<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>性質の完成性についての研究</td>
</tr>
<tr>
<td>著者</td>
<td>吉岡 龍</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2000), 1126: 97-107</td>
</tr>
<tr>
<td>発行日</td>
<td>2000-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63589</td>
</tr>
<tr>
<td>タイプ</td>
<td>部門誌論文</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>出版</td>
</tr>
</tbody>
</table>

京都大学
Characterizations of the completeness by usco open mappings

岡山大学理学部数学科 佐岡 敏 (Iwao Yoshieka)
MALTA 大学 David Buhagiar

ある空間を、よりおもしろい空間のよい写像の像として特微づけるという考えは茨山ありまち。例えば。

\[X : \text{k-space} \leftrightarrow \text{局所 compact 空間} \] が存在して、\(X \) は\(Y \)の高実像の像である。

この報告では、写像を多値写像にまで広げて考えで見ることをします。写像\(F : X \rightarrow Y \)が多値定像であるとは，各\(x \in X \)に対して\(F(x) \)が空でない閉集合（一点でもよく）であることをします。1969年，H. H. Wicke によって次のような結果が与えられています[文]。

定理. Hausdorff 空間\(X \)について，次の条件は同値である。
(a) \(X \)はpoint-countable type である。
(b) metric 空間\(Y \)が存在して，\(X \)は\(Y \)のusco open 多
価実像の関係である。

以下，実像は全て多価実像とする。全ての空間はregularであるとする。

1. 定義

定義1 X の open covering \(\{ U_a \mid a \in A_n \} \) の列と実像 \(T_n : A_{n+1} \to A_n \) \((n = 0, 1, 2, \ldots)\)が以下の条件を満たすとき，\(B = \{ \lim_{n} A_n \mid n \geq 0, T_n \} \) を X の open sieve という。

(i) \(U_a = X \forall a \in A_0 \)

(ii) \(U_{B_1} = \bigcup_{B_0} B_1 \bigcup_{B_2} B_1 = \bigcup_{B_0} B_1 \forall a \in A_n (n \geq 0) \)。

index \(A_n \) の列 (\(A_n \)) \(\forall n \geq 0 \) は，\(T_n(\alpha_{n+1}) = \alpha_n (n \geq 0) \) を満たすとき，\(\pi \)-chain という。\(B \)'s \(\pi \)-chains 全体を \(\Pi(B) \) と表わす [1, 2]。

定義2 X の open sieve \(B = \{ \lim_{n} A_n \mid n \geq 0, T_n \} \) において，\(A \subset \Pi(B) \) が以下を満たすとき A は allowed であるという。

(i) \(\bigcap_{n \geq 0} U_{A_n} \neq \emptyset \) \(\forall (\alpha_n) \in A \)

(ii) \(x \in X \) ならば，\(x \in \bigcap_{n \geq 0} U_{A_n} \) \(\forall (\alpha_n) \in A \)

(iii) \((\alpha_n) \in A \) ならば，\(\forall k \in N, \forall x \in U_{\alpha_k} \) に対して，\(\exists (\beta_n) \in A \wedge \langle d_0, d_1, \ldots, d_k \rangle, x \in \bigcap_{n \geq 0} U_{\beta_n} \).

（ここに，\(\langle d_0, d_1, \ldots, d_k \rangle = \{(\tau_n) \in \Pi(B) \mid \tau_i = d_i (0 \leq i \leq k)\} \)）
さらに、∀(x)∈Aについて、X の filter base が、F_n ≡ ∩_{n ≥ 0} F_n を満たすならば、X は weakly 第 II 型であるとき、X は A-complete という。

定義 3 X が open sieve の存在で、X は Π(8)-complete であるとき、X は sieve complete という。allowed A⊂Π(8) が存在して A-complete であるとき、X は weakly sieve-p であるという。

定義 4 X の部分集合 A が countable character であるとき、A が countable base を含む (いわゆる、各点が A を含む開集合で、A を含む任意の開集合 C に対して C が存在して A⊂C を満たす) を持つことをいう。X の各点 p に対して、p を含む compact set が存在して countable character であるとき、X は point-countable type であるという。

定義 5 写像 f: X→Y について、∀x∈X に対して、f(x)∈V: open で Y ならば、x の近傍 U が存在して f(U)⊂V であるとき、f は u.s.c. (upper semi-continuous) と/or. また、f が u.s.c. で、∀x∈X に対して f(x) が compact であるとき、f は uscc であるという。∀y∈Y と
$y \in \forall V : \text{open in } Y$ に対して，$F(x) \subset V$ かつ $x \in F^{-1}(y)$ であるとき F は S-map であるといい，$\forall y \in Y$ に対して $x \in F^{-1}(y)$ と x の開近傍基 $(U_n(x))_{n \in \mathbb{N}}$ が存在して $(F(U_n(x)))_{n \in \mathbb{N}}$ が Y の開近傍基になるとき F を N-map という。$F(x) = Y$ のとき F は surjection であるといい，X の開集合 U に対して，$F(U)$ が Y の開集合であるとき F は open であるという。ここに，$A \subset X$ のとき $F(A) = \{F(x) \mid x \in A\}$ を，$B \subset Y$ のとき，$F^{-1}(B) = \{x \in X \mid F(x) \in B\}$ を表す。

2. 結果

以下，weakly siere-p space，1-ast countable space，siere complete space，1-ast countable siere complete space は，complete metric space あるいは metric space の uscc map の像として特徴づけることがでできることを示す。これ等の関係を下に図示する。
定理 1 空間 X に対して, 次の条件は同値である。
(a) X は point-countable type である。
(b) 任意の $x \in X$ と x' 任意の開近傍 U に対して,
countable character すべての compact set C で $x, x' \in C \cap U$ を満
たうものが存在する。
(c) X は weakly dense-p である。
(d) metric space Y と usco open S-map $F : Y \to X$ 存
在する。
(e) metric space Y と usco open surjection $F : Y \to X$ 存
在する。
(f) point-countable type の空間 Z と usco open surjection
$F : Z \to X$ 存在する。
(g) weakly dense-p space Z と usco open surjection
$F : Z \to X$ 存在する。

定義 6 写像 $F : X \to Y$ は次の条件を満たすとき,
tri-quotient という [2]。
X の開集合 U に対して Y の開集合 $F(U)$ が存在するに対応する存在し
て (i) ～ (iv) を満たすとき。

(i) $U^* \subseteq F(U)$
(ii) $X^* = Y$
(iii) \(U \subseteq V \Rightarrow U^* \subseteq V^* \)

(iv) \(\forall x \in U \)で、\(X \)の閉集合からなる \(U \cap F^{-1}(y) \)のcovering \(\mathcal{W} \)（即ち、\(\mathcal{W} = \{ W \mid W \subseteq U \} \cap U \cap F^{-1}(y) \)）に対して、\(U \)の有限個の元 \(W_i, \ldots, W_n \)が存在して \(y \in (W_1 \cap \cdots \cap W_n)^* \)。

定理2 空間 \(X \)に対して、次の条件は同値である。

(a) \(X \)はsiècle completeである。

(b) \(X \)のopen siècle \(S = \{ U_n \mid n \geq 0 \} \)で \(\Pi(S) \)-completeなもののが存在して、任意の \(x \in X \)とその任意の開近傍 \(U \)に対して \((a_n) \in \Pi(S) \) が存在して \(x \in \cap_{n} U_n \)を満たす。

(c) complete metric space \(Y \)とusco open \(S \)-map \(F : Y \to X \)が存在する。

(d) complete metric space \(Y \)とusco open surjection \(F : Y \to X \)が存在する。

(e) siècle complete space \(Z \)とusco tri-quotient map \(F : Z \to X \)が存在する。

注意1 1) Čech-complete \(\Rightarrow \) siècle complete は成立する。しかし、siècle completeであるがČech-completeでない例は【】、Ex.9.1）に与えられている。

2) \(f^* \)はsiècle completeであるが、いさか3 metric
space の open continuous single-valued map の像にもならない。

(3) \(\mathbb{R} \subset [0, 1] \) に対して、\(F: I \to I \) と \(F(t) = I \) \(t \in I \) で与えられたとき \(F \) は open surjection で "ありえない" \(-map \) ではない。

(4) \(Y = \mathbb{Q} \) (rationals) with discrete topology, \(X = \mathbb{R} \subset \mathbb{R} \) とし、\(F: Y \to X \) を \(F(y) = \{ x \in X \mid y - 1 < x < y + 1 \} \) で与えられたとき、\(F \) は u.s.c. open surjection で "ありえない" \(X \) はienne complete ではない。このことから、complete metric space の u.s.c. open surjection による像は必ずしもienne complete ではないことを示す。

定理 3 Hausdorff 空間 \(X \) に対して、次の条件は同値である。

(a) \(X \) は 1-set countable である。

(b) \(X \) の open 二線 \(\mathbb{R} = \{ (x_1, x_2, x_n) \in \mathbb{R}^n \mid A \subset \mathbb{R} \} \) と允许した \(A \subset \mathbb{R} \) が存在して、\(X \) は A-complete かつ任意の \(x \in X \) に対して \((x_n) \subset A \) が存在して \((x_n)_{n=0} \) は \(X \) の閉圏収束 "ある。

(c) metric space \(Y \) と open continuous single-valued map \(f: Y \to X \) "ある。

(d) metric space \(Y \) と u.s.c. open N-map \(F: Y \to X \) "ある。
定理 6 空間 X に対して，次の条件は同値である。
(a) X は 1-at countable で Portable complete である。
(b) X の open sieve $S = \{ U_{i} \mid i \in \mathbb{N}, n_{0} \leq i \}$ で $\pi(S)$-complete 存在するものがある，任意の $x \in X$ に対して $(d_{n}) \in \pi(S)$ が存在して $(d_{n}) |_{n_{0}}$ は X の開基を基とする。
(c) complete metric space Y と usuco open N-map $F : Y \to X$ が存在する。
(d) 1-at countable siere complete space Z と usuco open N-map $F : Z \to X$ が存在する。

3 結び
(1) 2 節で述べた空間とそれらより弱く知られる空間の関係。

\[
\text{Moore space} \quad \triangleright \quad \text{p-space (Arhangel'ski)} \\
\Rightarrow \text{Čech-complete} \quad \triangleright \quad \text{monotonically } [\text{1}] \quad \triangleright \quad \text{monotonically } p \quad [\text{1}] \\
\Lambda\text{-base [3]} \quad \downarrow \quad \text{developable} \quad \downarrow \quad \text{measurably siere-complete} \\
\Lambda\text{-siere [1]} \quad \downarrow \quad \text{siere complete} \quad \downarrow \quad \text{monotonically Čech-complete [1]}
\]
ソーゲンフレイ線はweakly sierre-p で $\exists a \exists b$ がmonotonically p で $\exists 1$.

(2) 定理1の証明の概略

(a) ⇔ (b) ⇔ (e) はHausdorf空間で成立立つことが"Wickel[]により示されている。残りは(c) ⇒ (e) ⇒ (g) ⇒ (c)，(e) ⇒ (f) ⇒ (a)，(b) ⇒ (d) ⇒ (e) を示す。
(c) ⇒ (e) のために次のLemma [2; Lemma 2.4]を示す。

Lemma $S = \{ U_\lambda \mid \lambda \in \Lambda_n \cap \pi_\lambda \}$ が"Xのopen sierreならば"、次の条件を満たすopen sierre $S_1 = \{ V_\alpha \lambda \mid (\alpha, \lambda) \in \Lambda_n \times \pi_\lambda, \pi_\lambda \times \psi_\lambda \}$ が存在する。

(i) $V_\alpha \lambda \subseteq U_\lambda$ for $\forall \lambda \in \Lambda_n \ \ (n \geq 0)$,

(ii) $(\alpha, \lambda) \in \Lambda_n \times \pi_\lambda$ に対して，$(\beta, \mu) \in (\pi_\lambda \times \psi_\lambda)^{-1}(\alpha, \lambda)$ ならば$V_{\beta, \mu} \subseteq V_{\alpha, \lambda} \ \ (n \geq 0)$,

(iii) allowed $A \subseteq \Pi/(8)$ に対してXが"A-completeならば"，allowed $B \subseteq \Pi/(S_1)$ が存在してXはB-completeである。

(i), (ii) は[2]により，(iii) に対しては$B = \{ (\alpha, \lambda)_n \mid (\alpha, n)_{n \geq 0} \in A \}$ が条件を満たす。

(c) ⇒ (e)：上のLemmaよりopen sierre $S = \{ U_\lambda$
1 と \(A \in \Pi_n(f_n, \Pi_n) \) と allowed \(A \in \Pi_n(f) \) の存在する, 二つの条件

\(H \subset A \) かつ \(\forall \beta \in \Pi_n(f) \) かつ \(X \) は \(A \)-complete

を満たす. ここで, \(A \) を discrete space \(\Pi_n \) の直積空間 \(\Pi_n \Pi_n \) の部分空間として考えれば, \(A \) は \(\dim A = 0 \) な metric space である. 次に, 写像 \(F: A \to X \) と

\[F(t) = \bigcap_{n \geq 1} U_{t^n} \quad (A \ni t = (t^n)_{n \geq 0}) \]

で与えると (e) の条件は満たされる。

(e) \(\Rightarrow (g) \): \(X \) は weakly niente になるが明らかである。

(g) \(\Rightarrow (c) \) は容易に示すことができる。

(e) \(\Rightarrow (t) \): \(X \) は point-countable type になるが明らかである。

(t) \(\Rightarrow (a) \) は容易に示すことができる。

(b) \(\Rightarrow (d) \): \(T = \{ X \text{ の空で} \text{ な open set 全体} \} \) に
discrete topology を与えて, \(T \) の部分空間として

\[A = \{ (t^n)_{n \geq 1} \mid (i) t_1 \text{ つなつ} \cdots \cdots \cdots \cdots (ii) (t^n)_{n \geq 1} \text{ は, } X \text{ の空で} \text{ な compact set の countable character} \} \]

to 考える. 次に, 再像 \(F: A \to X \) と

\[F(t) = \bigcap_{n \geq 1} t^n \quad (A \ni t = (t^n)_{n \geq 1}) \]

de 与えるならば (d) の条件を満たす。

(d) \(\Rightarrow (e) \) は明らかである。

定理 2, 3, 4 も類似の方法で示すことができる。
参考文献

(2) E. Michael; Complete spaces and tri-quotient maps, Illinois Math. 27 (1994) 716-733.
