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1 Introduction

In this paper we are concerned with the following mixed problem to semilinear parabolic

equation: _
w(t, x) — Ault, z) = |ult, )P u(t, z), (t,z) € (0,T) x Q, (1)
u(O,m) = U'O(m)’ S Qa (2)
’U,‘ag =0, te (0, T) (3)

Here, 1 < p < f£2, Q C RN(N > 3) is a bounded domain with smooth boundary 02. In
the case when 1 < p < %Jrg, of course, we can treat the low dimensional case N = 1,2, but
for simplicity we restrict our attention to the above mentioned case. For large mltlal data
ug in some sense, it is well-known that the solution u(t, ) to the problem (1)-(3) blows up
in a finite time (see Ikehata-Suzuki[7), Ishii[9], Levine[10], Otani[11], Tsutsumif16], and
Payne-Sattinger[12]), meanwhile for small initial data, exponentially decaying solutions
are obtained (see [7] and the references therein). In this paper, we have much interest
in solutions to (1)-(3) which neither blowup nor decay. In that occasion, we proceed
our argument based on the following local well-posedness theorem due to [7] (see also,

Hoshino-Yamada[5]). In the following, || - ||4(1 < ¢ < co0) means the usual (real) L%(£2)-
norm.

Proposition 1.1 For each uo € H}(Q), there exists a number T, > 0 such that the

problem (1.1)-(1.8) has a unique solution u € C([0, Tr,); Hy(Q)) which becomes classical
on (0,T,,). Furthermore, if T;, < +00, then

lim [fu(t, ) oo = 00,

and in particular, in the case when 1 < p < N +2 one also has
lig [ Vu(t, )2 = +oo.

Set
X = Hé (9)1

1 1
J(u) = §HVUH§ - m”ullzﬁ,
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I(w) = [|Vull3 ~ [lull5i1,
N ={v e X\ {0}I(v) =0},
dp = ggﬁ](’v) = inf{ilip J(w)| ve X\ {0}}.
It is easy to show that the potential depth d, (see Sattinger[13]) satisfies d, > 0 because

of the Sobolev continuous embedding X — LP*1(Q) (1 < p < X ). The stable and
unstable sets are defined as usual:

W = {u € X|J(u) < dy, I(u) > 0} U {0},
V ={u € X|J(u) < dp, I(u) < 0}.

Furthermore, for later use we define the following notations.
E={ueX|-Au=uPu in Q ulsgn =0},

E* = {u € DY*(RY)| - Au = |[uff~'u in RN},
Ei={u€ E*| v>0 in R},

Here D"?(R") denotes the closure of Cg°(R") with respect to the norm ||Vul|z2(gy). In
particular, in the case when p = {2, because of the Sobolev embedding S|ul|s+1(rvy <

|Vul|L2(rvy for u € DY2(RY), one also has
(RY) :
= inf{sup J.(\v)| v € DM*(RN)\ {0}} = lSN > 0.
A>0 N

Note that d* = d, with p = {22

Remark 1.1 In the case when p = Y32, it is well-known (Struwe[14]) that the family
{u(z)} such as
— )21
ue)= T2 LT g
e+ e T

satisfies
~Au = [ufftu in RV,

so that E* \ {0} # 0.

By the way, quite recently, in [7] the following result has been shown with regard to
the singularity of a global solution to the problem (1)-(3) under the assumptions below:
let u(t,z) be a solution to (1.1)-(1.3) as in Proposition 1.1. Furthermore, one assumes
that

(A1) u > 0.
(A2) p= —%{—g—

(A.3) Q={z € R| |a| < 1}.
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(Ad) u(t,z) = u(t,|z|), ur(t,r) <O0on 0 < r <1 withr = |z|.

Finally, assume Tr, = +00. For 1 < p < 42 set

Cy = 20+1)
p— 1 t-——>+oo

J(u(t,)). (4)
Note that Cy > 0 if T, = 400 (see [10]). Then, their results read as follows.

Theorem 1.1 ([7]) Assume (A.1)-(A.4). Let u(t,z) be a solution to (1)-(3) on [0, T;,)
as in Proposition 1.1. Suppose T, = +00 and Cy > 0. Then, there ezists a sequence {t,}
with t, — +00 as n — +00 such that

(1) |Vu(ts, z)|2 — Cobo (weakly-*) in Co(2)*,
(2) u(tn,z)P™ — Coby (weakly-x) in Co(Q)*,

as n — +00. Here, 8§ means the usual Dirac measure having a unit mass at the origin.

Since Cp > 0 if and only if u(t,-) ¢ (W U V) for all £ > 0, their theorem states
that a global orbit u(t,-) which neither decay nor blowup (1f this kind of solution can
be constructed!) have a strong singularity at the origin. In connection with this result,
we have just noticed that for such a sequence {t,} constructed in Theorem 1.1 above,
{u(tn, )} becomes a Palais-Smale sequence so that the global compactness result due to
Struwe[15] can be applied to this functional sequence. Our first result reads as follows:

Theorem 1.2 Let {u(ty, )} be a sequence as in Theorem 1.1. Under the same assump-
tions as in Theorem 1.1, there exist an integer k € N, a sequence of radii {R'} with
lim R} = +00, a sequence {z}} € Q, and v’ € E* \ {0}(1 < i < k) such that (taking a

n—-+00

subsequence)
i 9 0t = 3 sy =0
Jim J(u(t,) = lim J(u(ts, ) = kd",
nﬂrfoo IVu(ty, - ||2 = Z V! [|L2(RN) = kS"
where

i(2) = (R TU(R(z—al) 1<i<k), n=1,2,--

Remark 1.2 By considering scaling and translation, one finds that the compactness of
{u(ts,-)} destroyed in Theorem 1.1 is restored once more. On the other hand, for the
proof of this Theorem, we have to notice the following fact (see [14]) that each u' is of the

form u*(z) = ul(z) (see Remark 1.1) with some € and satisfies J,(ut) = d* (least energy
level).

Remark 1.3 Under the assumptions Q2 = star-shaped and ug(x) > 0, one can get the
quite same results as in the radial case above. In the case when ug changes sign, however,
even if Q is star-shaped, one needs a few modifications of the results above (see [14]).
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The next result is concerned with the case when 1 < p < 2. Tt seems not to

be known that any global solutions to (1)-(3) naturally contain a subsequence which is
relatively compact in X in the subcritical case. Our second result reads as follows:

Theorem 1.3 Let 1 < p < ¥*2 and u(t,z) be a solution on [0,T},) as in Proposition
1.1. If T, = 400, then there exists a sequence {t,} with t, — 400 asn — 400 such that
{u(tn,-)} becomes relatively compact in X so that there exists an element ue, € E such
that u(ts, ) = Ue in X asn — 400 along a subsequence.

Remark 1.4 In Theorem 1.8, if, in particular, Cy > 0, then one has u. € F \ {0}.
Furthermore, the construction of such a sequence {t,} is in the same way as in Theorem
1.2.

2 Palais-Smale sequence

In this section, reviewing some results concerning Theorem 1.1 due to [7] we shall construct
some Palais-Smale sequences of a global solution to the problem (1)-(3).

First, suppose 1 < p < %{% and T,, = +o00 in Proposition 1.1. Since its solution
satisfies the energy identity:

Tu(t, ) + [ Nl lBds = J(wo) ©

for all ¢ > 0, this implies that the function ¢ — J(u(t,-)) is monotone decreasing so
that Cy > 0 (see (4)) is meaningfull. Letting ¢ — 400 in (5), the improper integral
/ [lue(s, -)||3ds is finite determined. Therefore, there exists a sequence {t,} with ¢, —
0 ,

+00 as n — +o00 such that

Note that this sequence {t,,} coincides with the one in Theorem 1.1.
Next, multiplying the both sides of (1) by u(t,z) and integrating it over , we have

(w(t, ), ult, ) = —I(u(t, ), (6)
where (f, g) = /Qf(m)g(x)dx. Because of [2], it holds true that ||u(t, )|l < C forallt > 0
with some constant C > 0. Therefore, one has
T (u(tn, )] < Clueltn, iz
for all n € N. Letting n — 400, it follows that

lim I(u(t,,-)) =0. (7)

n—-+00
On the other hand, the identity holds good:

I) = G VUl + = 1) ®

So, from (8) with u = u(ty, ) and (6)-(7) we find that
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Lemma 2.1 Let u(t,-) be as in Proposition 1.1. If T,, = +oo, then there exists a
sequence {tn} with t, — +00 as n — oo such that

lim {[u(tn, )ll2 = 0,

n—s-+oo

lim [|Vu(t, )3 = Co,

n—+00
: 1
Jim [t )55 = Co.

From this lemma, one obtains the next ones:

Lemma 2.2 Let u(t,z) be a local solution constructed in Proposition 1.1. If T,, = +00,
then there exists a Palais-Smale sequence to the problem (1)-(3).

Proof. Let {t,} be as in Lemma 2.1. Then, it follows that

J(UO) > J(u(tm )) - 2{; + 1)

Co >0 as n— +o0o. 9)

Furthermore, for such sequence, since J € C*(X, R), by equation (1) we have
I (u(tn, )] = —(us(tn, ), v)

for each v € X, where J'(u) € X* means the usual Fréchet-derivative of J at u € X. By
this equality and the Schwarz inequality together with the Poincaré inequality one gets:

| (u(tn, )] < Crllu(tn, )2l Voll2

which implies

1 (w(En, Dlla-12) = 0(n — +00), (10)
where C; > 0 is a Poincaré constant. We find that {u(t,,-)} becomes a Palais-Smale
sequence because of (9) and (10). 1

In particular, in the case when p € (1, %%) one gets the following compactness result.
For the detailed proof, see the forthcoming paper [8].

Lemma 2.3 Suppose p € (1,822). Let u(t,z) be a global (i.e.,Tn = +00) solution to
(1)-(8) as in Proposition 1.1. Then, the sequence {u(tn,-)} constructed in Lemma 2.1
becomes relatively compact in X.

Now, we are in a position to prove Theorems 1.2 and 1.3. '

Proof of Theorem 1.2. This result is a direct consequence of [14] (Theorem 3.1, p.184)
and Lemma 2.2 and so, we shall omitt the details. But, since Q = ball, note that £ = {0}
holds true in the present case. I

Proof of Theorem 1.§. The first half is a direct consequence of Lemma 2.3. In order
to prove u. € F, note that the following estimates are proven:

1£ () = F)llz < plullprs + [0llp1)” lu = vllp



81

for all u,v € LP*1(Q), and
|(f(u(tn, ) = £(uoo), )| < 1 f (ultn, -)) — F(too) |14 2 11¢llp+1

for each ¢-€ C§°(2), where {u(t,, )} is a sequence constructed in the first half. By
combining these estimates with Lemma 2.1 and the Sobolev embedding X — LP+(Q),
one obtains the desired statement. 1

From Lemma 2.1 one has a result reviewed from the view point of the Palais-Smale
condition.

Corollary 2.1 Letl1 <p < % and u(t,x) be a global solution constructed in Propo-
sition 1.1, i.e., T, = +o0o. If Cy = 0, then the sequence {u(t,,-)} stated in Lemma 2.1
becomes relatively compact, and in fact, u(t,-) — 0 in X ast — +oo.

From Theorem 1.1 and Corollary 2.1 with p = 242, one can say that it depends on

the least energy level )C'o whether the Palaas—Smale condition holds good or not

2(p +1
to the sequence {u(t,,-)} as in Lemma 2.1.

Finally in this section, we shall apply Theorem 1.3 and Lemma 2.2 for the finite
time blowup problem concerning (1)-(3). First, as a consequence of [14] one obtains the
following lemma.

Lemma 2.4 Let Q be a bounded smooth domain and p= %{—g Then, for allv € E,
one has J(v) € {0} U (d¥, —I—oo) and also, for each w € E* \ {0}, one has J.(w) €
{d*} U (2d*, +00).

"The following result gives a kind of alternative proof of [11] concerning blowup problem.

Proposition 2.1 Letl <p < N+2 and u(t,z) be a local solution of (1)-(8) on [0, Ty,)
constructed in Proposition 1.1. If u(to, -) €V for some ty € [0,T,), then T,, < +oo.

Proof. First, we shall deal with the case when 1 < p < ¥ +2 Suppose T, = +00. Then,
it follows from Theorem 1.3 that there exist a Palais- Smale sequence {u(t,,-)} to the
problem (1)-(3) and ue € E such that u(t,,-) — U in X along a subsequence. On
the other hand, it is well-known (see [6]) that u(t,-) € V for all ¢ € [tg,00). Since W is
a neighbourhood of 0 in X, if us = 0, then u(ty,,-) € W holds with some ¢, and this
contradicts the fact that W NV = 0. Thus, ue € E \ {0}. Because of the monotone
decreasingness of a function ¢ > J(u(t,-)), one obtains J(u(ts,)) > J(uw) > d, which
contradicts u(t,,-) € V with large t,.

Next, we are concerned with the critical case p = . Suppose 1, = +o00. Obviously,
Co>0 holds true. Then, from Lemma 2.2 and Theorem 3.1 of [14], p.184 that there exist
a Palais-Smale sequence {u(tn,-)}, k € N, v’ € E, and v’ € E*\ {0} (1 < i < k) such
that

N+2

k
lim J(wtn, ) = lim J(u(t, ) = () + 3 J(u

n—-400

By Lemma 2.4 and the monotone decreasingness of a function ¢ — J(u(t,-)), one finds
that ,

J(ult,-)) > d*
for all ¢ > 0. This contradicts also u(t,-) € V for all ¢ > t,. '
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