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Abstract

We study the numerical approximation of some functionals of diffusion pro-
cesses. In particular we study their weak rate of convergence when these func-
tionals are sufficiently smooth. We also give a variance reduction method for
simulations of densities of the functionals.
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1 Introduction
Let $(\Omega,F, P)$ be the standard Wiener space supporting a $k$-dimensional Wiener pro-
cess. Let $X$ be the diffusion defined as the unique solution to the following stochastic
differential equation

$X_{t}=x+ \int_{0}^{t}a(X_{s})\mathrm{d}s+\sum_{j=0}^{k}\int_{0}^{t}b_{i}(X_{s})\mathrm{d}W_{s}^{j}$, $t\in[0, T]$ . (1.1)

Here $x\in \mathbb{R}^{d}$. Also, $a$ : $\mathbb{R}^{d}arrow \mathbb{R}^{d}$ and $b=(b_{1}, \ldots, b_{k})$ : $\mathbb{R}^{d}arrow \mathbb{R}^{d}\cross \mathbb{R}^{k}$ are Lipschitz
functions. The above stochastic integral is the stochastic It\^o’s integral.

Let $F:\Omega\cross L^{2}([0, T];\mu)arrow \mathbb{R}$ be an $\mathrm{a}.\mathrm{s}$ . (in $\Omega$ ) Fr\’echet differentiable function where
$\mu$ is a finite measure on $[0, T]$ . In this article we will focus on the simulation error for
$F(X)$ when the Euler-Maruyama scheme is used to approximate $X$ . Many examples can
be found in the literature when $F(X).=f(X_{t})$ for some fixed $t$ and $f$ . Recently, many
$\overline{\mathrm{T}\mathrm{h}\mathrm{e}}$full version of this article will $\mathrm{a}\mathrm{p}\mathrm{p}\dot{\mathrm{e}}\mathrm{a}\mathrm{r}$ elsewhere
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applied problems require the analysis of functionals that depend on the whole path of
the diffusion. Such are the cases of $F(X)= \int_{0}^{T}g(X_{s})\mathrm{d}W^{i}(s)$ or $F(X)= \int_{0}^{T}g(X_{s})\mathrm{d}\mu_{s}$

where $\mu$ is a finite measure, $d=1$ and $g$ is a smooth function with polynomial growth at
infinity. Another interesting example is $F(X)= \max_{s\leq T}X_{s}$ . Although this last example
will not satisfy the conditions in the analysis to be exposed here, it reveals the necessity
of studying such functionals.

Here we approximate $X$ using the classical Euler-Maruyama scheme $\overline{X}$ . To define
it, let $\pi=\{0=t_{0}, \ldots,t_{N}=T\}$ with $|| \pi||=\max\{t_{i+1}-t_{i;}i=0, \ldots, N-1\}\leq h$ for some
$h>0$ . Also define $\eta(s)=\max\{t_{i;}t_{i}<s\}$ and $\eta_{1}(s)=\min\{t_{i};t_{i}\geq s\}$ . Then $\overline{X}$ is
defined as the unique solution of the following equation:

$\overline{X}_{t}=x+\int_{0}^{t}a(\overline{X}_{\eta(s)})\mathrm{d}s+\sum_{i=0}^{k}\int_{0}^{t}b_{j}(\overline{X}_{\eta(s)})\mathrm{d}W_{s}^{i}$, $t\in[0, T]$ . (1.2)

It is well known that $\overline{X}$ converges to $X$ in many different types of convergence and
under various conditions. Estimates of the error are also available. Here we propose to
simulate $F(X)$ in order to approximate quantities of the type $E(f(F(X)))$ where $f$ will
first be a smooth function, then measurable with at most polynomial growth, and then
a Dirac delta function.

We will analyze the total error of approximation in each case. That is, we will
measure the quantity

$E|E(f(F(X)))- \frac{1}{n}\sum_{i=1}^{n}f(F(\overline{X}^{i}))|$ . (1.3)

Here $\overline{X}^{i},$ $i=1,$ $\ldots,$
$n$ denotes $n$ independent copies of $\overline{X}$ . Usually the above error is

divided into two terms one of which one is called the weak approximation error (i.e.,
$|E(f(F(X)))-E(f(F(\overline{X})))|)$ and the other the Monte Carlo error.

The weak approximation error is usually bounded by $Ch$ for a positive constant
$C$ independent of the partition $\pi$ and $h$ but depends on the coefficients $a,$

$b$ and the
functions $F$ and $f$ . We will show that the rate in this case is bounded by $Ch$ and that
this result is satisfied even when $f$ is only measurable or a distribution function such as
the delta function.

One of the problems that we will also address is the fact that as $f$ becomes more
degenerate, the Monte Carlo error becomes bigger and eventually it goes to infinity as
$narrow\infty$ . That is, consider the variance of the estimate

$\frac{1}{n}\sum_{i=1}^{n}\{f(F(\overline{X}^{i}))-E(f(F(\overline{X})))\}$. (1.4)

A simple calculation gives an estimate of the variance of the type $n^{-1}\mathrm{v}\mathrm{a}\mathrm{r}[f(F$

$(\overline{X}^{i}))]$ . This variance will go to zero if $f$ has nice properties (e.g. $f$ bounded). In
some interesting cases like when one approximates density functions one needs to use
$f(x)= \phi(\frac{x-y}{h})$ with $h$ small. Here $\phi$ may be, for example, the density function of a
$N(\mathrm{O}, 1)$ distribution. In this case the variance is bounded by $C(n\sqrt{h})^{-1}$ . This property is

154



well known in the literature of kernel density estimation which also implies the necessity
of the tuning of the parameters $h$ and $n$ in order to achieve convergence of (1.3).

. We propose here a variance reduction method that will allow the simulation of the
densities without incurring in such a big error. We will actually show that through
an appropriate change there exist simulatable random variables $Y^{i}$ such that $E(Y^{i})=$

$E(f(F(\overline{X})))+O(h)$ and

$\frac{1}{n}\sum_{i=1}^{n}\{Y^{i}-E(f(F(\overline{X})))\}$

has a variance of the order $n^{-1}$ for $f= \phi(\frac{x-y}{h})$ . This will bring the total error (weak
approximation and Monte Carlo error) to be of the order $n^{-1/2}+h$ .

This method can be applied in general to any approximation for irregular functions
of processes where the Malliavin derivative properties are well understood.

The problem of simulation of these quantities arises naturally in a variety of fields
when information about the density or distribution functions is required. In general the
above methods are useful to estimate the kernel density functions which are the basic
building blocks in order to construct solutions to parabolic partial differential equations
and stochastic partial differential equations as well. Here, we mention briefly the case
of Asian options in finance as a potential application but certainly many others are
available.

One of the problems associated with the proposal we make here is that as it can be
expected if one uses the scheme proposed here the constant that determine the rates
of convergence become bigger. In some cases it seems that they become extremely
big. Then in order to reduce to a maximum the error we propose some further variance
reduction techniques that should help improve the behaviour of such constants. Through
some computational examples we have shown that this can be achieved.

2 Preliminaries
In this section we introduce the main tools that we will use throughout the article. We
start with some basic tools from Malliavin calculus that will be used throughout the
text. For further reference, see [7]. Let $(\Omega, \mathcal{F}^{\cdot}, P)$ be the canonical Wiener space which
supports a $k$-dimensional Wiener process $W=(W^{1}, \ldots, W^{k})$ . We will also use $W_{s}^{0}=s$

as an extension of the above notation.

the
defines $\mathrm{D}^{k,p}$ and its associated norm $||\cdot||_{k,p}$ .

That is, let $C_{b}^{\infty}(\mathbb{R}^{n})$ be the set of $C^{\infty}$ functions $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ which have bounded
derivatives of all orders. $S$ denotes the class of smooth functionals, i.e., a real random
variable $F$ belongs to $S$ if and only if there exist $t_{1},$

$\ldots,$
$t_{n}\in[0, T]$ and $f(x_{11}, x_{21}, \ldots, x_{kn})$

in $C_{b}^{\infty}(\mathbb{R}^{kn})$ such that $F=f(W_{t_{1}}, \ldots, \nu V_{t_{n}})$ .
For $p\geq 2,$ $\mathrm{D}^{1,p}$ designates the Banach space which is the completion of $S$ with

155



respect to the norm

$||F||_{1,\mathrm{p}}=(EF^{p})^{1/p}+(E( \sum_{j=1}^{k}\int_{0}^{T}(D_{s}^{j}F)^{2}ds)^{p/2})^{1/p}$,

wher$eDF$ is the derivative of the smooth functional $F$ . That is,

$D_{t}^{i}F= \sum_{i=1}^{n}\frac{\partial f}{\partial x^{\prime ji}}(W_{t_{1}}, \ldots, W_{t_{n}})1_{[0,t.]}(t)$.

Also, let for $\alpha\in \mathbb{N},$ $\mathrm{D}^{\mathrm{x},\infty}=\bigcap_{p\geq 1}\mathrm{D}^{\mathrm{x},p}$ and $\ovalbox{\tt\small REJECT}=\bigcap_{p}>1^{\bigcap_{\alpha\geq 1}\mathrm{D}^{x,p}}$ .
The adjoint of the closed unbounded operator $D$ : $\overline{\mathrm{D}}^{1,2}arrow L^{2}([0, T]\cross\Omega)$ is usually

denoted by $\delta$ and is called the Skorohod integral. Its domain can be characterized as the
set of measurable processes $u\in L^{2}([0, T]\cross\Omega)$ such that there exists a positive constant
$C$ that may depend on $u$ such that

$|E( \int_{0}^{T}D_{t}Fu_{t}\mathrm{d}t)|\leq C||F||_{2}$,

for all $F\in \mathrm{D}^{1,2}$ . Then the Skorohod integral for $u$ an element of its domain, is the
square integrable random variable determined by the duality relation

$E( \delta(u)F)=E(\int_{0}^{T}D_{t}Fu_{t}\mathrm{d}t)$ , (2.1)

for all $F\in \mathrm{D}^{1,2}$ . The Skorohod integral turns out to be an extension of the classical
It\^o integral and it allows the integration of processes that are not necessarily adapted.
$(\mathrm{D}^{x,p})_{1\mathrm{o}\mathrm{c}}$ denotes the localization of $\mathrm{D}^{x,p}$ .

In order to avoid confusion we will use $D$ for the derivative defined above and $\nabla$ or
the ’ notation for classical derivatives of functions.

When considering densities of random variables we will use the concept of Malliavin
covariance matrices. For this, define for $F\in(\mathrm{D}^{1,1})_{1\mathrm{o}\mathrm{c}}$ the Malliavin covariance matrix
of $F$ as $\triangle_{F}^{ij}=\langle DF^{i}, DF^{j}\rangle_{L^{2}[0,T]}$. If $F\in\ovalbox{\tt\small REJECT}$ and $\det\Delta_{F}^{-1}\in\bigcap_{p>1}L^{p}(\Omega)$ , then $F$ has a
smooth density.

An important component in the study of the density of $F$ is the integration by parts
formula which can be established for any two random variables $F\in \mathrm{D}^{n+1,\infty},$ $G\in \mathrm{D}^{n,\infty}$ ,
with $\triangle_{F}^{-1}\in\bigcap_{p>1}L^{p}$ and $f\in C_{p}^{\infty}$ . Then the following formula holds:

$E(f^{(m)}(F)G)=E(f(F)H_{m}(F, G))$ for $m\geq 1$ ,

where $H_{m}(F, G)=H(F, H_{m-1}(F, G))$ and
$H_{1}(F, G)=H(F, G)=\delta(G\Delta_{F}^{-1}DF)$ ,

with $\delta$ defined as before.
Moreover, for any $p>1$ , there exist indices $p_{1},p_{2},p_{3},$ $\alpha_{1},$ $\alpha_{2}$ , depending on $m$ and $p$

and a constant $C=C(m,p,p_{1},p_{2},p_{3})$ such that
$||H_{m}(F, G)||_{p}\leq C||\Delta_{F}^{-1}||_{p^{1}}^{\alpha_{1}}||F||_{m^{2}+1,p_{2}}^{\alpha}||G||_{m,p_{3}}$ . (2.2)

Multi-dimensional formulae for the integration by parts are also available. See Nualart
[7].
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3 The Euler-Maruyama scheme
In this section we mention some results about the Euler-Maruyama scheme. Some
preliminary results are mentioned in the following Lemma:

Lemnua 3.1 Assume that a, $b\in C_{b}^{r}(\mathbb{R}^{d})$ . Then $X_{t},\overline{X}_{t}\in(\mathrm{D}^{\infty},)^{d}$ for all $t\in[0, T]$ .
Furthermore, there exists a finite positive constant $C_{s}$ independent of the partition such
that

$\sup$ $E( \sup|D_{t_{1}^{1}}^{j}\ldots D_{t_{m}^{m}}^{j}X_{t}|^{p})\leq C_{s}$ ,
$t_{1},\ldots,t_{m}\in[0,T]$ $t\leq T$

$\sup$ $E( \sup|D_{t_{1}^{1}}^{j}\ldots D_{t_{m}^{m}}^{j}\overline{X}_{t}|^{p})\leq C_{s}$ ,
$t_{1},\ldots,t_{m}\in[0,T]$ $t\leq T$

$\sup$ $E( \sup|D_{t_{1}}^{j_{1}}\ldots D_{t_{m}^{m}}^{j}(X_{t}-\overline{X}_{t})|^{p})\leq C_{s}h^{2}2$ .
$t_{1},\ldots,t_{m}\in[0,T]$ $t\leq T$

Here $j_{1},$ $\ldots,j_{m}\in\{1, \ldots, k\}$ and $m\leq r$ .

The proof of this lemma is already classical. One can find close versions of this Lemma
in many articles related to the numerical analysis of diffusions. For example, see Hu and
Watanabe [3]. The method of proof here is exactly the same.

In the next Lemma we consider a useful expression related to the difference between
the diffusion and its approximation. From its statement it becomes clear that this
difference has an error that is determined by the differences $t_{i+1}-t_{i}$ and $W_{t_{i+1}}-W_{t_{i}}$ .

Lenlma 3.2 Let $a\in C_{b}^{f}(\mathbb{R}^{d})$ and $b\in C_{b}^{f}(\mathbb{R}^{d};\mathbb{R}^{d}\cross \mathbb{R}^{k})_{f}$ for some $r\geq 1$ . Then we have

$X_{t}- \overline{X}_{t}=\sum_{j_{1},j_{2}=0}^{k}\mathcal{E}_{t}\int_{0}^{t}\mathcal{E}_{s}^{-1}A_{s}^{j_{1},j_{2}}(W_{s}^{j_{1}}-W_{\eta(s)}^{j_{1}})\mathrm{d}W_{s}^{j_{2}}$. (3.1)

Here $\mathcal{E}$ is the unique $d\cross d$ matrix valued adapted stochastic process solution of an ap-
propriate linear stochastic differential equation with bounded coefficients. $Furthermore_{f}$
$A^{j_{1},j_{2}}$ is an adapted stochastic process taking values in $\mathbb{R}^{d}$ such that $A_{s}^{j_{1},j_{2}}\in \mathrm{I}\mathrm{y}^{-1,\infty}$ for
all $s\leq T$ and $m\leq r-1_{J}$

$\sup$ $E( \sup|D_{t_{1}^{1}}^{l}\ldots D_{t_{m}^{m}}^{l}A_{s}^{j_{1},j_{2}}|^{p})\leq C$,
$t_{1},\ldots,t_{m}\in[0,T]$ $s\leq T$

for a positive constant $C$ independent of the partition, $l_{1},$
$\ldots,$

$l_{m}\in\{1, \ldots, k\}_{f}j_{1}$ and
$j_{2}\in\{0, \ldots, k\}$ .

Proof.$\cdot$ First, using (1.1) and (1.2) we h.ave

$X_{t}-\overline{X}_{t}$ $=$ $\int_{0}^{t}a’(\xi_{s}^{0})(X_{s}-\overline{X}_{s})ds+\int_{0}^{t}\nabla b^{j}.,(\xi_{s}^{j})(X_{s}-\overline{X}_{s})dW_{s}^{j}$

$+ \int_{0}^{t}a(\overline{X}_{s})-a(\overline{X}_{\eta(s)})ds+\int_{0}^{t}b(\overline{X}_{s})-b(\overline{X}_{\eta(s)})dW_{s}$ . (3.2)
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Here we are using the multiple index summation notation. Also $\xi_{s}^{0}$ and $\xi_{s}^{i}$ are random
points in the interval determined by $X_{s}$ and $\overline{X}_{s}$ . In particular we will always understand
the expression $a’(\xi_{s}^{0})$ in its integral form. That is,

$a’( \xi_{s}^{0})=\int_{0}^{1}a’(\overline{X}_{s}+\lambda(X_{s}-\overline{X}_{s}))d\lambda$.

Similar remarks are assumed for all the random points that appear in the rest of this
article.

Now, going back to Equation (3.2), we note that the equation is linear in $X-\overline{X}$ .
Therefore, if we define $\mathcal{E}$ as the unique solution to

$\mathcal{E}_{t}=I+\int_{0}^{t}\nabla b^{i}.,(\xi_{s}^{i})\mathcal{E}_{s}dW_{s}^{j}$ ,

and use the general formula for the solution of a linear stochastic differential equation,
one has:

$X_{t}-\overline{X}_{t}$ $=$ $\mathcal{E}_{t}\int_{0}^{t}\mathcal{E}_{s}^{-1}\nabla b^{j}.)(\epsilon_{s}^{i})b(\overline{X}_{\eta(s)})(W_{s}-W_{\eta(s)})dW_{s}^{j}$

$- \mathcal{E}_{t}\int_{0}^{t}\mathcal{E}_{s}-1\nabla b\cdot,j(\xi_{s}^{i})\nabla b^{i}.,(\epsilon_{s}^{i})b(\overline{X}_{\eta(s)})(W_{s}-W_{\eta(s)})d<W^{i},$
$W^{j}>_{s}$ .

Here
$\nabla b^{i}.,(\epsilon_{s}^{j})=\int_{0}^{1}\nabla b^{j}.,(\overline{X}_{\eta(s)}+\lambda(\overline{X}_{s}-\overline{X}_{\eta(s)}))d\lambda$ ,

with the notation $\nabla b^{0},=a’$ . From here one obtains the statement of the Lemma. In
particular one can identify exactly all the terms $A^{j_{1},j_{2}}$ . $\square$

4 Smooth functionals of X
Here we study the weak approximation of smooth functionals of the diffusion $X$ . For
this we assume troughout this section that $F$ is Fr\’echet differentiable with a continuous
derivative. More exactly we define $FC^{f}$ as the space of functionals $F:L^{2}([0, T];\mathbb{R}^{d};\mu)arrow$

$\mathbb{R}^{l}$ such that $F$ is continuously Fr\’echet differentiable $r$ times and its derivatives $\nabla_{t_{1},\ldots,t_{\vee^{\mathrm{P}}}}F(X)\in$

$\mathbb{R}^{d}\cross \mathbb{R}^{l}$ satisfy for some appropriate positive constants $C$ and $p$

$| \nabla_{t_{1},\ldots,t_{s}}F(X)|\leq C(1+\sup_{u\leq T}|X_{u}|^{p})$
(4.1)

for almost all $t_{1},$
$\ldots,$

$t_{s}\in[0, T]$ and $s\leq q$ . We denote by $\nabla^{p1}F^{p_{2}}(X)$ the $(p_{1},p_{2})$ element
of the matrix $\nabla F(X)$ for $p_{1}=1,$

$\ldots,$

$d$ and $p_{2}--$. $1,$
$\ldots,$

$l$ .

Lemnua 4.1 Let $F(\omega, \cdot)\in FC^{f}$ for almost all $\omega$ such that $\nabla_{t_{1},\ldots,t_{s}}F(x)\in \mathrm{D}^{\infty}$ for all
$s\leq r$ and $x\in L^{2}([a, b], \mu)$ . A $lso$ assume that a, $b_{j}\in C_{b}^{f}(\mathbb{R}^{d})$ for $j=1,$ $\ldots,$

$k$ . Then
$\nabla_{t_{1},\ldots,t_{s}}F(X)\in \mathrm{D}^{\infty}$ . $Furthermore_{f}$

$DF(X)=DF( \cdot)(X)+\int_{0}^{T}F_{s}’(X)DX_{s}\mathrm{d}\mu_{s}$ .
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The proof of this statement uses classical $\mathrm{t}e$chniques of chain rule formulae such as
Proposition 1.2.2 in Nualart [7]. From now on, by a slight abuse of notation, we will say
$F\in FC^{r}$ to mean that $F(\omega, \cdot)\in FC^{f}$ for almost all $\omega$ .

Theorenl 4.2 Let $F$ be an element of $FC^{r+1}$ and assume that a, $b_{j}\in C_{b}^{r+1}(\mathbb{R}^{d})$ for
$j=1,$ $\ldots,$

$k$ . Then
$||F(X)-F(\overline{X})||_{\mathrm{r},p}\leq C\sqrt{h}$ ,

for a positive constant $C$ independent of $h$ and the partition $\pi$ .
Before introducing the next result we need to define some spaces. Let $C_{p}^{f}(\mathbb{R}^{l})$ denote

the space of $r$-times continuously differentiable functions such that their derivatives have
polynomial growth at infinity.

Theorenu 4.3 Assume that $a\in C_{b}^{4}(\mathbb{R}^{d})$ and $b\in C_{b}^{4}(\mathbb{R}^{d};\mathbb{R}^{d}\cross \mathbb{R}^{k})ff\in C_{p}^{6}(\mathbb{R}^{l})$ and that
$F$ is in $FC^{6}$ . Then there exist constants $C_{1}$ and $R_{h}$ such that

$E(f(F(X)))-E(f(F(\overline{X})))=C_{1}h+R_{h}h^{2}$ ,

where $C_{1}$ is independent of $h$ and the partition. $R_{h}$ is a constant that depends on $h$ and
satisfies $\sup_{0<h<1}|R_{h}|<\infty$ .

Proofi Applying the mean value theorem we have that

$f(F(X))-f(F( \overline{X}))=\int_{0}^{1}f’(F(\overline{X}+\lambda(X-\overline{X}))\int_{0}^{T}\nabla_{s}F(\overline{X}+\lambda(X-\overline{X}))(X_{s}-\overline{X}_{s})d\mu_{s}d\lambda$ .

Now we use Lemma 3.2 to obtain that

$E[f(F(X))-f(F(\overline{X}))]$

$=$ $\int_{0}^{1}\int_{0}^{T}E[f’(F(\overline{X}+\lambda(X-\overline{X}))\nabla_{s}F(\overline{X}+\lambda(X-\overline{X}))$

$\sum_{j_{1},j_{2}=0}^{k^{\wedge}}\mathcal{E}_{s}\int_{0}^{s}\mathcal{E}_{u}^{-1}A_{u^{1}}^{j,j_{2}}(W_{u^{1}}^{j}-W_{\eta(u)}^{j_{1}})dW_{u^{2}}^{j}]d\mu_{s}d\lambda$ . (4.2)

Using the integration by parts formula (2.1) one obtains that

$E[f(F(X))-f(F(\overline{X}))]$

$=$ $\int_{0}^{1}\int_{0}^{T}\int_{0}^{s}\int_{\eta(u)}^{u}\sum_{j_{1},j_{2}=0}^{k}E[D_{v^{1}}^{j}\{D_{u^{2}}^{j}\{$ $f’(F(\overline{X}+\lambda(X-\overline{X}))$

$\nabla_{s}F(\overline{X}+\lambda(X-\overline{X}))\mathcal{E}_{s}\}\mathcal{E}_{u}^{-1}A_{u^{1}}^{j,j_{2}}\}]dvdud\mu_{s}d\lambda$ (4.3)

Proving that the integrand is uniformly bounded gives as a result

$|E[f(F(X))-f(F(\overline{X}))]|\leq Ch$ .
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To finish the proof one replaces the integrand in (4.3) by

$E[D_{v^{1}}^{j}\{D_{u^{2}}^{j}\{f’(F(X))\nabla_{s}F(X)E_{s}\}E_{u}^{-1}\hat{A}_{u^{1}}^{j,j_{2}}\}]$ ,

where $s\ulcorner*E_{s}$ is the first derivative of the flow associated with X. $\hat{A}$ is defined as $A$

using $X$ instead of $\overline{X}$ and $s$ instead of $\eta(s)$ in its definition. Then has to estimate $R_{h}$

through the estimation of the difference:

$E[D_{v}^{j_{1}}\{D_{u^{2}}^{j}\{f’(F(\overline{X}+\lambda(X-\overline{X}))\nabla_{s}F(\overline{X}+\lambda(X-\overline{X}))\mathcal{E}_{s}\}\mathcal{E}_{u}^{-1}A_{u^{1}}^{j,j_{2}}\}$

- $D_{v^{1}}^{j}\{D_{u^{2}}^{j}\{f’(F(X))\nabla_{s}F(X)E_{s}\}E_{u}^{-1}\hat{A}_{u^{1}}^{j,j_{2}}\}]$ ,

and has to again apply the same procedure for each term in (4.2). $\square$

5 Approximations for irregular functions
In what follows we will assume a condition that assures the existence and smoothness
of the density of the random variable $F(X)$ .
(H) $\mathrm{d}e\mathrm{t}(\triangle_{F(X)})^{-1}\in\bigcap_{p>1}L_{p}(\Omega)$ .

This condition assures that the random variable $F(X)$ has a smooth density. $\phi_{f}$ will
represent the $\mathrm{z}e\mathrm{r}\mathrm{o}$ mean normal density with standard deviation $r$ and $\Phi_{f}$ the corre-
sponding cumulative distribution function. We start with a preliminary Lemma.

Lennma 5.1 Assume $(H)$ . Then

$\sup||\mathrm{d}e\mathrm{t}(\Delta_{F(\overline{X})+h^{\beta}\overline{W}_{T}})^{-1}||_{p}<\infty$.
$h\in(0,1]$

Proof.$\cdot$ The proof of the above lemma is obtained using the following 3 facts: Theorem
4.2, hypothesis (H) and Chebyshev’s inequality. We will just sketch it here. Define the
set $A:=[| \det(\Delta_{F(\overline{X})})-\det(\Delta_{F(X)})|<\frac{1}{2}\det(\triangle_{F(X)})]$ . Then we have

$E(\det(\triangle_{F(\overline{X})+h^{\beta}\overline{W}_{T}})^{-p};A)$ $\leq$ $C_{p}E(\det(\Delta_{F(X)})^{-p})$

$E(\det(\triangle_{F(\overline{X})+h^{\beta}\overline{W}_{T}})^{-p};A^{\mathrm{c}})$ $\leq$ $C_{p}(h^{2\beta}T)^{-p}P(A^{\mathrm{c}})$

$\leq$ $C_{p}(h^{2\beta}T)^{-p}E(|\det(\Delta_{F(\overline{X})})-\det(\triangle_{F(X)})|^{2m})^{1/2}$

$\cross E(|\mathrm{d}e\mathrm{t}(\Delta_{F(X)})|^{-2m})^{1/2}2^{m}$

$\leq$ $C_{p}(h^{2\beta}T)^{-p}h^{m/2}E(|\mathrm{d}e\mathrm{t}(\Delta_{F(X)})|^{-2m})^{1/2}2^{m}$.

Then choosing $\uparrow n$ big enough the result follows. $\square$

Proposition 5.2 Assume that $a\in C_{b}^{7}(\mathbb{R}^{d})$ and $b\in C_{b}^{7}(\mathbb{R}^{d};\mathbb{R}^{d}\cross \mathbb{R}^{k})$ . Also suppose that
$F\in FC^{7}i$ and that $(H)$ is satisfied. Let $f:\mathbb{R}^{l}arrow \mathbb{R}^{m}$ be a measurable function such that
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$|f(x)|\leq C(1+|x|^{\mathrm{r}})$ for some positive constant $C$ and $r\geq 0$ . If $\overline{W}$ denotes a Wiener
process independent of $W$ then one has that for $\beta\geq 1/2$ ,

$E(f(F(X)))-E(f(F(\overline{X})+h^{\beta}\overline{W}_{T}))=C_{1}h+R_{h}h^{2}$ ,

where $C_{1}$ is a positive constant independent of the partition and $h$ . $R_{h}$ satisfies $\sup_{0<h<1}|R_{h}|<$

$\infty$ .

Bally and Talay have obtained this result in the case $F(X)=X_{t}$ for fixed $t$ . They
require $f$ to be bounded and a uniform H\"ormander type condition. This condition is
weakened in our result.

Note that for (H) to be satisfied in this particular cas$e$ we only need a H\"ormander
type condition to be satisfied at the initial point of the diffusion. This implication is
proved in $\mathrm{I}\{\mathrm{u}\mathrm{s}\mathrm{u}\mathrm{o}\mathrm{k}\mathrm{a}$ and Stroock [6].
Proof of Proposition 5.2: The proof consists of first proving the following approximation
result

$E(f(F(X)))-E(f(F(X)+h^{\beta}\overline{W}_{T}))=C_{1}h+R_{h}h^{2}$.
This is done using the same arguments as in e.g. Lemma 3.4 of [4]. Informally it goes
as follows. For $a>0$ consider the Taylor expansion of (here the $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{b}\mathrm{o}\mathrm{l}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}$ es the
convolution):

$E(f*\phi_{a}(F(X))-f*\phi_{a}(F(X)+h^{\beta}\overline{W}_{T}))$

$=$ $E((f* \phi_{a})’’(F(X)))h^{2\beta}T+\int_{0}^{1}E((f*\phi_{a})^{(4)}(F(X)+\lambda h^{\beta}\overline{W}_{T})\mathrm{T}\overline{/}V_{T}^{4})h^{4\beta}d\lambda$

$=$ $C_{1}^{a}h+R_{h}^{a}h^{2}$ .

Then $C_{1}^{a}$ and $R_{h}^{a}$ is rewritten using the integration by parts formula. The terms are
bounded due to (2.2) and the hypothesis (H). From here one takes limits with respect
to $aarrow 0$ .

Now to deal with the second term

$E(f(F(X)+h^{\beta}\overline{W}_{T})-f(F(\overline{X})+h^{\beta}\overline{W}_{T}))$

one uses the sam$e$ proof as in Theorem 4.3. The difference rests that at the end one has
to apply the Lemma 5.1 and the bounds (2.2). $\square$

The above proposition shows that eve$\mathrm{n}$ if the functions are non-smooth the approx-
imation method works $\mathrm{w}e11$ . What makes things not so optimistic is the Monte Carlo
error which is characterized by the quantity $n^{-1/2}\mathrm{V}\mathrm{a}\mathrm{r}(f(F(\overline{X})+\sqrt{h}\overline{W}_{T}))$ which obvi-
ously behaves badly as $f$ becomes more degenerat $e$ . One such a case is when $f$ is the
Dirac delta function. This case is studied in the $\mathrm{n}e\mathrm{x}\mathrm{t}$ section and later we will address
the issue of the Monte Carlo approximation.

Due to hypothesis (H), we know that the density of $F(X)$ exists and is smooth. In
order to make the exposition of ideas simple we assume from now on that $l=1$ . One
can use similar steps of the previous lemma to obtain an approximation theorem for the
densities.
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Proposition 5.3 Assume that $a\in C_{b}^{8}(\mathbb{R}^{d})$ and $b\in C_{b}^{8}(\mathbb{R}^{d};\mathbb{R}^{d}\cross \mathbb{R}^{k})$ . A$lso$ suppose that
$F\in FC^{8}$ and that $(H)$ is satisfied. If $\overline{W}$ denotes a Wiener process independent of $l^{j}V$

then one has that for $\gamma,$
$\beta\geq 1/2_{f}$

$E(\delta_{x}(F(X)))-E(\phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x))=C_{1}(x)h+R_{h}(x)h^{2}$.

Here $C_{1}(x)$ is a positive constant independent of the partition and $h$ which is uniformly
bounded in $x$ . $R_{h}$ satisfies $\sup_{0<h<1,x\in \mathbb{R}^{d}}|R_{h}(x)|<\infty$ .

Here Bally and Talay $\mathrm{r}e$quired a uniform H\"ormander condition together with a dis-
tance condition between $X_{0}$ and $x$ . Here one realizes that such stringent conditions are
not necessary. Hu and Watanabe obtained slower rates of convergence.
Proof.$\cdot$ The proof is as in the proof of Proposition 5.2. Except that one has to apply
integration by parts once more so that one obtains a bounded function instead of an
unbounded one. $\square$

As a Corollary we obtain the following rate of convergence.for the Mont$e$ Carlo
method.

Corollary 5.4 Under the same conditions as above we have,

$E|E( \delta_{x}(F(X)))-\frac{1}{n}\sum_{i=1}^{n}\phi_{h^{\gamma}}(F(\overline{X}^{i})+h^{\beta}\overline{W}_{T}^{i}-x)|\leq C_{2}(x)(h+\frac{1}{h^{\gamma/2_{\sqrt{n}}}})$ .

Here $C_{2}(x)$ is a positive constant independent of the partition and $h_{f}$ and uniformly
bounded in $x$ .

This result reveals the necessity of “tuning” the value of the parameters $n$ and $h$ so
that the resulting estimate is good enough. This is a well known result in non-parametric
density estimation theory. The rate that one obtains in such a general theory is worse
than the one obtained here.

$\Gamma \mathrm{n}$ the next section we show that the rate obtained in the previous corollary can in
fact be improved.

6 A Variance Reduction Method for irregular func-
tions

In this section we propose a variance reduction method in order to reduce the Monte
Carlo error characterized by $\mathrm{V}\mathrm{a}\mathrm{r}(f(F(\overline{X})+h^{\beta}\overline{W}_{T})))$ . To simplify the discussion we will
assume the hypothesis (H) and that the coefficients ar$e$ smooth with bounded derivatives.
We start proving that in the particular cas$e$ that $f=\phi_{h^{\gamma}}$ this variance in fact explodes.

Lemnla 6.1 Assume the same hypothesis as in the Proposition 5.3. Then for $\gamma,$
$\beta\geq$

$1/2$ ,
$h^{\gamma}\mathrm{V}\mathrm{a}\mathrm{r}(\phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x))arrow E(\delta_{x}(F(X)))$ as $harrow \mathrm{O}$ .
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In particular the variance will converge to $\infty$ if the density of $F(X)$ is not zero at $x$ .
Proof.$\cdot$ One has that

$E(\phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x))arrow E(\delta_{x}(F(X)))\neq 0$ ,

due to Proposition 5.3. Therefore it is enough to note that

$E( \phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x)^{2})=\frac{1}{2\sqrt{\pi}h^{\gamma}}E(\phi_{h^{\gamma/\sqrt{2}}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x))$ .
$\square$

The above result is also true for $\gamma,$ $\beta>0$ but the rates of convergence or divergence
are different. Also from Nualart [8, Proposition 4.2.2] one has criteria to determine the
positivity of the density at a given point.

Obviously we have left aside the consideration of the number of independent copies
being used for the Monte Carlo simulation. If ones tunes $n$ with $h$ one can obtain an
est.imation of the probability density at $x$ . However, it is obvious that as $h$ is chosen
small, $\uparrow$? will have to be bigger. Our proposal for variance reduction is to use the inte-
gration by parts formula in order to avoid this problem. That is, instead of considering
the quantity

$E(\phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x))$

we will use
$E(\Phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x)H(F(\overline{X}_{\backslash })+h^{\beta}\overline{W}_{T}, 1))$ (6.1)

and eventually we will propose something closer to

$E(1(F(\overline{X})\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))$ ,

with $\beta\geq 2$ .

Theorem 6.2 Assume ihat $a\in C_{b}^{9}(\mathbb{R}^{d})$ and $b\in C_{b}^{9}(\mathbb{R}^{d};\mathbb{R}^{d}\cross \mathbb{R}^{k})$ . Also suppose that
$F\in FC^{9}$ and that $(H)$ is satisfied. Then there exists a simulatable random variable $Y$

such that

$\sup_{x\in \mathbb{R}}E|E(\delta_{x}(F(X)))-\frac{1}{n}\sum_{i=1}^{n}Y^{i}|\leq C(h+\frac{1}{\sqrt{n}})$ ,

where the constant $C$ is independent of the partition, $h$ and $n$ . $Y^{i}$ denotes for $i=1,$
$\ldots,$

$n$ ,
$n$ independent copies of $Y$ .

We start with a series of Lemmas. The first proves that the quantity (6.1) gives the
same approximation result as in Proposition 5.3.

Lemma 6.3 Let $\gamma,$ $\beta\geq 1/2$ . Then

$E(\delta_{x}(F(X)))-E(\Phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))=C_{1}(x)h+R_{h}^{1}(x)h^{2}$,

where $C_{1}(x)$ is a positive constant independent of the partition and $h_{f}$ and is uniformly
bounded in $x$ . $R_{h}^{1}$ satisfies $\sup_{0<h<1,x\in \mathbb{R}^{d}}|R_{h}^{1}(x)|<\infty$ . Furthermore,

$\mathrm{V}\mathrm{a}\mathrm{r}(1(F(\overline{X})\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))\leq C$,

where $C$ is a positive constant that is independent of $h$ and $x$ .
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Proof.$\cdot$ The first part of the statement is trivial. To prove the second statement it is
enough to note that

$||H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1)||_{L^{2}(\Omega)}^{2}\leq C$.
This follows from Lemma 5.1 and the bounds (2.2). $\square$

Lenlma 6.4 Let $\gamma\geq 1/2$ and $\beta>4$ . Then

$|E(\Phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}\tau-x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))$

$-E(1(F(\overline{X})\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))|$

$=$ $C_{2}(x)h+R_{h}^{2}(x)$ .

Here $C_{2}(x)$ is a positive constant independent of the partition and $h_{f}$ and is uniformly
bounded in $x$ . $R_{h}^{2}$ satisfies $\sup_{0<h<1,x\in \mathbb{R}^{d}}|R_{h}^{2}(x)|<\infty$ .

. In the particular case that
Condition $(Hl): \det(\triangle_{F(\overline{X})})^{-1}\in\bigcap_{p>1}L_{p}(\Omega)$ .
Then one can replace the approximating expression by $E(1(F(\overline{X})\geq x)H(F(\overline{X}), 1))$ and
only needs $\gamma\geq 1/2$ and $\beta\geq 1/2$ for the same result to be satisfied.

Proof.$\cdot$ First we consider

$E(1(F(\overline{X})+h^{\beta}\overline{W}_{T}h^{\gamma}\hat{W}_{1}\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))$

$-E(1(F(\overline{X})+h^{\beta}\overline{W}_{T}\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))$

$=D_{2}(x)h^{2\gamma}+S_{h}^{2}(x)h^{4\gamma}$ .

Here $D$ and $S$ satisfy the same properties as $C_{2}$ and $R^{2}$ . This is obtained by using the
same Taylor expansion and integration by parts techniques as in Proposition 5.2.

Secondly one proves

$|E(1(F(\overline{X})+h^{\beta}\overline{W}_{T}\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))-E(1(F(\overline{X})\geq x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))|\leq Ch^{\beta-\epsilon}$

To prove this one considers the same set $A$ of the proof of Lemma 5.1. Then one defines
$\varphi_{A}$ a “smooth version ” of the set $A$ . Then we have that is enough to consider

$E[|1(F(\overline{X})+h^{\beta}\overline{W}_{T}\geq x)-1(F(\overline{X})\geq x)|^{2}(\varphi_{A}+(1-\varphi_{A}))]$

The expectation restricted to $A^{c}$ or 1 $-\varphi_{A}$ can be $\mathrm{t}\mathrm{r}e$at$e\mathrm{d}$ as in Lemma 5.1. For the
other one decomposes it in the probabilities

$P(\{\omega\in\Omega;x>F(\overline{X})\geq-h^{\beta}\overline{W}_{T}+x\}\cap A)$

$P(\{\omega\in\Omega;x-h^{\gamma/2}\overline{W}_{T}>F(\overline{X})\geq x\}\cap A)$.

Both probabilities are treated similarly so we will do the first.

$P(\{\omega\in\Omega;x>F(\overline{X})\geq-h^{\beta}\overline{W}_{T}+x\}\cap A)$ $=$ $\int_{-\infty}^{x}(1-\Phi_{h^{\beta}}(x-z)E(\delta_{z}(F(\overline{X}))\varphi_{A})dz$
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To finish one $\mathrm{r}e$alizes $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}(1-\Phi_{h^{\beta}}(x-z)$ is small than any polynomial of $h$ if $x-Ch^{\beta-\epsilon}>$

$z$ for any $\beta>\epsilon>0$ . Furthermore the term $E(\delta_{z}(F(\overline{X}))\varphi_{A})$ is uniformly bounded. From
these two facts the proof of the first case follows.

In the particular case that the Malliavin covariance matrix of $F(\overline{X})$ is non-degenerat $e$

the proof goes as above but the last step is not needed. $\square$

A somewhat similar result can be achieved playing with the above techniques differ-
ently.

Corollary 6.5 Let $\gamma\geq 4$ and $\beta\geq 2$ , then

$|E(\Phi_{h^{\gamma}}(F(\overline{X})+h^{\beta}\overline{W}_{T}-x)H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1))$ $-E(1(F(\overline{X})\geq x)H(F(\overline{X})+h^{\beta}\mathrm{T}^{\overline{j}}V_{Tj}1))|$

$\leq C_{2}(x)h^{2}$ .
Here $C_{2}(x)$ is a positive constant independent of the partiiion and $h$ which is uniformly
bounded in $x$ .

These two results show that one can play around with the construction of $Y$ according
to the situation at hand. That is if $F(\overline{X})$ is highly degenerate or not.

Proof of Theorem 6.2: In order to show how to construct the random variables $Y$

one has to give effici $e\mathrm{n}\mathrm{t}$ ways to approximat$eH(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1)$ . For this reason one
has to give the following formulas that provide approximations for $D^{j}\overline{X}$ for $j=1,2$ .

Note that from (1.2) one has for $l,$ $m=1,$ $\ldots,$

$k$ ,

$D_{u}^{l} \overline{X}_{t}=b_{l}(\overline{X}_{\eta(u)})+\int_{\eta_{1}(u)}^{t}a’(\overline{X}_{\eta(s\rangle})D_{u}^{l}\overline{X}_{\eta(s)}\mathrm{d}s+\int_{\eta_{1}(u)}^{t}b_{j}’(\overline{X}_{\eta(s)})D_{u}^{l}\overline{X}_{\eta(s)}\mathrm{d}W_{s}^{j}$

and

$D_{v}^{m}D_{u}^{l}\overline{X}_{t}$ $=$ $b_{l}’(\overline{X}_{\eta(u)})D_{v}^{m}\overline{X}_{\eta(u)}$

$+ \int_{\eta_{1}(u)}^{t}a’’(\overline{X}_{\eta\langle s)})D_{u}^{l}\overline{X}_{\eta(s)}D_{v}^{m}\overline{X}_{\eta(s)}+a’(\overline{X}_{\eta(s)})D_{v}^{m}D_{u}^{l}\overline{X}_{\eta(s)}\mathrm{d}s$

$+ \int_{\eta_{1}(u)}^{t}b_{j}’’(\overline{X}_{\eta(s)})D_{u}^{l}\overline{X}_{\eta(s)}D_{v}^{m}\overline{X}_{\eta(s\rangle}+b_{j}’(\overline{X}_{\eta(s)})D_{v}^{m}D_{u}^{l}\overline{X}_{\eta(s)}\mathrm{d}W_{s}^{j}$.

These $e$quations can be also written in recursive form to allow their simulation based
only on the simulation of the increments of the Wiener process. Also note that $D_{u}\overline{X}_{t}$ as
well as $D_{u}D_{v}\overline{X}_{t}$ are constant for $u,$ $v\in(t_{i},i_{i+1_{\mathrm{J}}}\rceil$ .

Furthermore one can write an explicit expression for $H$ as follows:

$H(F(\overline{X})+h^{\beta}\overline{W}_{T}, 1)$ $=$ $H^{1}+h^{\beta}(<DF(\overline{X}), DF(\overline{X})>+h^{2\beta}T)^{-1}\overline{W}_{T}$ ,
$H^{1}$

$=$ $(<D.F(\overline{X}), DF(\overline{X})>+h^{2\beta}T)^{-2}$

$\{(<DF(\overline{X}), DF(\overline{X})>+h^{2\beta}T)\int_{0}^{T}D_{s}F(\overline{X})\mathrm{d}W_{s}$

+2 $\int_{0}^{T}\int_{0}^{T}D_{s}F(\overline{X})D_{u}F(\overline{X})D_{u}D_{s}F(\overline{X})\mathrm{d}u\mathrm{d}s\}$ ,

165



see e.g. Nualart [8, Exercise 2.1.1]. Then due to the independence of $W$ and $\mathrm{T}^{\overline{j}}V$ we have

$E(1(F(\overline{X})\geq x)H(F(\overline{X})+h^{\beta}\overline{\nu}V_{T}, 1))=E(1(F(\overline{X})\geq x)H^{1})$ .

$\Gamma^{\dashv}\mathrm{r}\mathrm{o}\mathrm{m}$ here the proof of the Theorem follows. $\square$

Note that in the particular case that Condition (H1) is satisfied the above formulas
sinuplify $\mathrm{g}\mathrm{r}e$atly with

$H^{1}$ $=$
$(<DF( \overline{X}), DF(\overline{X})>)^{-2}\{(<DF(\overline{X}), DF(\overline{X})>)\int_{0}^{T}D_{s}F(\overline{X})\mathrm{d}W_{s}$

$+2 \int_{0}^{T}\int_{0}^{T}D_{s}F(\overline{X})D_{u}F(\overline{X})D_{u}D_{s}F(\overline{X})\mathrm{d}u\mathrm{d}s\}$ .

One should note that one can repeat the above arguments in order to carry more
integration by parts if necessary.

7 Example with $F(X)=X_{1}$

Here we consider the case of uniform ellipticity in one dimension. That is, we assume
that $b(x)\geq c>0$ for all $x\in \mathbb{R}$ . We also assume that $t_{i}= \frac{i}{N}$ for $i=0,$ $\ldots,$

$N,$ $k=1$ , and
$F(X)=X_{1}$ for simplicity. In such a case it is known that the hypothesis (H) is satisfied
and the variable $Y$ is

$Y$ $=$ $1(X_{1} \geq x)(\sum_{i=0}^{N-1}D_{t_{i+1}}\overline{X}_{1}N^{-1}+N^{-2\beta})^{-2}$

$\{(\sum_{i=0}^{N-1}D_{t_{\dot{2}+1}}\overline{X}_{1}N^{-1}+N^{-2\beta})(\sum_{i=0}^{N-1}D_{t_{i+1}}\overline{X}_{1}(W_{t_{\mathfrak{i}+1}}-W_{t_{i}})$

$+2 \sum_{i,j=0}^{N-1}D_{t_{i+1}}\overline{X}_{1}D_{t_{j+1}}\overline{X}_{1}D_{t_{j+1}}D_{t_{i+1}}\overline{X}_{1}N^{-2}\}$ .

As we have remarked above there are better ways of performing the simulation according
to each specific situation. In particular there is a localized integration by parts formula
that could be of use in certain situations. This formula is written as follows:

$E(f’(F)G)=E(f(F)H_{1\mathrm{o}\mathrm{c}}(F, G))$ for $m\geq 1$ ,

where $H_{1\mathrm{o}\mathrm{c}}(F, G)=\delta(G(\triangle_{F}^{1\mathrm{o}\mathrm{c}})^{-1}g)$ and $g:\Omega\cross[0,1]arrow \mathbb{R}$ is a smooth stochastic process
such that $( \Delta_{F}^{1\mathrm{o}\mathrm{c}})^{-1}=(<DF,g>)^{-1}\in\bigcap_{p>1}L_{p}(\Omega)$ .

For example in the uniformly elliptic case it is known that $D_{u}X_{1}>0\mathrm{a}.\mathrm{e}$ . and that
for a set of probability close to 1, $D_{u}\overline{X}_{1}>0$ . This set is described as follows. Let
$C:=||a’||_{\infty}+||b’||_{\infty}$ . Choose $N,$ $M>0$ satisfying $N\wedge M>4C$ . Then, on the set
$L_{M}= \{\sup_{0<k\leq m}|W_{t_{k+1}}-W_{t_{k}}|\leq 1/\mathrm{A}l\},$ $D_{u}\overline{X}_{1}>0$ for all $u\in[0,1]$ . Furthermore,
$P(L_{M}^{c})\leq C_{q}\overline{\mathrm{J}}I^{-q}$ for any $q\geq 2$ .
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Using this fact one can simplify the above random variable $Y$ into

$Y’$ $=$ $1(X_{1} \geq x)(\sum_{i=0}^{N-1}D_{t:+1}\overline{X}_{1}N^{-1})^{-2}$

$\{W_{1}\sum_{i=0}^{N-1}D_{t_{i+1}}\overline{X}_{1}N^{-1}+\sum_{ij)=0}^{N-1}D_{t_{j+1}}D_{t_{+1}}\dot{.}\overline{X}_{1}N^{-2}\}$ .

Here we have used as a localizing process $g=1$ and the above definition is on the set
$L_{M;}$ otherwise $Y’$ is defined as $0$ .

8 Example with $F(X)= \int_{0}^{T}g(X_{s})\mathrm{d}s$

In this section we consider as an example $F(X)= \int_{0}^{T}g(X_{s})\mathrm{d}s$ for $d=1$ and we assume
that the coefficients $a,$ $b,$ $f$ and $g$ are smooth with bounded derivatives. This example
is of importance in Finance in what is known as Asian options for which one takes
$g(x)=x$ . In this case one obtains that $\nabla_{s}F(X)=g’(X_{s})$ .

We check that the hypothesis (H) is satisfied in the following Lemma.

Lenunla 8.1 Assume that $g’(X_{u})\geq 0$ for almost all $u\in[0, T]$ and $g’(X_{0})>0$ . Also
assume that either $|b(x)|\geq c>0$ for all $x\in \mathbb{R}$ or $a$ and $b$ are linear functions. Under
the above conditions and definitions, $\Delta_{F(X)}^{-1}\in\bigcap_{p>1}L_{p}(\Omega)$ .

Proof.$\cdot$ We will assume that $|b(x)|\geq c>0$ for all $x\in \mathbb{R}$ . The other case is done
analogously. First one computes the Malliavin covariance matrix associated with $F(X)$ .
This calculation gives that

$\triangle_{F(X)}=\int_{0}^{T}\int_{S}^{T}\int_{S}^{T}\nabla\Gamma_{u_{1}}^{\mathrm{i}}(X)\mathcal{H}_{u_{1}}\mathcal{H}_{S}^{-1}b^{2}(X_{s})\mathcal{H}_{s}^{-1}\mathcal{H}_{u_{2}}\nabla F_{u_{2}}(X)du_{1}du_{2}ds$,

where $\mathcal{H}$ stands for the exponential associat$e\mathrm{d}$ with the derivative of the flow defined by
X. That is, $\mathcal{H}$ is the unique $L^{2}$-adapted solution of

$\mathcal{H}_{t}=1+\int_{0}^{t}a’(X_{s})\mathcal{H}_{s}ds+\int_{0}^{t}b’(X_{s})\mathcal{H}_{s}dW_{s}$.

Using the hypothesis we have

$\triangle_{F(X)}\geq C\inf_{0\leq s\leq T}|\mathcal{H}_{s}^{-1}|^{2}\int_{0}^{T}(\int_{S}^{T}g’(X_{u})\mathcal{H}_{u}du)^{2}ds$

To the above one applies integration by parts twice in $s$ and Fubini’s theorem to obtain

$\triangle_{F(X)}\geq C\inf_{0\leq s\leq T}|\mathcal{H}_{s}^{-1}|^{2}\int_{0}^{T}2g’(X_{s})\mathcal{H}_{s}\int_{0}^{s}ug’(X_{u})\mathcal{H}_{u}duds$ . (8.1)
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Let $\delta>0$ be such that $g’(x)>0$ for $|x-X_{0}|<\delta$ Now define the following random time
for fixed $\delta>0$ :

$\tau=\inf\{s\geq 0;|X_{u}-X_{0}|\geq\frac{\delta}{2}$ or $|\mathcal{H}_{s}-1|\geq 1/2$

or $|\mathcal{H}_{s}^{-1}-1|\geq 1/2$ or $|g’(X_{u})-g’(X_{0})|\geq g’(X_{0})/2\}$ .

Recall that in order to prove that $\det(\triangle_{F(X)})^{-1}\in\bigcap_{p>1}L^{p}(\Omega)$ it is enough to prove that
for all $p>1$ there exists $\epsilon_{0}$ such that for all $\epsilon\leq\epsilon_{0}$ one has that

$P^{*}:=P(\Delta_{F(X)}\leq\epsilon)\leq\epsilon^{p}$.

Approximating $\mathcal{H},$ $\mathcal{H}^{-1},$ $\nabla F(X)$ and $X$ by its values at $0$ one has for $l\in(0,1/3)$ , by
(8.1),

$P^{*}$ $\leq$ $P( \tau\leq\epsilon^{l})+P(C\inf_{0\leq s\leq T}|\mathcal{H}_{s}^{-1}|^{2}\int_{0}^{\tau}\int_{0}^{s}\frac{1}{8}g’(X_{0})^{2}ududs<\epsilon, \tau>\epsilon^{l})$ .

Using the definition of $\tau$ and Chebyshev’s $\mathrm{i}\mathrm{n}e$quality one obtains that $P(\tau\leq\epsilon^{l})\leq C\epsilon^{f}$

for any $r>0$ . Similarly, one has

$P(C \inf_{0\leq s\leq T}|\mathcal{H}_{s}^{-1}|^{2}g’(X_{0})^{2}\tau^{3}<\epsilon, \tau>\epsilon^{l})$
$\leq$

$P(Cg’(X_{0})^{2} \inf_{0\leq s\leq T}|\mathcal{H}_{s}^{-1}|^{2}<\epsilon^{1-3l})$

$\leq$
$C \epsilon^{f(1-3l)}g’(X_{0})^{-r}E(\sup_{0\leq s\leq T}|\mathcal{H}_{s}|^{2r})$ .

From here the result follows. $\square$

A similar result can be achieved with the condition $g’(X_{u})\leq 0$ for almost all $u\in[0, T]$

and $g’(X_{0})<0$ . This example includes the cases of $g(x)=x^{p}$ for $p$ odd or any $p$ if $X$

is a positive stochastic process as in the case of linear stochastic differential equations
that are of interest in finance.

Therefore all the previous results apply. In particular, one can also apply the prin-
ciples used for the estimation of the density function to the estimation of the greeks
associated to the corresponding European type options. The results are analogous to
the ones exposed in section 6.

The following are some simulations of the densities obtained using the classical
method and using the integration by parts formula.

$\mathrm{g}$ Conclusion
The kind of result exposed here should allow effici$e\mathrm{n}\mathrm{t}$ simulation of various different
quantities that are expectations of nonsmooth functions in different situations. Although
the theorems and examples have $\mathrm{n}\dot{\mathrm{o}}\mathrm{t}$ been develop$e\mathrm{d}$ in full generality the emphasis is
in methodology.

For example, one can develop the sam$e$ theory for a general distribution function
$T$ which will be approximated by the smooth function $T*\phi_{h}$ and similar results are
obtained.
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At the same time, one should also be cautious as to what ext $e\mathrm{n}\mathrm{t}$ these results hold.
In general one requires smooth properties of the random variables involved in order
to apply integration by parts of Malliavin Calculus. For example, the classical kernel
density methods are usually applied when very little information is available about the
$1^{\cdot}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\mathrm{m}$ variables under consideration.

Asymptotically our results can be compared as follows in the case of approximations
of density functions:

The rat$e$ of convergence for histograms of iid samples is classical and can be found
in e.g. Silverman [9]. According to Corollary 5.4 (for $\gamma=1/2$ ) the window size is
of the order $\sqrt{h}$ therefore giving a MISE (mean integrated squar$e\mathrm{d}$ error) of the order
$(n\sqrt{[\mathrm{t}})^{-1}+O(h)+O(n^{-1})$ where $n$ is the sample size. The optimal choices for $n$ and $h$

for histograms of iid samples when the order of the error is specified is given in the first
line of the above table.

The second line and third line are obtained from Corollary 5.4 and Theorem 6.2, re-
spectively. It is clear that these improvements in rates are obtained due to the particular
structure of stochastic differential equations. In general there ar$e$ various counterexam-
ples that show that the MISE rates ar$e$ optimal.

Here the study is only asymptotical. The actual error will vary according to the
situation and this requires a rather exact estimation of the constants that appear in the
results present$e\mathrm{d}$ here. Pilot studies show that in many cases the methods introduced
improve on classical techniques.

But it is also clear from these studies that the constants involved in all the expansions
in $h$ have a tendency to become bigger as the integration by parts formula is used. In
further publications we will address other variance reduction techniques to deal with
this problem.
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