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All spaces are assumed to be $T_{1}$ -spaces. Let $X$ be a space and $A$ a subspace.
Let $\gamma$ and $\kappa$ be infinite cardinal numbers. Recently, in Dydak’s paper [3],
$A$ is said to be $P^{\gamma}$ (locally-finite)-embedded in $X$ if for every locally finite
partition $\{p_{\alpha} : \alpha<\gamma\}$ of unity on $A$ , there exists a locally finite partition
$\{q_{\alpha} : \alpha<\gamma\}$ of unity on $X$ such that $q_{\alpha}|A=p_{\alpha}$ for every $\alpha<\gamma.$ $A$ is said
to be $P(1_{\mathrm{o}\mathrm{C}}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$-embedded in $X$ if $A$ is $P^{\gamma}$ (locally-finite)-embedded in
$X$ for every $\gamma$ . In our previous paper [19, Theorem 3.1], the following result
was shown:

Theorem $0[19]$ . Let $X$ be a space and A a subspace. Then, $A$ is $P^{\gamma}$ (locally-
$finite)- embedded$ in $X$ if and only if for every locally finite cover $\{U_{\alpha} : \alpha<\gamma\}$

of cozero-sets of $A$ , there exists a locally finite cover $\{V_{\alpha} : \alpha<\gamma\}$ of cozero-
sets of $X$ such that $V_{\alpha}\cap \mathrm{A}=U_{\alpha}$ for every $\alpha<\gamma$ .

Przymusitski-Wage proved Theorem $0$ in [17, Theorem 2] assuming that $X$

is normal and $A$ is closed in $X$ .
In this report, related to Theorem $0$ , we denote two topics. One is related

to $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{\mathrm{O}}\mathrm{v}$ spaces or functional $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ spaces (these notions were studied
by $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ in [10] and defined by Przymusitski-Wage in [17] $)$ ; the condition
of the $‘(\mathrm{i}\mathrm{f}$

” part in Theorem $0$ is closely related to functionally $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ spaces.
Another is related to “controlling extension” which was studied by Frantz in

[5]; our key lemma [19, Lemma 3.2] to prove Theorem $0$ is closely related to

this notion.
$A$ is said to be $C^{*}$ (respectively, $C$)-embedded in $X$ if every continuous

real-valued bounded (respectively, real-valued) function on $A$ can be contin-
uously extended over $X$ . A is said to be well-embedded in $X$ if every zero-set
disjoint from $A$ is completely separated from $A$ . It is well-known that $A$ is

C-embedded in $X$ if and only if A is $C^{*}-$ and well-embedded in $X$ (see [1] or
[6] $)$ .

1. Characterizations of $P(\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}-\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$ -embedding and
(functionally) $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ spaces by products

In [10] or [17], the following four properties are studied:
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(1) $X$ is collectionwise normal and countably paracompct (respectively,
normal and countably paracompact);

(2) $X$ is normal and every locally finite open (respectively, countable
locally finite open) cover of any closed subspace $A$ of $X$ can be extended to
be a locally finite open cover of $X$ ;

(3) $X$ is normal and every locally finite cozero-sets (respectively, count-
able locally finite cozero-sets) cover of any closed subspace $A$ of $X$ can be
extended to be a locally finite open- or equivalently, cozero-sets- cover of
$X$ ;

(4) $X$ is collectionwise normal (respectively, normal).
In [17], a space $X$ with the property (2) is said to be Kat\v{e}tov (respectively,
countably $Kat\check{e}tov$) and a space $X$ with the property (3) is said to be func-
tionally Kat\v{e}tov (respectively, countably functionally $Kat\check{e}tov$) . $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{V}[10]$

proved that (1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)$ , and Przymusitski-Wage showed in $[1’\iota 7]$

any of these implications above need not be reversed.
Every $P^{\gamma}(1_{0}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$ -embedded subset is $P^{\gamma}$-embedded (see below for

the definition) [3], $P^{\omega}$-embedding equals to $C$-embedding [1]. Hence, we
can say that $X$ is functionally $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ (respectively, countably functionally
$\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v})$ if and only if for every closed subset $A$ of $X$ is $P(\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})-$

embedded (respectively, $P^{\omega}$ (locally-finite)-embedded) in $X$ .
Let $X$ be a space and $A$ a subspace. $A$ is said to be $P^{\gamma}$-embedded in $X$ if

every normal open cover $\mathcal{U}$ of $A$ with $|\mathcal{U}|\leq\gamma$ can be extended to a normal
open cover of $X$ .

First we give some remarks about the difference between $P(\mathrm{l}\mathrm{o}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})-$

embedding and $P$-embedding. It is well-known that the following conditions
are equivalent:

(1) $A$ is $P^{\gamma}$-embedded in $X$ ;
(2) For every locally finite cover $\{U_{\alpha} : \alpha<\gamma\}$ of cozero-sets of $A$ , there

exists a locally finite cover $\{V_{\alpha} : \alpha<\gamma\}$ of cozero-sets of $X$ such that
$V_{\alpha}\cap A\subset U_{\alpha}$ for every $\alpha<\gamma$ ;

(3) For every locally finite cover $\{U_{\alpha} : \alpha<\gamma\}$ of cozero-sets of $A$ , there
exists a a-locally finite cover $\{V_{\alpha}^{n} : \alpha<\gamma, n\in \mathrm{N}\}$ of cozero-sets of $X$ such
that $\{V_{\alpha}^{n} : \alpha<\gamma\}$ is locally finite foe each $n\in \mathrm{N}$ and $( \bigcup_{n\in \mathrm{N}}V_{\alpha}n)\cap A\subset U_{\alpha}$

for every $\alpha<\gamma$ .

Theorem $0$ shows $P^{\gamma}$ (locally-finite)-embedding is characterized as the condi-
tion replaced “

$V_{\alpha}\cap A\subset U_{\alpha}$
” by “

$V_{\alpha}\cap A=U_{\alpha}$
” on the above (2). Related to

this, even if we replace “
$( \bigcup_{n\in \mathrm{N}}V_{\alpha}^{n})\cap A\subset U_{\alpha}$

” by “
$( \bigcup_{n\in \mathrm{N}}V_{\alpha}n)\cap A=U_{\alpha}$

” on
the above (3), it is not equal to $P^{\gamma}(\mathrm{l}\mathrm{o}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})- \mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$. In fact the
statement replaced so equals $P^{\gamma}$-embedding. We may say that $P^{\gamma}(1_{\mathrm{o}\mathrm{C}}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$
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$\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})- \mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ is not the propety concerning to extensions of normal open
covers.

A product space $X\cross Y$ is said to be rectangularly normal if for every
closed subspace $A$ of $X$ and closed subspace $B$ of $Y,$ $A$ $\mathrm{x}B$ is C-embedded
in $X\cross Y([16])$ . Let $C$ be a class of spaces. $A$ is said to be $\pi_{C}$-embedded in
$X$ if $A\cross Y$ is $C^{*}$-embedded in $X\cross Y$ for every $Y\in C([14])$ .

On (2) in the following proposition, the case $Y$ is compact Hausdorff was
shown in [19, Theorem 3.4]. When $Y=I$ , it is an affirmative answer to a
problem posed by Dydak in [3, Problem 13.16] (see [19]).

Proposition 1.1. Let $X$ be a space and $A$ a subspace. Then, the following
statements hold.

(1) Let $A$ be a compact Hausdorff $\mathit{8}ub_{\mathit{8}}pace$ of a Tychonoff $\mathit{8}pace$ X. Then

for any space $Y,$ $A\cross Y$ is $P(l_{oC}ally-finite)$ -embedded in $X\cross Y$ .
(2) Let $A$ be a $P^{\gamma}$ (locally-finite)-embedded in $X$ and $Y$ be a locally compact

paracompact Hausdorff space $Y$ with weight $Y\leq\gamma$ . Then $A\cross Yi_{\mathit{8}P^{\gamma}(lly-}loCa$

$finite)-embedded$ in $X\cross Y$ .

As an application of Proposition 1.1, we give a homotopy-type extension
theorem. The case of $P^{\gamma}$-embedding was proved in [11, Theorem 3.4]. The
“(1) $\Rightarrow(3)$

” was already shown by using [3, Lemma 13.2] and [19, Theorem
3.4].

Corollary 1.2. Let $X$ be a space and $A$ its subspace. Then, the following
statements are equivalent:

(1) $A$ is $P^{\gamma}(l_{oC}ally-finite)$ -embedded in $X$ ;
(2) $(X\cross B)\cup(A\mathrm{x}Y)$ is $P^{\gamma}$ (locally-finite)-embedded in $X\cross Y$ for every

compact Hausdorff space $Y$ with weight $\leq\gamma$ and every $clo\mathit{8}ed$ subspace $B$ of
$Y$ ;

(3) $(X\cross\{0\})\cup(A\cross I)$ is $P^{\gamma}$ (locally-finite)-embedded in $X\cross I$ .

A space $X$ is said to be a $P$-space if every $G_{\delta}$-set of $X$ is open.

Proposition 1.3. Let $X$ be a space and $A$ a subspace. A ssume $A$ be a
$P$ -space. Then, A $i_{\mathit{8}}P^{\gamma}$ -embedded in $X$ if and only if $A$ is $P^{\gamma}(loCally-finiie)-$

embedded in $X$ .

Corollary 1.4. Let $X$ be a collectionwise normal $P$ -space. Then, $Xi\mathit{8}$

functionally Kat\v{e}tov.

Related to the Corollary 1.4, Rudin’s Dowker space is collectionwise normal
$P$-space but not (countably) $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$ ( $[17$ , Example 2]).

From another point of view, we have the following result:
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Theorem 1.5. Let $X$ be a space and $A$ a $sub_{\mathit{8}}pace$ . $Then_{f}$ $A$ is $P^{\gamma}$ (locally-
$finite)-embedded$ in $X$ if and only if $A$ is $P^{\omega}$ (locally-finite)-embedded in $X$

and for $ever\uparrow/$ locally finite collection $\{U_{\alpha} : \alpha<\gamma\}$ of cozero-sets of $A$ with
finite order, there exists a locally finite collection $\{V_{\alpha} : \alpha<\gamma\}$ of cozero-sets
of $X$ such that $U_{\alpha}\subset V_{\alpha}$ for every $\alpha<\gamma$ .

Corollary 1.6. A space $X$ is functionally Kat\v{e}tov if and only if $X$ is count-
ably functionally Kat\v{e}tov and for every closed subspace $A$ of $X$ and every
locally finite collection $\{U_{\alpha} : \alpha<\gamma\}$ of cozero-sets of $A$ with finite order,
there exists a locally finite collectio.n $\{V_{\alpha} : \alpha<\gamma\}$ of cozero-set8 of $X$ such
that. $U_{\alpha}\subset V_{\alpha}$ for every $\alpha<\gamma$ .

Here we pose two fundamental problems as follows:

Problem 1.7. Let $A$ be a $P^{\omega}(loCally-finite)-$ and $P^{\gamma}$ -embedded $Sub_{\mathit{8}}pace$ of
X. Then, is A $P^{\gamma}$ (locally-finite)-embedded in $X$ ?

Problem 1.8. Let $X$ be a countably functionally Kat\v{e}tov and $collectionwi_{\mathit{8}}e$

normal. Then, is $X$ functionally Kat\v{e}tov ?

Theorem 1.5 or Cororally 1.6 may be regarded as a partial answer to these
problems. If Problem 1.7 is affirmative, then Problem 1.8 is also affirmative.
Problem 1.8 is motivated by a Przymusitski-Wage’s question [17, Question
3], (

$‘ \mathrm{L}\mathrm{e}\mathrm{t}X$ be countably $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ and collectionwise normal. Then, is $X$

$\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ ?”

Let $J(\gamma)$ be the hedgehog with $\gamma$ spines $(\mathrm{e}.\mathrm{g}.[4])$ . Let $J_{0}(\kappa)=\{\theta\}\cup\{\langle\lambda, 1/n\rangle$ :
$n\in \mathrm{N},$ $\lambda<\kappa\}$ be a closed subspace of the hedgehog with $\gamma$ spines $J(\gamma)$ (see
[16] $)$ . A subspace $A$ of $X$ is called $F_{\kappa}$-set if it is the union of $\kappa$ man.y closed
sets in $X$ .

Theorem 1.9 (Przymusin’ski [16, Proposition 2.2]). Let $X$ be a normal
space and $A$ a closed subspace. Then the following $statement_{\mathit{8}}$ are equiva-
lent:

(1) A $\mathrm{x}J(\kappa)$ is $C^{*}$ -embedded in $X\cross J(\kappa)$ ;
(2) A $\mathrm{x}J_{0}(\kappa)i_{\mathit{8}}C^{*}$-embedded in $X\mathrm{x}J_{0}(\kappa)$ ;
(3) every countable locally finite cover of open $F_{\kappa}$ -sets of $A$ can be extended

to a locally finite open cover of $X$ .

In [16, Proposition 2.2], “
$C^{*}- \mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$

}’ in (1) and (2) of the above theorem
is written as “$C$-embedding”. However he actually proved $C^{*}$-embedding of
them If we use [7, Theorem 1.1] or [18, Theorem 1.1], $C$-embedding of (1) or
(2) is implied by $C^{*}$-embedding.
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Theorem 1.9 suggests us that the difference of $P^{\gamma}(1_{\mathrm{o}\mathrm{C}\mathrm{a}}11\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$ -embedding
and $P^{\omega}$ (locally-finite)-embedding doesn’t appear the numbers of spines of the
hedgehog. Extending Theorem 1.9, we give a characterization of $P(1_{\mathrm{o}\mathrm{C}}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}-$

$\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})- \mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ .
Let $\gamma$ be an infinite cardinal number and $\kappa$ a cardinal number. Let

$J_{\gamma}(\kappa)=\{p\}\cup\{\langle\alpha, \beta\rangle : \alpha<\gamma, \beta<\kappa\}$ be a space satisfying that $p$ has
basic neighborhoods of the form

$\{p\}\cup\{\langle\alpha, \beta\rangle:\alpha\in\gamma-\delta, \beta<\kappa\}$ ; $\delta\in\gamma^{<\omega}$

and other points are isolated. Notice that, for each $\beta<\kappa,$ $\{p\}\cup\{\langle\alpha, \beta\rangle$ .
$\alpha<\gamma\}$ can be seen as the one point compactification of the discrete space
with cardinality $\gamma$ . Note that $J_{\omega}(\kappa)$ can be regarded as the space $J_{0}(\kappa)$ . (For
the space $J_{\gamma}(\kappa)$ , see also Remark 1.13.)

$P^{\gamma}(1_{\mathrm{o}\mathrm{C}\mathrm{a}}11\mathrm{y}-\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$-embedding is characterized as follows:

Theorem 1.10. Let $X$ be a space and $A$ a $\mathit{8}ub_{\mathit{8}}paCe$ . Then, the following
statements are equivalent:

(1) $A$ is $P^{\gamma}$ (locally-finite)-embedded in $X$ ;
(2) $A\cross J_{\gamma}(\omega)i\mathit{8}C^{*}$ -embedded in $X\cross J_{\gamma}(\omega)$ ;
(3) A $\mathrm{x}J_{\gamma}(\omega)$ is $P^{\gamma}$ -embedded in $X\mathrm{x}J_{\gamma}(\omega)$ .

The case of $\gamma=\omega$ , we have more general observation as follows:

Theorem 1.11. Let $X$ be a space and $A$ a subspace. Then the following
$\mathit{8}tatement_{S}$ are equivalent:

(1) $A$ is $P^{\omega}$ (locally-finite)-embedded in $X$ ;
(2) $A\cross J_{0}(\omega)$ is $C^{*}$ (or equivalently $C$)-embedded in $X\cross J_{0}(\omega)$ ;
(3) $A\cross J(\omega)$ is $C^{*}$ (or equivalently $C$)-embedded in $X\cross J(\omega)$ ;
(4) for some non-locally compact metric space $Y_{f}A\cross Y$ is $C^{*}$ (or equiv-

alently $C$)-embedded in $X\mathrm{x}Y$ ;
(5) $A\cross Y$ is $C^{*}$ (or equivalently, $C$)-embedded in $X\cross Y$ for every separable

metric space $Y$ satisfying that $Y-Y_{1}$ is locally compact for some closed
discrete subspace $Y_{1}$ .

By Theorem 1.11, we have the following result:

Corollary 1.12. If $A$ is $\pi_{\mathcal{M}_{\omega}}$ -embedded in $X$ , then $A$ is $P^{\omega}(locally-finite)-$

embedded in $X$ .

Machael’s Example (see [4, 5.1.32]) shows that Corollary 1.12 can not be

reversed.
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Remark 1.13. $\pi_{\mathfrak{U}}$.-embedding need not imply $P^{\gamma}$-embedding in the case
$\gamma>\omega$ (for example, consider Bing’s $\mathrm{H}$ ; see [4, 5.5.3]). Namely, Corollary
1.12 does not hold in the case of the general cardinality. As an explanation
of this, let us comment the test space $J_{\gamma}(\omega)$ for $P^{\gamma}(1\mathrm{o}\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}- \mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e})$-embedding.
$J_{\gamma}(\kappa)$ can be regarded as a special subspace of $\gamma$-many of discrete spa,ces with
cardinality $\kappa$

. $\cdot$ Let

$\sigma_{1}(D(\kappa)\gamma)=\{(X\alpha)\in D(\kappa)^{\gamma} : |\{\alpha<\gamma:x\neq\alpha 0\}|\leq 1\}$ ,

where $D(\kappa)$ is the set $\kappa$ with discrete topology. Namely, $\sigma_{1}(D(\kappa)^{\gamma})$ is the $\sigma_{1^{-}}$

product of $\gamma$-many of discrete spaces with cardinality $\kappa$ with the base point
$\theta=(0,0, \ldots)$ . Note that the space $J_{\gamma}(\kappa)$ is homeomorphic to $\sigma_{1}(D(\kappa)^{\gamma})$ .

Next we give some conclusion by rectangular normality with $J_{\gamma}(\kappa)$ as the
following; (2) is in [16, Theorem 2.3], (4) is in [16, Theorem 2.4], and (5) and
(6) can be easily shown by using the well-known fact (see [8, Lemma 4.4])
and [12, Theorem 1.5] or [13, Theorem 3].

Theorem 1.14. Let $X$ be a space. Then, the following statements hold.
(1) $X\cross J_{\gamma}(\kappa)$ is rectangularly normal for every $\kappa$ and every $\gamma$ if and only

if $X$ is Kat\v{e}tov.
(2) $X\mathrm{x}J_{\omega}(\kappa)$ is rectangularly normal for every $\kappa$ if and only if $X$ is

countably Kat\v{e}tov.
(3) $X\cross J_{\gamma}(\omega)$ is rectangularly normal for every $\gamma$ if and only if $Xi\mathit{8}$

functionally Kat\v{e}tov.
(4) $X\mathrm{x}J_{\omega}(\omega)$ is rectangularly normal if and only if $X$ is countably func-

tionally Kat\v{e}tov.
(5) $X\cross J_{\gamma}(1)i\mathit{8}$ rectangularly normal for every $\gamma$ if and only if $X$ is

collectionwise normal.
(6) $X\cross J_{\omega}(1)$ is rectangularly normal if and only if $X$ is normal.

On the other hand, it is known that $A$ is $C$-embedded in $X$ if and only if
$A\cross Y$ is $C^{*}$ (or equivalently, $C$)-embedded in $X\cross \mathrm{Y}$ for every locally compct
(separable) metric space $Y$ (see [9]). It shows that the separability of $\mathrm{Y}$ is
not essential. [17, Example 2] and the following theorem shows, in these case,
the separability of $Y$ is essential.

Theorem 1.15. Let $X$ be a space. Then the following $\mathit{8}tatements$ hold.
(1) $Xi\mathit{8}$ countably functionally Kat\v{e}tov if and only if for every separable

metric $\mathit{8}paceY$ satisfying that $Y-Y_{1}i\mathit{8}$ locally compact for some closed
$di\mathit{8}Crete$ subspace $Y_{1;}X\cross Y$ is rectangularly normal.

(2) $X$ is countably Kat\v{e}tov if and only if for every metric space $Y$ sat-
isfying that $Y-\mathrm{Y}_{1}$ is locally compact for some closed discrete $\mathit{8}ubspace\mathrm{Y}1$ ,
$X\cross Y$ is rectangularly normal.
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Related to Theorem 1.15, Przymusitski states in [15, Theorem 4] that $X$ is
countably $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{V}$ if and only if for every closed subset $A$ of $X$ and every
a-locally compact metric space $Y,$ $A\cross Y$ is $C^{*}$ -embedded in $X\cross Y$ . So
Theorem 1.15 (2) is contained in his result. However he gives its proof for
only the case of $\dim Y=0$ , and comments that “I have a very complicated
proof that eliminates the assumption of $\dim Y=0$” and asks the reasonable
simple way of eliminating the $\dim Y=0$ . The author does not know whether
if the general case is true.

The following proposition seems to be a natural explanation of the fact that
the collectionwise normal and countably paracompact implies $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{0}\mathrm{v}$ by
comparing (1) on Theorem 1.14. In other words, the normality of product
with $\sqrt(\gamma\kappa)$ can not induce the difference among $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}_{\mathrm{o}\mathrm{v}}$ , functional $\mathrm{K}\mathrm{a}\mathrm{t}\check{\mathrm{e}}\mathrm{t}\mathrm{o}\mathrm{v}$

and collectionwise normality.

Proposition 1.16. Let $X$ be a space, $\kappa$ a cardinal number and $\gamma$ an infinite
cardinal number. The product $\mathit{8}paceX\cross J_{\gamma}(\kappa)$ is normal if and only if $X$ is

$\gamma$-collectionwise normal and countably paracompact.
Namely, $X\cross J_{\gamma}(\kappa)$ is normal if and only if $X\cross J_{\gamma}(1)$ is normal.

All of our results related to $J_{\gamma}(\kappa)$ in this report can be replaced by spaces of
some class, but the details are omitted here.

2. Controlling extensions of continuous functions and
C-embedding

In [5], M. Frantz proved a theorem as follows:

Theorem 2.1 (Frantz, [5]). Let $X$ be a normal space and $A$ a closed sub-
space. Let $f$ : $Aarrow[c, d]$ be a $continuou\mathit{8}$ function with $f^{-1}(\{c\})\neq\emptyset$ and
$f^{-1}(\{d\})\neq\emptyset$ and $suppo\mathit{8}eC$ and $D$ are disjoint closed $G_{\delta}$ -sets of $X$ satis-
fying $C\cap A=f^{-1}(\{c\})$ and $D\cap A=f^{-1}(\{d\})$ . Then $f$ has a continuous
extension $g:Xarrow[c, d]$ such that $C=g^{-1}(\{C\})$ and $D=g^{-1}(\{d\})$ .

According to [5], this result shows that the well-known Tietze-Urysohn ex-
tension theorem admits controlling the extended function so as to take on
certain specified values. Extending Theorem 2.1, we show that controlling
extension (here, “controlling extension” is used by means of Theorem 2.1)
itself equals to C-embedding.

Theorem 2.2. Let $X$ be a $\mathit{8}pace$ and $A$ a subspace. Then $A$ is $C$ -embedded in
$X$ if and only iffor every continuous function $f$ : $Aarrow[0,1]$ and disjoint zero-
sets $Z_{0},$ $Z_{1}$ of $X$ with $Z_{i}\cap A=f^{-1}(\{i\})(i=0,1)$ , there exists a $continuou\mathit{8}$

extension $g:Xarrow[0,1]$ of $f$ such that $Z_{i}=g^{-1}(\{i\})(i=0,1)$ .
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For a function $f$ : $Xarrow \mathbb{R},$ $Coz(f)$ means $f^{-1}((-\infty, \mathrm{o})\cup(0, \infty))$ . As
applications of Theorem 2.2, we characterize $C$-embedding by various types
of controlling extensions.

Theorem 2.3. Let $X$ be a space and $A$ a subspace. Then the following
statements are equivalent:

(1) A $i_{\mathit{8}}C$ -embedded in $X$ ;
(2) for every $continuou\mathit{8}$ function $f$ : $Aarrow[0,1]$ and any zero-set $Z$ of $X$

with $Z\cap A=f^{-1}(\{0\})$ , there exists a continuous $exten\mathit{8}iong:xarrow[0,1]$ of
$f\mathit{8}uch$ that $Z=g^{-1}(\{\mathrm{o}\})$ ;

(3) for every $con\theta inuou\mathit{8}$ function $f$ : $Aarrow[0, \infty)$ and any zero-set $Z$ of $X$

with $Z\cap A=f^{-1}(\{0\})$ , there $exi\mathit{8}\theta s$ a continuous extension $g$ : $Xarrow[0, \infty)$

of $f$ such that $Z=g^{-}(1\{\mathrm{o}\})$ ;
(4) for every continuous function $f$ : $Aarrow \mathbb{R}$ , any real numbers $r_{1}<$

$r_{2}<\cdots<r_{n}$ and any collection $\{z_{i}, z_{i}* : i=1,2, \ldots, n\}$ of zero-sets of $X$

satisfying that $Z_{i}\cap Z_{i}^{*}+1=\emptyset(i=1, \ldots, n-1),$ $Z_{i}\cup z_{i}*=^{x,f}-1((-\infty, r_{i}])=$

$Z_{i}\cap A$ and $f^{-1}([r_{i}, \infty))=Z_{i}^{*}\cap A(i=1,2, \ldots, n)$ , there exists a $continuou\mathit{8}$

extension $g:Xarrow \mathbb{R}$ of $f$ such that
$g^{-1}$ $((-\infty, ri])=Z_{i}$ and $g^{-1}([r_{i}, \infty))=Z_{i}^{*}for$ $i=1,2,$ $\ldots,$

$n$ ;
(5) for every continuous function $f$ : $Aarrow \mathbb{R}$ and any cover $\{z^{-}, z+\}$ of

zero-sets of $X$ with $f^{-1}$ $((-\infty, 0])=Z^{-}\cap A$ and $f^{-1}([0, \infty))=Z^{+}\cap A$ , there
exists a $continuou\mathit{8}exten\mathit{8}iong:xarrow \mathbb{R}$ of $f\mathit{8}uch$ that $g^{-1}((-\infty, 0])=Z^{-}$

and $g^{-1}([0, \infty))=Z^{+};$

(6) for every continuous function $f$ : $Aarrow \mathbb{R}$ and any cozero-set $U$ of $X$

with $c_{oZ}(f)=U\cap A$ , there exists a continuous extension $g$ : $Xarrow \mathbb{R}$ of $f$

such that $c_{oZ(g)}\subset U$ .

Continuous real-valued functions $f_{\alpha}’ \mathrm{s}(\alpha\in\Omega)$ are said to be pairwise disjoint
$\mathrm{i}\mathrm{f}|f_{\alpha}|\wedge|f_{\beta}|=0$ for every $\alpha,$

$\beta\in\Omega$ with $\alpha\neq\beta$ . Obviously, $|f_{\alpha}|\wedge|f_{\beta}|=0$ if and
only if $\mathrm{C}_{\mathrm{o}\mathrm{Z}}(f_{\alpha})\cap \mathrm{C}\mathrm{o}\mathrm{z}(f_{\beta})=\emptyset$ . The following result extends [5, Proposition
5].

Proposition 2.4. Let $X$ be a space and $A$ a subspace. Then $A$ is C-
embedded in $X$ if and only if for every collection $\{f_{i} : i\in \mathrm{N}\}$ of pair-
wise disjoint real-valued continuous $function\mathit{8}$ on $A$ , there $exi_{\mathit{8}}t_{S}$ a collection
$\{g_{i} : i\in \mathrm{N}\}$ of pairwise disjoint real-valued continuous functions on $X\mathit{8}uch$

that $g_{i}|A=f_{i}$ for each $i\in \mathrm{N}$ .

A subspace $A$ of a space $X$ is said to be $T_{z}$ -embedded in $X$ if every disjoint
collection of cozero-sets of $A$ can be extended to a disjoint collection of cozero-
sets of $X[2]$ .
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Proposition 2.5. $A$ is C- and $T_{z}$ -embedded in $X$ if and only if for every
collection $\{f_{\alpha} : \alpha\in\Omega\}$ of pairwise disjoint real-valued continuous $funCtion\mathit{8}$

on $A$ , there exists a collection $\{g_{\alpha} : \alpha\in\Omega\}$ of pairwise disjoint real-valued
continuous functions on $X$ such that $g_{\alpha}|A=f_{\alpha}$ for each $\alpha\in\Omega$ .

The next result extends [5, Proposition 6], where $X$ is a metric space.

Corollary 2.6. Let $X$ be a hereditarily collectionwise normal space and $A$ a
closed subspace. Then, for every collection $\{f_{\alpha} : \alpha\in\Omega\}$ of $pairwi_{\mathit{8}}e$ disjoint
real-valued continuous functions on $A$ , there $e\dot{m}\mathit{8}t_{S}$ a collection $\{g_{\alpha} : \alpha\in\Omega\}$

of $pairwi\mathit{8}e$ disjoint real-valued continuous functions on $X$ such that $g_{\alpha}|\mathrm{A}=$

$f_{\alpha}$ for each $\alpha\in\Omega$ .

Next we comment to a Rantz’s problem in [5]. Frantz proved the following
result:

Theorem 2.7 (Frantz, [5, Theorem 7]). Let $A$ be a closed $\mathit{8}ub_{\mathit{8}}paCe$ of a
normal space $X$ , and let $f_{1},$

$\ldots,$
$f_{n}$ be a partition of unity on A subordinated

to an open cover $\{U_{1}, \ldots, U_{n}\}$ of A. If $\{\hat{U}_{1}, \ldots,\hat{U}_{n}\}$ is an open cover of
$X$ such that $\hat{U}_{i}\cap A=U_{i}$ for each $i$ , then there exists a partition of unity
$\{\hat{f}_{1}, \ldots,\hat{f}_{n}\}$ on $X$ subordinated to $\{\hat{U}_{1}, \ldots,\hat{U}_{n}\}\mathit{8}uch$ that $\hat{f}_{i}|A=f_{i}$ for each
$i$ .

Concerning this theorem, a problem is posed in [5, Remark p.68]:

($‘ Does$ Theorem 7 hold for an infinite partition of unity ?”

We can construct a counterexample of this problem by using any normal but
not paracompact space. On the other hand, if we require the extended cover
$\{\hat{U}_{\alpha} : \alpha\in\Omega\}$ of $X$ to be locally finite, we have a positive answer as the
following:

Proposition 2.8. Let $A$ be a closed $\mathit{8}ubspaCe$ of a normal space $X$ , and let
$\{f_{\alpha} : \alpha\in\Omega\}$ be a partition of unity on $A_{\mathit{8}}ub_{\mathit{0}}rdinated$ to a locally finite open
cover $\{U_{\alpha} : \alpha\in\Omega\}$ of A. If $\{\hat{U}_{\alpha} : \alpha\in\Omega\}$ is a locally finite open cover of $X$

such that $\hat{U}_{\alpha}\cap A=U_{\alpha}$ for each $\alpha\in\Omega$ , then there exists a partition of unity
$\{\hat{f}_{\alpha} : \alpha\in\Omega\}$ on $X$ subordinated to $\{\hat{U}_{\alpha} : \alpha\in\Omega\}$ such that $\hat{f}_{\alpha}|A=f_{\alpha}$ for
each $\alpha\in\Omega$ .

Controlling extensions are useful to discuss extensions of continuous func-
tions and extensions of locally finite cozero-sets cover. Finally, for an appli-
cation, we give a proof of Theorem $0$ by the condition (2) in Theorem 2.3;
the proof is simpler than the original one in [19].

Proof of Theorem $0$ . The “only if” part is easy to see. Assume the condi-
tion of the “if” part to be satisfied. We note first $A$ is $C$-embedded in $X$ (e.g.
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[1] or [8, Theorem 2.6] $)$ . Let $\{f_{\alpha} : \alpha\in\Omega\}$ be a locally finite partition of unity
on $A$ . From the assumption, there exists a locally finite cover $\{U_{\alpha} : \alpha\in\Omega\}$

of cozero-sets of $X$ such that $U_{\alpha}\cap A=f_{\alpha}^{-1}((\mathrm{o}, 1])$ for every $\alpha\in\Omega$ . By (2)
of Theorem 2.3, there exists a continuous extension $g_{\alpha}$ : $Xarrow[0,1]$ of $f_{\alpha}$

such that $g_{\alpha}^{-1}((\mathrm{o}, 1])=U_{\alpha}$ for every $\alpha\in\Omega$ . It is easy to see that $\sum_{\alpha\in\Omega}g_{\alpha}$ is
continuous and positive-valued. Hence $\{g_{\alpha}/\sum_{\beta\in\Omega}g_{\beta} : \alpha\in\Omega\}$ is the required
locally finite partition of unity on X. $\square$
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