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1 Introduction
In this paper we are concerned with the following mixed problem to semilinear parabolic
equation:

$u_{t}(t, x)-\triangle u(t, X)=|u(t, x)|^{p-}1u(t, X),$ $(t, x)\in(\mathrm{O}, T)\cross\Omega$ , (1)

$u(0,x)=u\mathrm{o}(X),$ $x\in\Omega$ , (2)

$u|_{\partial\Omega}=0,$ $t\in(\mathrm{o}, \tau)$ . (3)

Here, $1<p \leq\frac{N+2}{N-2},$ $\Omega\subset R^{N}(N\geq 3)$ is a bounded domain with smooth boundary $\partial\Omega$ . In

the case when $1<p< \frac{N+2}{N-2}$ , of course, we can treat the low dimensional case $N=1,2$ , but
for simplicity we restrict our attention to the above mentioned case. For large initial data
$u_{0}$ in some sense, it is well-known that the solution $u(t, x)$ to the problem (1)$-(3)$ blows up
in a finite time (see $\mathrm{I}\mathrm{k}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}-\mathrm{S}\mathrm{u}\mathrm{z}\mathrm{u}\mathrm{k}\mathrm{i}[7],$ $\mathrm{I}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{i}[9],$ $\mathrm{L}\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{n}\mathrm{e}[10],$ \^O $\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}[11],$ $\mathrm{T}\mathrm{s}\mathrm{u}\mathrm{t}_{\mathrm{S}}\mathrm{u}\mathrm{m}\mathrm{i}[16]$ , and
$\mathrm{P}\mathrm{a}\mathrm{y}\mathrm{n}\mathrm{e}- \mathrm{S}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}[121$), meanwhile for small initial data, exponentially decaying solutions
are obtained (see [7] and the references therein). In this paper, we have much interest
in solutions to (1)$-(3)$ which neither blowup nor decay. In that occasion, we proceed
our argument based on the following local well-posedness theorem due to [7] (see also,
$\mathrm{H}\mathrm{o}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{o}-\mathrm{Y}\mathrm{a}\mathrm{m}\mathrm{a}\mathrm{d}\mathrm{a}[5])$ . In the following, $||\cdot||_{q}(1\leq q\leq\infty)$ means the usual (real) $L^{q}(\Omega)-$

norm.

Proposition 1. 1 For each $u_{0}\in H_{0}^{1}(\Omega)$ , there exists a number $T_{m}>0$ such that the
problem $(\mathit{1}.\mathit{1})-(\mathit{1}.\mathit{3})$ has a unique solution $u\in C([0, T_{m});H1(0\Omega))$ which becomes classical
on $(0, T_{m})$ . Furthermore, if $T_{m}<+\infty$ , then

$\lim_{t\uparrow T_{m}}||u(t, \cdot)||\infty=+\infty$ ,

and in $parti_{C}ula\Gamma J$ in the case when $1<p< \frac{N+2}{N-2}$ one also has

$\lim_{t\uparrow Tm}||\nabla u(\mathrm{t}, \cdot)||_{2}=+\infty$ .

Set
$X=H_{0}^{1}(\Omega)$ ,

$J(u)= \frac{1}{2}||\nabla u||^{2}2^{-}\frac{1}{p+1}||u||_{p+1}p+1$ ,
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$I(u)=||\nabla u||_{2}2-||u||_{p+}p+11$
’

$N=\{v\in x\backslash \{\mathrm{o}\}|I(v)=0\}$ ,

$d_{p}= \inf_{Nv\in}J(v)=\inf\{\sup_{0\lambda\geq}J(\lambda v)|v\in X\backslash \{0\}\}$ .

It is easy to show that the potential depth $d_{p}$ (see $\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}[13]$) satisfies $d_{p}>0$ because
of the Sobolev continuous embedding $X arrow L^{p+1}(\Omega)(1<p\leq\frac{N+2}{N-2})$ . The stable and
unstable sets are defined as usual:

$W=\{u\in X|J(u)<d_{p}, I(u)>0\}\cup\{0\}$ ,

$V=\{u\in x|J(u)<d_{p}, I(u)<0\}$ .
Furthermore, for later use we define the following notations.

$E=$ {$u\in X|-\Delta u=|u|^{p-1}u$ in $\Omega,$ $u|_{\partial\Omega}=0$},

$E^{*}=$ {$u\in D^{1,2}(R^{N})|-\triangle u=|u|^{p-1}u$ in $R^{N}$ },
$E_{+}^{*}=$ { $u\in E^{*}|u\geq 0$ in $R^{N}$ },

$\sqrt*(u)=\frac{1}{2}\int_{R^{N}}|\nabla u(X)|^{2}dX-\frac{1}{p+1}\int_{R^{N}}|u(x)|p+1dX$.

$||\nabla_{U}||_{L^{2}}(R^{N})$ for $u\in D^{1,2}(R^{N})$ , one also has

$d^{*}= \inf\{\sup_{\lambda\geq 0}J*(\lambda v)|v\in D^{1,2}(R^{N})\backslash \{0\}\}=\frac{1}{N}S^{N}>0$.

Note that $d^{*}=d_{p}$ with $p= \frac{N+2}{N-2}$ .

Remark 1. 1 In the case when $p= \frac{N+2}{N-2}$ , it is well-known $(Struwel\mathit{1}\mathit{4}])$ that the family
$\{u_{\epsilon}^{*}(X)\}$ such as

$u_{\epsilon}^{*}(X)= \frac{[N(N-2)\epsilon^{2}]\frac{N-2}{4}}{[\epsilon^{2}+|X|^{2}]^{\frac{N-2}{2}}},$ $\epsilon>0$

satisfieS
$-\triangle u=|u|^{p-1}u$ in $R^{N}$ ,

so that $E_{+}^{*}\backslash \{0\}\neq\emptyset$ .

By the way, quite recently, in [7] the following result has been shown with regard to
the singularity of a global solution to the problem (1)$-(3)$ under the assumptions below:
let $u(t, x)$ be a solution to $(1.1)-(1.3)$ as in Proposition 1.1. Furthermore, one assumes
that

(A.1) $u_{0}\geq 0$ .
(A.2) $p=.. \frac{N+2}{N-2}$ .
(A.3) $\Omega=\{x\in R^{N}||x|<1\}$ .
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(A.4) $u(t, x)=u(t, |x|),$ $u_{r}(t, r)<0$ on $0<r\leq 1$ with $r=|x|$ .

Finally, assume $T_{m}=+\infty$ . For $1<p \leq\frac{N+2}{N-2}$ set

$C_{0}= \frac{2(p+1)}{p-1}\lim_{tarrow+\infty}J(u(t, \cdot))$ . (4)

Note that $C_{0}\geq 0$ if $T_{m}=+\infty$ (see [10]). Then, their results read as follows.

Theorem 1. 1 ([7/) Assume (A. $l$) $-(A.\mathit{4})$ . Let $u(t, x)$ be a solution to (1) $-(\mathit{3})$ on $[0, T_{m})$

as in Proposition 1.1. Suppose $T_{m}=+\infty$ and $C_{0}>0$ . Then, there exists a sequence $\{t_{n}\}$

with $t_{n}arrow+\infty$ as $narrow+\infty$ such that

(1) $|\nabla u(t_{n}, x)|^{2}arrow C_{0}\delta_{0}(weakly-*)$ in $C_{0}(\Omega)*j$

(2) $u(t_{n}, x)^{\mathrm{P}+1}arrow C_{0}\delta_{0}(weakly-*)$ in $C_{0}(\Omega)*$ ,

as $narrow+\infty$ . $Here_{f}\delta_{0}$ means the usual Dirac $mea\mathit{8}ure$ having a unit mass at the $\mathit{0}7\dot{\gamma}gin$ .

Since $C_{0}>0$ if and only if $u(t, \cdot)\not\in(W\cup V)$ for all $t\geq 0$ , their theorem states
that a global orbit $u(t, \cdot)$ which neither decay nor blowup (if this kind of solution can
be constructed!) have a strong singularity at the origin. In connection with this result,
we have just noticed that for such a sequence $\{t_{n}\}$ constructed in Theorem 1.1 above,
$\{u(t_{n}, \cdot)\}$ becomes a Palais-Smale sequence so that the global compactness result due to
$\mathrm{s}_{\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{w}\mathrm{e}}[15]$ can be applied to this functional sequence. Our first result reads as follows:

Theorem 1. 2 Let $\{u(t_{n}, \cdot)\}$ be a $\mathit{8}equence$ as in Theorem 1.1. Under the same assump-
tions as in Theorem 1.1, there exist an integer $k\in N$ , a sequence of radii $\{m\}$ with
$\lim_{narrow+\infty}R^{i}n=+\infty$ , a sequence $\{x_{n}^{i}\}\in\Omega$ , and $u^{i}\in E_{+}^{*}\backslash \{0\}(1\leq i\leq k)$ such that (taking a
subsequence)

$\lim_{narrow+\infty}||\nabla(u(t_{n}, \cdot)-\sum_{i=1}u_{n}^{i})|k|_{L(R^{N})}2=0$,

$\lim_{tarrow+\infty}J(u(t, \cdot))=\lim_{narrow+\infty}J(u(t_{n}, \cdot))=kd^{*}$ ,

$\lim_{narrow+\infty}||\nabla u(t_{n}, \cdot)||_{2}2=\sum_{i=1}^{k}||\nabla u^{i}||^{2}L2(R^{N})=kS^{N}$ ,

where
$u_{n}^{i}(x)=(R_{n}^{i})^{\frac{N-2}{2}}u(iR_{n}i(x-X_{n}^{i}))(1\leq i\leq k),$ $n=1,2,$ $\cdots$ .

Remark 1. 2 By $con\mathit{8}ide\dot{\mathcal{H}}ng$ scaling and translation, one finds that the compactness of
$\{u(t_{n}, \cdot)\}$ destroyed in Theorem 1.1 is restored once more. On the other hand, for the
proof of this Theorem, we have to notice the following fact (see [14]) that each $u^{i}$ is of the
form $u^{i}(x)=u_{\epsilon}^{*}(x)$ (see Remark 1.1) with some $\epsilon$ and satisfies $J_{*}(u^{i})=d^{*}$ (least energy
level).

Remark 1. 3 Under the assumptions $\Omega=\mathit{8}tar$-shaped and $u_{0}(x)\geq 0_{f}$ one can get the
quite same results as in the radial case above. In the case when $u_{0}$ changes sign, $h_{oweve}r$,
even if $\Omega$ is star-shaped, one needs a few modifications of the results above (see [14]).
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The next result is concerned with the case when $1<p< \frac{N+2}{N-2}$ . It seems not to
be known that any global solutions to (1)$-(3)$ naturally contain a subsequence which is
relatively compact in $X$ in the subcritical case. Our second result reads as follows:

Theorem 1. 3 Let $1<p< \frac{N+2}{N-2}$ and $u(t, x)$ be a solution on $[0, T_{m})$ as in Proposition
1.1. If $T_{m}=+\infty_{f}$ then there $exiSt\mathit{8}$ a sequence $\{t_{n}\}$ with $t_{n}arrow+\infty$ as $narrow+\infty$ such that
$\{u(t_{n}, \cdot)\}$ becomes relatively compact in $X$ so that there exists an elem.e$ntu_{\infty}\in E$ such
that $u(t_{n}, \cdot)arrow u_{\infty}$ in $X$ as $narrow+\infty$ along a subsequence.

Remark 1. 4 In Theorem 1.3, if, in particular, $C_{0}>0_{f}$ then one has $u_{\infty}\in E\backslash \{0\}$ .
$Furthermore_{f}$ the construction of such a sequence $\{t_{n}\}$ is in the $\mathit{8}ame$ way as in Theorem
1.2.

2 Palais-Smale sequence
In this section, reviewing some results concerning Theorem 1.1 due to [7] we shall construct
some Palais-Smale sequences of a global solution to the problem (1)$-(3)$ .

First, suppose $1<p \leq\frac{N+2}{N-2}$ and $T_{m}=+\infty$ in Proposition 1.1. Since its solution
satisfies the energy identity:

$J(u(t, \cdot))+\int_{0}^{t}||u_{t}(s, \cdot)||2J(u_{\mathrm{o}})2dS=$ (5)

for all $t\geq 0$ , this implies that the function $t\mapsto J(u(t, \cdot))$ is monotone decreasing so
that $C_{0}\geq 0$ (see (4)) is meaningfull. Letting $tarrow+\infty$ in (5), the improper integral
$\int_{0}^{\infty}||ut(S, \cdot)||_{2}^{2}d_{S}$ is finite determined. Therefore,, there exists a sequence $\{t_{n}\}$ with $t_{n}arrow$

$+\infty$ as $narrow+\infty$ such that
$\lim_{narrow+\infty}||u_{t}(t_{n}, \cdot)||_{2}^{2}=0$ .

Note that this sequence $\{t_{n}\}$ coincides with the one in Theorem 1.1.
Next, multiplying the both sides of (1) by $u(t, x)$ and integrating it over $\Omega$ , we have

$(u_{t}(t, \cdot),$ $u(t, \cdot))=-I(u(t, \cdot))$ , (6)

where $(f, g)= \int_{\Omega}f(x)g(X)dx$ . Because of [2], it holds true that $||u(t, \cdot)||2\leq C$ for all $t\geq 0$

with some constant $C>0$ . Therefore, one has

$|I(u(t_{n}, \cdot))|\leq C||u_{t}(t_{n}, \cdot)||2$

for all $n\in N$ . Letting $narrow+\infty$ , it follows that

$\lim_{narrow+\infty}I(u(t_{n}, \cdot))=0$ . (7)

On the other hand, the identity holds good:

$J(u)= \frac{p-1}{2(p+1)}||\nabla u||_{2}^{2}+\frac{1}{p+1}I(u)$ . (8)

So, from (8) with $u=u(t_{n}, \cdot)$ and (6)$-(7)$ we find that
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Lemma 2. 1 Let $u(t, \cdot)$ be as in Proposition 1.1. If $T_{m}=+\infty$ , then there exists a
sequence $\{t_{n}\}$ with $t_{n}arrow+\infty$ as $narrow\infty$ such that

$\lim_{narrow+\infty}||u_{t}(t_{n}, \cdot)||2=0$ ,

$\lim_{narrow+\infty}||\nabla u(t_{n}, \cdot)||^{2}2=C_{0}$ ,

$\lim_{narrow+\infty}||u(t_{n}, \cdot)||pp++11=C_{0}$ .

From this lemma, one obtains the next ones:

Lemma 2. 2 Let $u(t, x)$ be a local solution $con\mathit{8}tructed$ in Proposition 1.1. If $T_{m}=+\infty_{J}$

then there exists a Palais-Smale sequence to the problem (1) $-(\mathit{3})$ .

Proof. Let $\{t_{n}\}$ be as in Lemma 2.1. Then, it follows that

$J(u_{0}) \geq J(u(t_{n}, \cdot))arrow\frac{p-1}{2(p+1)}C_{0}\geq 0$ as $narrow+\infty$ . (9)

Furthermore, for such sequence, since $J\in C^{1}(X, R)$ , by equation (1) we have

$J’(u(t_{n}, \cdot))[v]=-(u_{t}(t_{n}, \cdot),$ $v)$

for each $v\in X$ , where $J’(u)\in X^{*}$ means the usual Fr\’echet-derivative of $\sqrt$ at $u\in X$ . By
this equality and the Schwarz inequality together with the Poincar\’e inequality one gets:

$|J’(u(t_{n}, \cdot))[v]|\leq C_{1}||u_{t}(t)n’\cdot||2||\nabla v||_{2}$

which implies
$||J’(u(t_{n}, \cdot))||H-1(\Omega)arrow 0(narrow+\infty)$ , (10)

where $C_{1}>0$ is a Poincar\’e constant. We find that $\{u(t_{n}, \cdot)\}$ becomes a Palais-Smale
sequence because of (9) and (10). 1

In particular, in the case when $p \in(1, \frac{N+2}{N-2})$ one gets the following compactness result.
For the detailed proof, see the forthcoming paper [8].

$\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}(\mathit{1})-(\mathit{3})asinPropoSitn\mathit{1}.\mathit{1}.en,theSequence2.3suppose_{io}p\in(1, \frac{N+2}{N-2,Th}).Letu(t,x)beaglobal\{u(tn’\cdot)\}ConStruCtedinLemma.\mathit{1}(i.e.,Tm+=\infty)soluti_{on_{\mathit{2}}}to$

$become\mathit{8}$ relatively compact in $X$ .

Now, we are in a position to prove Theorems 1.2 and 1.3.
Proof of Theorem 1.2. This result is a direct consequence of [14] (Theorem 3.1, p.184)

and Lemma 2.2 and so, we shall omitt the details. But, since $\Omega=ball$ , note that $E=\{0\}$

holds true in the present case. 1

Proof of Theorem 1.3. The first half is a direct consequence of Lemma 2.3. In order
to prove $u_{\infty}\in E$ , note that the following estimates are proven:

$||f(u)-f(v)||_{1+} \frac{1}{\mathrm{p}}\leq p(||u||_{p+}1+||v||p+1)^{p-}1||u-v||p+1$
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for all $u,$ $v\in L^{p+1}(\Omega)$ , and
$|(f(u(t_{n}, \cdot))-f(u_{\infty}),$

$\phi)|\leq||f(u(t_{n}, \cdot))-f(u_{\infty})||1+\frac{1}{\mathrm{p}}||\phi||p+1$

for each $\phi\cdot\in C_{0}^{\infty}(\Omega)$ , where $\{u(t_{n}, \cdot)\}$ is a sequence constructed in the first half. By
combining these estimates with Lemma 2.1 and the Sobolev embedding $Xarrow L^{p+1}(\Omega)$ ,
one obtains the desired statement. 1

From Lemma 2.1 one has a result reviewed from the view point of the Palais-Smale
condition.
Corollary 2. 1 Let $1<p \leq\frac{N+2}{N-2}$ and $u(t, x)$ be a global solution constructed in Propo-
sition 1.1, $i.e.,$ $T_{m}=+\infty$ . If $C_{0}=0$ , then the sequence $\{u(t_{n}, \cdot)\}$ stated in Lemma 2.1
becomes relatively compact, and in fact, $u(t, \cdot)arrow 0$ in $X$ as $tarrow+\infty$ .

From Theorem 1.1 and Corollary 2.1 with $p= \frac{N+2}{N-2}$ , one can say that it depends on
the least energy level $\frac{p-1}{2(p+1)}C_{0}$ whether the Palais-Snale condition holds good or not
to the sequence $\{u(t_{n}, \cdot)\}$ as in Lemma 2.1.

Finally in this section, we shall apply Theorem 1.3 and Lemma 2.2 for the finite
time blowup problem concerning (1)$-(3)$ . First, as a consequence of [14] one obtains the
following lemma.
Lemma 2. 4 Let $\Omega$ be a bounded smooth domain and $p= \frac{N+2}{N-2}$ . Then, for all $v\in E$ ,
one has $J(v)\in\{0\}\cup(d^{*}, +\infty)$ , and also, for each $w\in E^{*}\backslash \{0\}$ , one has $J_{*}(w)\in$

$\{d^{*}\}\cup(2d^{*}, +\infty)$ .
The following result gives a kind of alternative proof of [11] concerning blowup problem.

Proposition 2. 1 Let $1<p \leq\frac{N+2}{N-2}$ and $u(t, x)$ be a local solution of (1) $-(\mathit{3})$ on $[0, T_{m})$

constructed in Proposition 1.1. If $u(t_{0}, \cdot)\in V$ for some $t_{0}\in[0, T_{m})_{y}$ then $T_{m}<+\infty$ .
Proof. First, we shall deal with the case when $1<p< \frac{N+2}{N-2}$ . Suppose $T_{m}=+\infty$ . Then,
it follows from Theorem 1.3 that there exist a Palais-Smale sequence $\{u(t_{n}, \cdot)\}$ to the
problem (1)$-(3)$ and $u_{\infty}\in E$ such that $u(t_{n}, \cdot)arrow u_{\infty}$ in $X$ along a subsequence. On
the other hand, it is well-known (see [6]) that $u(t, \cdot)\in V$ for all $t\in[t_{0}, \infty)$ . Since $W$ is
a neighbourhood of $0$ in $X$ , if $u_{\infty}=0$ , then $u(t_{m}, \cdot)\in W$ holds with some $t_{m}$ and this
contradicts the fact that $W\cap V=\emptyset$ . Thus, $u_{\infty}\in E\backslash \{0\}$ . Because of the monotone
decreasingness of a function $t\mapsto J(u(t, \cdot))$ , one obtains $J(u(t_{n}, \cdot))\geq J(u_{\infty})\geq d_{p}$ which
contradicts $u(t_{n}, \cdot)\in V$ with large $t_{n}$ .

Next, we are concerned with the critical case $p= \frac{N+2}{N-2}$ . Suppose $T_{m}=+\infty$ . Obviously,
$C_{0}>0$ holds true. Then, from Lemma 2.2 and Theorem 3.1 of [14], p.184 that there exist
a Palais-Smale sequence $\{u(t_{n}, \cdot)\},$ $k\in N,$ $u^{0}\in E$ , and $u^{i}\in E^{*}\backslash \{0\}(1\leq i\leq k)$ such
that

$\lim_{narrow+\infty}J(u(t_{n}, \cdot))=\lim_{tarrow+\infty}J(u(t, \cdot))=J(u^{0})+\sum_{i=1}^{k}J_{*}(u)i$ .

By Lemma 2.4 and the monotone decreasingness of a function $t\vdasharrow J(u(t, \cdot))$ , one finds
that

$J(u(t, \cdot))\geq d^{*}$

for all $t\geq 0$ . This contradicts also $u(t, \cdot)\in V$ for all $t\geq t_{0}$ . 1
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