$-fold $E$ and a finite order automorphism $g$ ,
one can construct a strictly $\log$-canonical singularity of index $r$ , where $r$ is the order
of the induced automorphism $g^{*}$ on $Hn-1(E, O_{E})$ . Hence the boundedness of indices
implies Conjecture 4.7.
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