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Structure of solutions to the equation Au+ u? =0
near a singular radial solution
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Department of mathematics, Faculty of Science,
Tokyo Institute of Technology

1 Introduction

Here we study the structure of the set of solutions to some nonlinear elliptic
partial differential equation in a punctured ball. These solutions may be singular at
the origin and satisfy the equation in the distribution sense.

Our main result is that, when measured by a weighted Holder norm with a
suitably chosen weight parameter, near an explicit radial solution that is singular
at the origin, the set of these solutions is a smooth Banach manifold.

R.Hardt and L.Mou studied in [HM] the structure of the space of harmonic maps
near a singular homogeneous harmonic map and proved that this is a smooth Banach
manifold. We follow with modifications some steps in their study.

Let B, = B(0) be a closed ball of radius 7 (n > 3), and let B = B, \ {0} be a
punctured ball.

For p > -2, we consider the following equation

b
(1) {Au—}—u =0 in By,

u € C*(By), u>0 in By.

We recall two facts about the equation (1):
(2) [PL] When p > -2~ any solution of (1) satisfies

Au+uP =0 in D'(By),
u € LP(BI),

that is, all solutions of (1) extend to the whole ball as solutions in the distribution
' sense.

(b) [GS][CGS]  When %5 < p < 22 any solution of (1) satisfies

u(z) < C]m|5_:2T

 near z = 0 for some consiant C > 0.

Taking account of these facts, we consider the following set of solutions of (1)
with a specific growth rate at the origin:

(2) S={ue 02"”17_—%(B0) : u satisfies (1)},
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where for an integer j > 0,a € (0,1), and v € R, let C#**(By) be a weighted
Holder space with a weight parameter v, defined by

€9 (By) = {u € C}2(Bo) : lullsam < +00}

where

J
”ul‘j,a,u = sup ( E ZTk+ﬁ—vaku’H(ﬁ)vB2r\Br) + HU’HJ,Q’,BI\B%

0<r<1/2 Be{0,a} k=0

is a norm of C7**(By).
Note that for p > -2, the set S is not empty and especially there is a singular
radial solution ug in S of the form

(3) uo(e) = Cplz|™ (2 € Bo),

ew={(:2) (- 520))

Now we are interested in the structure of the set &, for example we want to know
whether S has a manifold structure or not, but we cannot find the answer until now.
For related problems on the moduli space of solutions of conformal scalar curvature
equation with prescribed isolated singularities, see the recent study of [MPU]. Here,
utilizing the spherical symmetry of uo, we prove that, near ug, locally S is a smooth
Banach manifold.

where

2 Analysis of the Jacobi operator
For o € (0,1) and v > =%, define
(4) N(up +v) = A(ug + v) + (uo + v)?

for v in the small neighborhood U of 0 in C***(By). N is a smooth map from
{uo} +U to C***~2(By) and the linearized operator (the Jacobi operator) about ug
is given by

d
(5) Juo & !

= —| N(uo+1tk) = Ax +puy -k
dt|,_,

for k € C**¥(By).
Using the polar coordinates z = rf (r = |z|,§ € S*') on By and the explicit
form of up, we can write J,, as

% n—-120 1 A,

(6) Juw=g7 7t s+ 3




where Agn-1 is the Laplace operator on $"~!, and

@ A = 0(Cnp™ = ()0 = =),

Let {};} : 0 = X < Ay < A3--- = 400 be the eigenvalues of Agn-1 (counting
multiplicity) and {7,} be the corresponding L?-normalized eigenfunctions.
As in [CHS][NS], we separate variables and write

5(r0) = inj(r)m(ex K5(r) = ()13 (D) 2gsmeny,

f(ré)

I

Z.Oofj(r)nj(o)a fj(r) = (f(T'),T]J'(-»Lz(Sn_l)

for k € C?**(Byp) and f € C¥**~%(By).

Then, formally the equation J,, & = f is equivalent to

(8) Ky (r) + m;(r)—mnj(r)—-:fj(r), 7=0,1,2---

which are inhomogeneous Euler ODE’s.
Let for 3 =0,1,2,-- -,

n—1

r r2

2—-n n—2)?
9) %(E) =—5— = \/(—4*)“ + A5 = Anp,
be the indicial roots of the characteristic equation z2 + (n — 2)z — (A — Anyp) =0,
and let o2
(10) D; = (n; Ly Aj = Anp

be the discriminant.
Note that A\; =n — 1 and
n 2p

(n—2)° 2p 2p | _
1 +(n‘1)—(m(n—;‘i—(§—p_l

so v;(+) € Rfor 5 > 1.

The general solution g; of the homogeneous equation associated with (8) is

a;Re(rvM) + b;Im(r(-)), j € {j: D; < 0};
gi(r) =

D1:

)} >0,

ajr'5" 4 br*F* logr, - J€e{i: D=0}
aj(r”’f(+)) + bj(?“’yj(_)), JE {] : Dj > 0},
where, a;,b; are constants.

A particular solution Fj(r) of (8) is also known and explicitly given by

(11)

Re
Re

1) [52G4 f7 =14 £ (s)dsdr|, Rey;(+) < v,
() [T pl=n=2v;(+) N 3n°‘1+’h‘(+)fj(s)dsd7‘ , Revy;j(+) >v.

(12) F(r) = {
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We note that when v € R satisfies

(13) v ¢ {Revy;(+):7=0,1,2,---} and v > Rey(—),

then the functions {Fj(r)} are well defined and satisfy the estimate |F;(r)| < Cr”.
Thus the solution  of J, k = f can be written as

(14) w(r) = 5'5 4;(r)mi(6) + i Fi(r)ns(0)
for rf = z € By.

Let
(15) K, (Ju,) = {x € C**"(Bo) : Jyok = 0}

be the kernel of J,, in C**¥(By), that is the set of Jacobi fields.
Then we can see, as in [HM], .

Lemma 1 Ifv ¢ {Rey;(+):7=0,1,2,---} and v > 32, then

K, (Jy,) ={k € C***(By) : k(rf) = Z ajr“’f'(+)nj(9)}

Vi (+)>v

for some constants {a,}.

From now on, we denote

2 9_

(16) p*:max(p~1,22n>
and
(17) L=min{j =0,1,2,---: p* < Rey;(+)}.
Note that if yo(+) ¢ R, then Reyo(+) = 52 < p*, so L # 0 and we have always
1(+) € R.

We fix v € R such that
(18) p"<v<7+),

so C%*¥(Bg) C CQ’Q’E%(BO) and (13) is satisfied for this v.
Denote I} = {0,1,2,---,L} and I, = {L,L +1,---}, then by Lemma 1 we have

K, (Ju) = {k € C**"(By) : 6(r0) = Y_ a;rHy;

Jjebh
Define
C2°¥(Bo) = {€€C™¥(Bo): £(r0) = Y a;(rn;(0)}, k=12,
Jjel;
Cr(s™ Y = {yp e C¥(S™™) =3 a;n;(0 k=1,2,

€l
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where {a;(r)}, {a;} are some functions and constants, and
(19) C2°¥(By) = {x € C***(By) : rlgns € I (5" )},

that is, k € C2*¥(By) is a function such that x|gs—1 is spanned by 79,7y, - -, np_1.
Let IT; : C%*(S™1) — C2*(5™ 1) be the projection

Oy e D agmy(0) = 3 agm;(8), k=1,2,

J=0 7€l
then we can write
Cf’a’u(BQ) = {KJ € C2’a’V(B0) : Hz(K,lSn-l) = 0}
By exploiting the formulae (11)(12)(14), we have

Lemma 2
(a) For any ¢ € C**(S™ 1) and f € CO"~%(By), there exists a unique £ €
C***(Bg) such that
Ha(k|sn-1) = Ih(¢) on S™L.

(b)
Juolcz v (5y) : C™"(Bo) — C**~*(By)

is a linear isomorphism.
Proof
(a) See [CHS].
(b) Let k € C2**(By) be a solution of J,x = 0. Then & € K,(Jy,), so by

Lemma 1,
w(rh) =" a;r i Hn.(9),
J€l

and 0 = Il (k|sn-1) = Y;¢j, @;m;(8), which implies a; = 0 for all j € I,. So J,, is
injective.

For any f € C%**~%(By), by (a) for 1 = 0 there is a unique solution « €
C**¥(Bg) such that

{ Juo"‘: = .f7
II3(k|sn-1) = 0.

So k € C2*¥(Bg) and J,, is surjective. 0
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3 Implicit function theorem argument

Here we describe the local structure of § near the singular radial solution uo.

Theorem 1 Forn>3,p> -2, a €(0,1), let up(z) = Cn,plwlf}l be the singular
radial solution of (1), given by (3), and fix v € (p*,7L(+)), where p*, L are as in
(16),(17).

Then, there exists a neighborhood U of 0 in C2*(5™ 1), a neighborhood V' of uo
in CZa’fT(BO), and a smooth map F : U — V such that the following holds:

(1) F(0) = uo,
(2) F(x) € S for anyyp € U,

(3) Fisan immersion at 0, that is, DF(0) : C2*(8m 1) — C?*¥(By) C Cz’”’z?——%(Bo)

is a splitting injection.

(4) There is an € > 0 such that anyv € SNV, = Sni{v e C'Z"”F:-QT(BO) :
lv = uol|20n < €} can be written as v = F() for some pel.

(5) U and ¢ can be chosen so that SNV, is a smooth manifold diffeomorphic to
U. Furthermore, the tangent space of SNV, at ug s

T (SN VL) = Ko(Juy).

Sketch of proof ,
Any ¢ € C2*(5™!) can be extended to a Jacobi field ¥ € K, (J,,) as follows :

(20) P(0) = 3 a;n;(8) = B(r6) = 3 a7 Hn;(6)

3 jelz

(See Lemma 1).
Consider the map

U : CF(S™1) x C2%¥(Bo) — C**7*(Bo)
defined by
(21) U(, k) = N(uo+ b + &) = Aluo + $ + &) + (uo + ¥ + )"

Note that U is well defined for (1, £) in a small neighborhood of (0,0) € C3(S™ 1) x
CE’Q’V(BQ), and

U(0,0) = Aug+ug=0,
DQ‘I’(0,0) = DN(U()) = Juo : Cf’a’v(BO) — Oo’a’y—z(Bo)

is a linear isomorphism by Lemma 2(b).
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So by the implicit function theorem, there are neighborhoods U of 0 in Cy*(5™1),
W of 0 in C2*¥(Bo) and a smooth map @ : U — W such that Q(0) = 0 and for
any ¥ € U, Q(¢) is the unique solution of

V(, Q(¥)) = N(uo + ¥ + Q(v)) = 0.
Finally we define a smooth map F : U C C2°(S"" 1) — CZ%,,%(BO) as

(22) F(¢) = uo + % + Q(¢).

Note for ¢ € U near 0, ¢ + Q(x) is small compared to ug in C**¥(Bg) C
—2
C**%=1(By), and F(4) has a form that ug + (perturbation behaving like r* near
0).
Now it is easy to see that F' satisfies (1)(2).
To see that F' is an immersion at 0, first note that for any ¢ € C3*(S™1),

d _ _
DEO)p = —1 (w0 + () + Q(t¥)) = ¥ + DQ(0)y € C***(By),
so Tl (DF(0))|sn-1) = T, () since DQ(O) € C2(By).
Define a map A : C**¥(B,) — C7*(S™1) x C22*(B,) such that

A(€) = (g (€]sn-r) , & = DF(0) (H(]sn-1)))-

Obviously A is injective, and for any (¥,n) € Cy*(S"™1) x C2**(B,), if we set
£ = DF(0)® + n then £ € C**¥(By) and A(¢) = (,7), so A is surjective and
therefore A is a bounded linear isomorphism.

Consider the sequence of mappings

3571 P grew(Bo) & C2(Sm1) x 020 (Bo) B3 €24 (577,
where Pr; is the projection, then we see
P?‘l o} A (o] DF(O) = Idlog,cx(svn_l) N

so DF(0) is a splitting injection. This proves (3).

To show (4), take ¢ > 0 sufficiently small so that N(v) = Av+v? is well defined
and IIy((v — uo)|sn-1) € U for v € V. Then given v € SNV,, let & = v — ug — 1P,
where ¥ € K, (J,,) is a Jacobi field defined by (20) for ) = ITy((v — up)|sn—1). Since
IIy(k|gn—1) = 0, we have & € C2*¥(B,).

Now v = ug+ K+ € S implies U(1), k) = 0, then by the uniqueness of Q(1) for
¥ € U, we have k = ()(). By the definition of F, we get v = F(3), which proves
(4).

(5) follows from the theory of immersions between Banach spaces. O
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4 An application

Here, following the arguments in previous sections, we give a result about the
existence of solutions for a perturbed equation, that are singular only at the origin.

Theorem 2 For any ¢ > 0,v € (p*,vL(+)), there is a § > 0 such that if
K € C**(B,) is a positive function with ||K — 1||c2.a(p,) < 6, then there exists a

solution v € 02’a’1>;—2T(B0) of

{ Av + K(z)v? =0 in D'(B,),

Il = uollz,an <&

Proof
For K € C**(B;) and u € C***(By) near ug, denote

N(K,u) = Au+ K(z)u®.

N is a smooth map to C%**~2(B,) and if we define a map @ : C?*(B;)xC?*¥(Bg) —
CO,a,u—‘Z(BO) as

O(n, %) = N(1+n,u0 + £) = Ao + £) + (1 + 1(2))(uo + £)7,

then we see ®(0,0) = N(1,uo) = 0 and D;®(0,0) = J,, : C2*¥(By) — C***~2(By)
is a linear isomorphism by Lemma 2(b).

So by the implicit function theorem, we have a neighborhood U of 0 in C%*(B,),
V of 0 in C3*¥(By), and a smooth map @ : U — V such that Q(0) = 0 and for any
n € U, Q(n) is the unique solution of ®(n, @(n)) = 0. Furthermore for any € > 0, if
lInll2, < 6 for sufficiently small 6, we have ||Q(n)]|2,0., < € by continuity of Q.

Denote v = ug + Q(n) where n = K — 1, then ®(n,Q(n)) = 0 implies Av +
K(z)v? = 0 in C%*""%(By). Now p > L allows that v extends to the whole ball
as a solution in the distribution sense. The proof is completed. a
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