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Analytic Smoothing Effect and Single Point
Conormal Regularity for the Semilinear Dispersive
Type Equations
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1. INTRODUCTION

We study the smoothing effect for a general form of the following dispersive semilinear
equation:

(1.1) {iatu +Q(D2)u = f(u,0u), tz€ER,

u(0, z) = ¢(x),

where Q(D,) is a differential operator of homogeneous degree m. A typical example
of the above type equation is the Korteweg-de Vries equation, nonlinear Schrodinger
equation, the Benjamin-Ono equation and derivative nonlinear Schrodinger equation.
Those equations mainly arise from the water wave theory and typically, the solution
u(t,z) : R x R — R descries the surface displacement of the water wave.

We assume that the linear differential operator is homogeneous of order m. That is
Q(D,) is defined by the Fourier transform |

Q(Dz)u = Fq(€)Fu, -

where g(§) satisfies g(Ag) = A™q(&) for A > 0.

When we consider the well-posedness of those type of equation, L? based (Sobolev)
space is considered and the regularity of solution is then, derived as much as the same
order of regularity of the initial data ¢. Namely if the initial data ¢ € H*(R) for some
s € R, then the solution expected up to H*(R). This is because the singularities of the
solution come from the infinity and regularity is never to be gained by time evolution.

However, it is studied by many cases that the local or some restricted version of
smoothing effect holds for those type of equations. Among others, the smoothing ef-
fect from the low initial regularity solution to the analyticity is our main concern. Es-
pecially, to the weak solution constructed in the Fourier restriction space Xy = {f €
S'(R?); (10 + Q)*(D,)* f € L*(R; L*(R))}, it is possible to prove the regularity of solution
reaches up to analytic in both space and time variable by an operation of the conformal
vector fields. More specifically, we introduce the linear complimentary ( variable coeffi-
cient) operator P = mtd; + z8, that plays an role of the compensating part where the
main linear operator L = i0; + Q(D,) can not gain the regularity. In what follows, we
restrict our problem to the simplest dispersive case q(§) = —&™ ie., Q(D,) = —(i0,)™.
Note that usual derivative is given by 9, = ¢D,.
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Our goal is to obtain the smoothing effect for a single point singularity. To make it
simply, we further restrict the situation like the following. We assume that f(u, Oyu) is a
polynomial of u and @ of order p but not depends on d,u nor d,%. That is the equation
we discuss is the following simpler one: '

i + Q(Dy)u = f(u,u), t,z € R,
(1.2) {u(O, 2) = 6(z).

The following is our main theorem.

Theorem 1.1. Let s > 0. Suppose that for some Ag > 0, the initial data ¢ € H*(R) and
satisfies
4 = Ak

!
k!

then there ezist T > 0 and a unique solution u of the nonlinear dispersive equation (1.1)
such that for some b € (1/2,1), uw € C((-T,T),H®?) N X{. Besides for any (t,x) €
{(=T,0)U(0,T)} xR, u(t,-) is a real analytic function in both space and time variable.

1(20s)*¢llzr+ < oo,

Remark 1. For the case of KAV equation, that is Q(D,) = 02 and f(u,u,) = 9.(u?),
or nonlinear Schrodinger equation (NLS), Q(D,) = 82 and f(u,u,) = u? or 4%, we have
obtained a much stronger result of the smoothing effect ([12] [13]). In that case, the
initial data can be taken such as the Dirac measure or principal value of 1/z. Also, for
the nonlinear Schrodinger equation with exotic power nonlinearities like w2, @2, u3, @®
we may conclude that the same stronger result like Theorem 1.1 holds.

seeny

Remark 2. It is well-known that the global in time solution has been obtained (see
[4], [10]) to the spacial dispersive nonlinear equations by the inverse scattering method.
Also the analyticity for the inverse scattering solution of KAV equation with a weighted
initial data was obtained by Tarama [25]. However, since our method is based on the fact
that the solution is in H*, we don’t know if our result is true globally in time. We also
notice that the small data global analticity was shown by Nakamitsu [23] for the nonlinear
Schrodinger equations in higher dimensions for some weighted initial data.

By a almost similar argument of Theorem 1.1, one can also show the following weaker
theorem.

Theorem 1.2. Let s > 0. Suppose that for some Ay > 0, the initial data ¢ € H*(R) and
satisfies

S A 08,6l < oo
2 Tiiym

then there exist T > 0 and a unique solution u of the dispersive equation (1.1) such that
u e C((-T,T),H) N X§ for some b € (1/2,1). Moreover for any t € (—T,0) U (0,T),
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u(t,-) is analytic function in space variable and for x € R, u(-,z) is of Gevrey m as a
time variable function.

Remark 3. In both Theorems, the assumption on the initial data implies the analyticity
and Gevrey m regularity except the origin respectively. In this sense, those results are
stating that the singularity at the origin immediately disappear after t > 0 or t < 0 up
to analyticity.

Remark 4. Some related results are obtained for the linear and nonlinear Schrodinger
equations. For linear variable coefficient case, see Kajitani-Wakabayashi [11] and for
nonlinear case, Chihara [3]. They are giving a global weighted uniform estimates of the
solution with arbitrary order derivative in space variable. In our case, it is still unknown
if the weighted uniform bounds are possible or not.

2. METHOD

Our method is based on the following observation. To make description simple, we
consider the following simplest case:

(2.1) {z’é‘tu + DMy = pu?, t,xz € R,

u(0,z) = ¢(z).

Firstly, we introduce the generator of the dilation P = mtd; + 20, for the linear part
of the dispersive equation. Noting the commutation relation with the linear dispersive
operator L = &, + Q(D,):

[L, Pl=mL,
it follows
(2.2) LP* = (P +m)tL,
for any k =1,2,---. Applying P = mtd, + z0, to the equation (2.1), we have
(2.3) i0y(P*u) + Q(Dy)(P*u) = (P 4+ m)*Lu = u(P + m)* (u®)

We set w, = P*u and F(u, @) = (P + m)*u?. Then noting that

(2.4) : Il
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we see

) k
B, ) =a(P+ (@) = 3 () (P m) Pt

O

=0 m=0
k! ks
=D ™

k=ko+k1+k2 0:fv1=has
The nonlinear terms Fj(u, u) maintain a similar structure of original nonlinear term. This
is because the Leibniz law can be applicable for an operation of P. If we consider the
slightly general (monolyal) nonlinearity, f(u, 7) = puPraP? (p = p1 + p2), it is easy to see
that

~ k! . y 41 D2 ~
Fio(u, @) = p ‘ Z mmonuki'nuki
k=ko-tky+-+kp &P i=1 i=1

Thus each of u; satisfies the following system of equations;

i0uk + Q(Dy)ux, = Fy(u, @), t,r € R,

(0, 2) = (20,)"¢().

Therefore we firstly establish the local well-posedness of the solution to the following
infinitely coupled system of dispersive equation in a suitable weak space:

z’atuk: + Q(Dw)uk = Fk(u7 1—1’)7 t,r € R,
ur(0, ) = dp(x).

Then taking ¢p = (0,)*¢(z), the uniqueness and local well-posedness allow us to say
up = Pruforall k=0,1,---.

(2.5)
(2.6)

3. LINEAR AND NONLINEAR ESTIMATES

We firstly consider the corresponding linear equation

iOu+ Q(DH)u=0, tzekR,
u(0,7) = ¢(z).

Proposition 3.1. Let e~#P% be the unitary operator generated by the linear dispersive
equation of the space order m. Then we have

(3.2) le™*P= ¢ll, < Ot llg,
where 2 <p< 00,1 <q¢g<2and

(3.1)

1 N m
p(m—1)  2(m—-1)

p

m-—1 m
— < < —
5 =7 S

1
q
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This fact follows from the asymptotic behavior of the fundamental solution E, oy (z,y,1).
Namely we see via the stationary phase method that

‘Ee—itD;n (.Z',y,t)l < Ct_l/k<$/t1/m>_2(::—zl).

2(k~1)

Therefore the fundamental solution belongs to L* where k = P

Young inequality gives

| Bemeop * Bllp < || Bpmsenp (2,9, t) s [ 0lla,
where 1/p=1/qg+1/k — 1.

Hence Hausdorff-

Proposition 3.2. For the free evolution Uy(t), we have

m

le™*P% ¢llLo(sLey < Collll2,

where
2
2_n (1 _ 2)
8 m P
and
t
“/ ewz(tns)D;nF(S)dSHLO(I;LP) < Cul|Fllpo ey
0
where

1 1 n( 1 1>
= 1-2==Z
0 p m P q

According to the Strichartz type linear estimate in Proposition 3.2, we have the bilinear
estimate for the nonlinear term:

The following estimates of linear and nonlinear part due to Bourgain [2] and refined by
Kenig-Ponce-Vega [18] are our essential tools.

Lemma 3.3. Let s € R, a,d' € (0,1/2), b € (1/2,1)and § < 1. Then for any k =
0,1,2,--, we have

(3.3) bsillxe, < COEV gyl
(3.4) 157D G| x < CY27| i e
t ,
(35) s [ P Rt g < O8N FIL
Proof of Lemma 3.3. See [17]. ]

The core part of the nonlinear estimate is to establish the bilinear estimate in the space
of Xy, which is established by Bourgain [2] and Kenig-Ponce-Vega [19] [20]. The following
is the somewhat arranged version of them.
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Proposition 3.4. For u; € X (s > 0) then we have
! !
I Huz’llxg_l < CH llusll x; -
=l i=1

From Proposition 3.4, it is immediately obtained by the bilinear estimate for the non-
linearity of the system.

Corollary 3.5. Let s >0, b,/ € (1,1/2) withb <V and § < 1. Then, we have

o P
1/2-b k |

xp, <082 30w g
=0 "7 =1

k=ko+k1++kp

(3.6) || Fx (u, w)]

4. CONSTRUCTION OF THE SOLUTION

Accordihg to Bourgain [2], we introduce the Fourier restriction space as
Xy ={f e S®); I fllx; < o0},
where ’
1 = [[ (7 = €™ i€17r,€)Parde = 16977 ey

The space where we solve the system is infinite sum of this space. Let f = (fo, f1,--, fe, -+~
denotes the infinity series of distributions and define

AAO(XbS) = {f = (an f17 o 7fka e )7f1 € th (Z = 07 11 2)':' ) such that“fHAAo < 00}7
where
1fllas, = ;_: 7 il
=0
The system will be shown to be well-posed in the above space if s > 0.

The well-posedness is derived by utilizing the contraction principle argument to the
corresponding system of integral equations:

(4.1) V() ur(t) = P(t)e P ¢y, — ¥(2) /0 t e~ =D o () Fry(u, @) () dt .

Proposition 4.1. Let s > 0, b € (1/2,1). Suppose that for some Ag > 0, the initial data
¢ € H4(R) and satisfies

S 2ol < oo,

k=0
then there exist T > 0 and the integral equation (4.1) associated with the nonlinear dis-
persive equation (1.1) is wellposed in the class '\C((=T,T); H*) N A, (X3).

1C(I; X)) denotes a space of a sequence of function f = {f;}32o with f; € C(I; X) for each 1.
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The outline of the proof is the following: Let a map ® : {ue}2o — {we(t)}2, such
that & = (®g, @y, ---) and

t
By (u) = e P8 ¢ — 4 / e~ =D By (u, w) (¢')dt.
0

Then it is shown that @y : A, (H®) — Ay, (X?) is a contraction.
In fact, by using Lemma 3.3 and Corollary 3.5, we easily see that

oo

| y
1 lan, xpy = 3 S luellxg
k=0

S] Ak i} 00 Ak kl p
S%Zﬁ”tﬁk”m +OiT Z_]{;TO > mk‘)ﬁp—mn ek, || x5

k=0 =0 k=kotki+-+kp i=0 Mt
= AR A
L 0_"U 0 .
SCollslasscer + T7 3 miv g e TS ol -
0:

T i=1 k=0
Hence, it follows
19 () lan, xp) < Collbllang ey + 0162A°T”IIUII’AA1(X5)
and also we have the estimate for the difference

I190™) = () s,y < CLEO TP ey + 1PN i s — L .

Choosing T" small enough, the map ® is contraction from

e o]

s Ak :
Xe={f=(fo,fr,-); fi € Xb,Z “kTO”fk“Xg < 2Co Mo}
0
to itself, where My = |Jul| 4 4o(#+)- This shows the well-posedness.

5. BOOTSTRAP ARGUMENT

We have constructed a weak solution to the dispersive equation (1.1) satisfying the
following extra conormal regularity:

1P*ulx; < CAERl k=0,1,...
under the condition to the initial data o ‘

()t ,

Now by the localization argument, the operator P can be regarded as a vector field
Po = 3t00y+x00; where (to, zo) € {(~T,0)U(0, T)} xR is any fixed point. Since the Fourier
restriction norm originally contains the regularity with the characteristic derivative Lb —
(i0;+ Dy")®, we combine the both derivative L and Py (and by the localization argument)

e < CA¥K k=0,1,-...
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to derive the regularity. If we set a smooth cut-off a(t,z) whose support is around the
point (to, 2o) with supp a C Bg.. Then we firstly derive

(5.1) mpw@ﬂQSQQMkF012

This estimate is obtained by the following lemma which plays a key role in this bootstrap
argument.

Lemma 5.1. Let P = mtd,+xd, be the generator of the dilation, Q(D. ¢) is the differential
operator of order m and Dy, be defined by Fyp (|7 + ||} Fiz- For a fized point (to, Tg), we
suppose that a(t,z) € CP(B:(to, z0)) and f € H"(R?,) with tQ(Ds)f, P3f € H"*(R?,).
Then for v € R, there exist a constant C > 0 such that

lofllaz,) < C {lafllmmz,) + 1#Q(De)(@f) lvmmiaz,y + 1P (@f)llr-miez,) }

where the constant C depends on (to,zo) and €.

Proof of Lemma 5.1. Note that (|7|+|¢))™ < Ci(t5?, (o) ™) (1+[teq(&) | +|ktoT +x0€|™),
which implies
(5.2)
1(Deo)” (af 2@y C1{I{Dea) ™ (@)l 2m2)
+ [ Doz ™t0Q(Da)(af)l|2ez) + {Dea)” ™ B (af 2 }
for f € H* and Py = mt,0; + 1o0,. Since supp a C B, (to, 7o), the second term of the
R.H.S. of (5.2) can be estimated by

el QD) (@f)| mv-m + 1tQ(Dz)(af) || zrv-m

and the third term by €||Rmf|gv-m + ||P™f||gv-m, where Ry, is a partial differential
operators of order m. Hence by taking € sufficiently small, we obtain the desired estimate
(5.2). O o

Based upon the above Lemma 5.1, we proceed to show the regularity. The first step is
the following proposition.

Proposition 5.2. Let u be the solution constructed in Proposition 4.1. For a(t,z) €
CP(R?) with a = 1 near (to, To), u satisfies

< C3AXK!

forallk=0,1,2,---,

Sketch of Proof of Proposition 5.2 . Taking v = 1 and f = w in Lemma 5.1, it

follows that
(5.3)

H(Dt,x>auk||m<mgz> < C{“a“k“Lz’(R? y 1tQ(Dy) (au) || g1- -m(R?, y T ”P (aue) || g2- ™ (R )}-
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The first and third term in the R.H.S. of (5.3) is easily estimated by the terms of u; and
ug+i- The second is the essential part which is estimated by

16Q(Dy)uk | ar-mgr2) + [[Q(D), alukl| zri-m r2)-

Since the commutator [Q(D), a] is a differential operator of order m — 1, we see

(5.4 QD). aJunllz-mes) < Callaulzzgesy < CoAb.
While the first term can be dominated via the relation
(5.5) #Q (D), = %Puk - ;nl—:camuk + itF(u, ),
where u, = P*u, such that
(5.6) 1taQ( Dz )u|| - m(RZ)
<SCa(m™ ){llatwe sl ar-mg2) + |la2dpti || r1-mege) + lat Fo(, B)| ri-mae }

The first and second terms in the RHS in (5.6) are estimated by CsAkk!. The term
involving the nonlinear interaction is dominated as

k!
”CLtFk(U,ﬂ)]|H1»m(R2)S Z Hp P ko”taHuk,

k=ko+h1+-+kp

oA S koHnaukqul

k=ko+k1+-+k, +11=0 ki

<Cs >y omb fi kaC2Ak

k=ko+k1+-+kp

Hl m(]RZ)

k! _
<CsC, Y mboaRR)

!
kzko+k1+-~-+kp 0

(5.7)

ko kp—2
Z k! mkoAk ~Ho 3
— 4
—0502 kp 1
ko= k1=0 kp—1=0

k -
klmko AE~Fo (k — ko +p — 1)!
— 4 2 0
=CsC8 )y = = ko)l(p — 1)1

ko=0

k+p-— k!
< p( ko k—ko
<CCh (p—1)! Zkok ko)! 4

_ k —
ot tr =Dy

(p—1)
where we have taken the constants Cs and Cy are depending on |t—to| and Az appropriately
large. Hence by gathering the estimates (5.2)-(5.7) and changing the cut off function a
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into @ if necessary, we have

(5.8) lawel| ey < CrASK!, k=0,1,2,---.

Similar but somewhat tiresome estimates yield that
(D)t | ey < Cr A5k, k=0,1,2,---.

By repeating the above argument in finite times, we conclude by changing the cut off
function into a, to have

|Gug|| gmsz < CoAfR!, k=0,1,2,---.
0O

Based on the estimate (5.1), we forward the second step to have

<CAEE! k=0,1,2,---.

sup ||aPkU(t)||H;m~1)/2(35(mo)) =

to—e<t<tg+te

Note that (m—1)/2 > 1 and H™~1/2(R!) is algebra. Then one can prove by an induction
argument, that

sup Haaipku(t)‘|H£m—1)/2(BE(zO)) < CAE k41 k1=0,1,2,---.

Finally the operator P can be translated into the time derivative via td; = k~}(P — £0,);
sup Ha‘(tat)llalmZU”Htl (R?) S CAl81+l2 (ll + l2)‘ l17 l2 = O) 17 27 T
t " '

This gives the regularity for the solution.
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