THE COMPLETIONS OF METRIC ANR’S AND UNIFORM ANR’S

KATSURO SAKAI

department of Mathematics
University of Tsukuba

A subset Y of a space X is said to be homotopy dense in X if there exists a homotopy $h: X \times [0,1] \to X$ such that $h_0 = \text{id}$ and $h_t(X) \subset Y$ for $t > 0$. This concept is very important in ANR Theory and Infinite-Dimensional Topology. When X is an ANR, the concept of the homotopy denseness is dual to the one of local homotopy negligibility introduced by Toruńczyk in [To3]; that is, $Y \subset X$ is homotopy dense in X if and only if the complement $X \setminus Y$ is locally homotopy negligible in X (cf. [To3, Theorem 2.4]). The following fact is well-known:

Fact. Every homotopy dense subset of an ANR is also an ANR and a metrizable space is an ANR if it contains an ANR as a homotopy dense subset.

The lack of the homotopy denseness of a metric ANR in its completion often destroys the ANR property of the completion. For instance, the $\sin \frac{1}{x}$-curve in the plane \mathbb{R}^2 is an ANR but the completion of this curve (= the closure in \mathbb{R}^2) is not an ANR. Moreover, even if the completion is an ANR, it is very different from the original ANR. The circle S^1 is the completion of the space $S^1 \setminus \{\text{pt}\}$ and the both spaces are ANR but they are topologically very different from each other. It should be remarked that $S^1 \setminus \{\text{pt}\}$ is not homotopy dense in S^1. In this note,\footnote{The results mentioned in this note were obtained in [Sa]. Then, for details, one can refer to the paper [Sa].} we consider the following interesting problem:

Problem. When is a metric ANR homotopy dense in the metric completion?

1. A CHARACTERIZATION OF METRIC ANR’S

The nerve of an open cover \mathcal{V} of a space X is denoted by $N(\mathcal{V})$. A sequence $\mathcal{U} = (\mathcal{U}_n)_{n \in \mathbb{N}}$ of open covers of a metric space X is called a zero-sequence if $\lim_{n \to \infty} \text{mesh} \mathcal{U}_n = 0$. For such a sequence, we define the simplicial complex

$$ TN(\mathcal{U}) = \bigcup_{n \in \mathbb{N}} N(\mathcal{U}_n \cup \mathcal{U}_{n+1}), $$

$$ TN(\mathcal{U}) = \bigcup_{n \in \mathbb{N}} N(\mathcal{U}_n \cup \mathcal{U}_{n+1}), $$
where we regard $U_n \cap U_m = \emptyset$ ($n \neq m$) as sets of vertices of $TN(U)$ even if $U_n \cap U_m \neq \emptyset$ as collections of open sets, \(^2\) whence
\[
N(U_n \cup U_{n+1}) \cap N(U_{n+1} \cup U_{n+2}) = N(U_{n+1}).
\]

Theorem 1. A metric space $X = (X, d)$ is an ANR if and only if X has a zero-sequence $U = (U_n)_{n \in \mathbb{N}}$ of open covers with a map $f : |TN(U)| \to X$ satisfying the following conditions:

(i) $f(U) \subseteq U$ for each $U \in TN(U)^{(0)} = \bigcup_{n \in \mathbb{N}} U_n$, and

(ii) $\lim_{n \to \infty} \text{mesh}\{f(\sigma) \mid \sigma \in N(U_n \cup U_{n+1})\} = 0$.

Under the above circumstances, if the image $f(|TN(U)|)$ is always contained in $Y \subset X$, then Y is homotopy dense in X.

This characterization of ANR’s is due to Nguyen To Nhu [N] (cf. [NS]). By the alternative proof given in [Sa], the additional assertion was obtained. As a corollary, we have the following:

Corollary 1. Let X be an ANR (resp. an AR) contained in a metric space M. Then, there exists a G_δ-set $Z \subset M$ such that Z is an ANR (resp. an AR) and X is homotopy dense in Z.

We can also apply Theorem 1 to find conditions such that the metric completion of a metric space X is an ANR with X a homotopy dense subset. A subset D of a metric space X is said to be \(\delta\)-dense in X if $\text{dist}(x, D) < \delta$ for every $x \in X$.

Corollary 2. Let X be a metric space which has a zero-sequence $U = (U_n)_{n \in \mathbb{N}}$ of open covers with a map $f : |TN(U)| \to X$ satisfying the conditions (i) and (ii) of Theorem 1, where suppose $U_n = \{B_X(x, \gamma_n) \mid x \in D_n\}$ for some δ_n-dense subset $D_n \subset X$ and $0 < \delta_n < \gamma_n$. Then, any metric space Z containing X isometrically as a dense subset is an ANR and X is homotopy dense in Z. In particular, the metric completion \tilde{X} of X is an ANR and X is homotopy dense in \tilde{X}.

In the above, note that the γ_n-dense subset D_n of X may not be δ_n-dense in Z. For example, $D_n = \{i/n \mid 1 \leq i < n\}$ is 1/n-dense in $(0, 1)$ but it is not 1/n-dense in $[0, 1]$.

Now, we consider the following extension property:

\((e)_k\) There exist constants $\alpha > 0$ and $\beta > 1$ such that every map $f : |K^{(k)}| \to X$ of the k-skeleton of an arbitrary simplicial complex K with $\text{mesh}\{f(\sigma^{(k)}) \mid \sigma \in K\} < \alpha$ extends to a map $\tilde{f} : |K| \to X$ such that $\text{diam} \tilde{f}(\sigma) \leq \beta \text{diam} f(\sigma^{(k)})$ for each $\sigma \in K$.

\(^2\)In [NS], we did not regard like this. Considering the set $\bigcup_{n \in \mathbb{N}} U_n \times \{n\}$ as the set of vertices of $NT(U)$, this is reasonable.
The following corollary is motivated by the proof of AR property of the hyperspaces (cf. [vM, §5.3]).

Corollary 3. Every LC^{k-1} metric space X with the property $(e)_k$ is an ANR. In particular, a metric space X with $(e)_0$ is an ANR (cf. Theorem 3).

Remark. In Theorem 1, X is an AR when $\mathcal{U}_1 = \{X\}$. Every C^{k-1} and LC^{k-1} metric space X is an AR if it has the following:

$(\varepsilon)_k$ there exists a constant $\beta > 1$ such that every map $f : |K^{(k)}| \to X$ of the k-skeleton of an arbitrary simplicial complex K extends to a map $\tilde{f} : |K| \to X$ such that $\text{diam} \tilde{f}(\sigma) \leq \beta \text{diam} f(\sigma^{(k)})$ for each $\sigma \in K$.

2. Uniform ANR's

In [Mi$_2$], E. Michael introduced uniform AR's and uniform ANR's, and studied them. Let $X = (X, d_X)$ and $Y = (Y, d_Y)$ be metric spaces and $A \subset X$. A map $f : X \to Y$ is said to be **uniformly continuous** at A if, for any $\epsilon > 0$, there exists $\delta > 0$ such that if $a \in A$, $x \in X$ and $d_X(a, x) < \delta$ then $d_Y(f(a), f(x)) < \epsilon$. A neighborhood U of A in X is called a **uniform neighborhood** if $\bigcup_{a \in A} B_X(a, \delta) \subset U$ for some $\delta > 0$. A metric space Y is called a **uniform ANR** if, for an arbitrary metric space X and a closed set $A \subset X$, every uniformly continuous map $f : A \to Y$ extends to a map $\tilde{f} : U \to Y$ from some uniform neighborhood U of A in X which is uniformly continuous at A. When f always extends over X (i.e., $U = X$), Y is a **uniform AR**. By virtue of [Mi$_2$, Theorem 1.2], a metric space Y is a uniform ANR (resp. a uniform AR) if and only if, for an arbitrary metric space Z which contains Y isometrically as a closed subset, there exists a retraction $r : U \to Y$ for some uniform neighborhood U in Y in Z (resp. $r : Z \to Y$) which is uniformly continuous at Y.\footnote{Such a retraction is called a **regular retraction** by H. Toruńczyk in [To$_2$].} The concept of uniform ANR's is useful since the metric completion of every uniform ANR is also a uniform ANR.

By using a zero-sequence of open covers in §1, we can prove the following version of Proposition 1.4 in [Mi$_2$]:

Theorem 2. For an arbitrary metric space X, the following are equivalent:

(a) X is a uniform ANR;

(b) Every metric space Z containing X isometrically as a dense subset is a uniform ANR and X is homotopy dense in Z;

(c) X is isometrically embedded in some uniform ANR Z as a homotopy dense subset.
Theorem 2 above means that a metric space X is a uniform ANR if and only if
the metric completion of X is a uniform ANR with X a homotopy dense subset.
However, in order that the metric completion of a metric ANR X is an ANR with
X a homotopy dense subset, it is not necessary that X is a uniform ANR. In case
X is totally bounded, X is a uniform ANR if and only if the metric completion of
X is an ANR with X a homotopy dense subset.

A metric space Y is said to be uniformly LC^k if, for each $\varepsilon > 0$, there exists $\delta > 0$
such that any map $f: S^i \to Y$ with $\text{diam} f(S^i) < \delta$ extends to a map $\tilde{f}: B^{i+1} \to Y$
with $\text{diam} \tilde{f}(B^{i+1}) < \varepsilon$ for every $i \leq k$. In stead of “uniformly LC^0”, we also say
“uniformly locally path-connected”. The subspace of \mathbb{R}^2 in the example above is
not uniformly locally path-connected.

Theorem 3. Every uniformly LC^{k-1} metric space Y with the property $(e)_k$ is a
uniform ANR. In particular, a metric space X with $(e)_0$ is a uniform ANR.

By Theorems 2 and 3, we have the following variation of Corollary 3 (cf. [SU, Lemma 2]):

Corollary 4. Let X be a metric space and Y a dense subset of X. If Y is uniformly
LC^{k-1} and has the property $(e)_k$, then X and Y are uniformly ANR’s and Y is
homotopy dense in X.

Remark. In Theorem 3 and Corollary 4, by replacing the property $(e)_k$ with $(\bar{e})_k$
and adding the condition that Y is C^{k-1}, “uniform ANR” can be “uniform AR”.
In particular, a metric space X with $(\bar{e})_0$ is a uniform AR.

3. Dense (or uniform) local hyper-connectedness

By using the notion of (local) hyper-connectedness, C.R. Borges [Bo] and R.
Cauty [Ca] characterized AR’s and ANR’s, respectively. Here is introduced a little
weaker notion. By Δ^{n-1}, we denote the standard $(n-1)$-simplex in \mathbb{R}^n, that is,

$$\Delta^{n-1} = \{ (t_1, \ldots, t_n) \in \mathbb{R}^n \mid t_i \geq 0, \sum_{i=1}^{n+1} t_i = 1 \}.$$

For an open cover \mathcal{U} of a space X and $Y \subset X$, we denote

$$Y^n(\mathcal{U}) = \{ (y_1, \ldots, y_n) \in Y^n \mid \exists U \in \mathcal{U} \text{ such that } \{y_1, \ldots, y_n\} \subset U \}.$$

It is said that a space X is densely locally hyper-connected if X has an open cover
\mathcal{W}, a dense subset D and functions $h_n: D^n(\mathcal{W}) \times \Delta^{n-1} \to X, n \in \mathbb{N}$, which satisfy
the following conditions:

(i) if $t_i = 0$ then

$$h_n(y_1, \ldots, y_n; t_1, \ldots, t_n) = h_{n-1}(y_1, \ldots, y_i-1, y_i+1, \ldots, y_n; t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n);$$
(ii) $\Delta^{n-1} \ni (t_1, \ldots, t_n) \mapsto h_n(y_1, \ldots, y_n; t_1, \ldots, t_n) \in X$ is continuous for each $(y_1, \ldots, y_n) \in D^n(\mathcal{W})$;

(iii) every open cover \mathcal{U} of X has an open refinement \mathcal{V} such that $\mathcal{V} \prec \mathcal{W}$ (hence $D^n(\mathcal{V}) \subset D^n(\mathcal{W})$) and

$$\{h_n((D \cap V)^n \times \Delta^{n-1}) \mid V \in \mathcal{V}\} \prec \mathcal{U} \quad \text{for each } n \in \mathbb{N}.$$

It should be noticed that each h_n need not be continuous. If \mathcal{W} can be taken as $\mathcal{W} = \{X\}$ (i.e., $D^n(\mathcal{W}) = D^n$), we say that X is densely hyper-connected. In case $D = X$ (resp. $D = X$ and $\mathcal{W} = \{X\}$), X is locally hyper-connected (resp. hyper-connected). This concept is very similar to Michael's convex structure in [Mi$_1$]. In [Bo] and [Ca], AR's and ANR’s are characterized by the hyper-connectedness and the local hyper-connectedness, respectively. A similar characterization was obtained by Himmelberg [Hi] (cf. Curtis [Cu]). These characterizations can be generalized in terms of the dense hyper-connectedness as follows:

Theorem 4. A metrizable space X is an ANR if and only if X is densely locally hyper-connected. Moreover, X is an AR if and only if X is densely hyper-connected.

Remark. In the definition of densely local hyper-connectedness, if the images of functions h_n are contained in Y, then Y is homotopy dense in X. In fact, if the images of functions h_n are contained in Y, then $f(|TN(\mathcal{U})|) \subset Y$, hence Y is homotopy dense in X by the additional statement of Theorem 1.

For a metric space X and $\eta > 0$, we denote

$$X^n(\eta) = \{(x_1, \ldots, x_n) \in X^n \mid \text{diam}\{x_1, \ldots, x_n\} < \eta\}.$$

A metric space X is said to be uniformly locally hyper-connected if there are $\eta > 0$ and functions $h_n: X^n(\eta) \times \Delta^{n-1} \to X$, $n \in \mathbb{N}$, which satisfy the same conditions as (i) and (ii) above, and the following (iii') instead of (iii):

(iii') for each $\varepsilon > 0$, there is $0 < \delta < \varepsilon$ such that

$$\text{diam } h_n(\{x\} \times \Delta^{n-1}) < \varepsilon \quad \text{for every } n \in \mathbb{N} \text{ and } x \in X^n(\delta).$$

When every h_n is defined on the whole space $X^n \times \Delta^{n-1}$, it is said that X is uniformly hyper-connected.

Now, we give a characterization of uniform ANR's and uniform AR’s.

4The local hyper-connectedness is in the sense of [Ca] but not in the sense of [Bo].
Theorem 5. A metric space $X = (X, d)$ is a uniform ANR if and only if X is uniformly locally hyper-connected. Moreover, X is a uniform AR if and only if X is uniformly hyper-connected.

The following is a combination of Theorems 2 and 5:

Corollary 5. Let X be a uniformly (locally) hyper-connected metric space and Z a metric space which contains X isometrically as a dense subset. Then, X and Z are uniform AR's (uniform ANR's) and X is homotopy dense in Z. In particular, the metric completion \tilde{X} of X is a uniform AR (uniform ANR) and X is homotopy dense in \tilde{X}.

References

Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 JAPAN
E-mail address: sakaiktr@sakura.cc.tsukuba.ac.jp