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Abstract

We analyse the impact of re-sampling on the ability of artificial
neural networks to correctly learn a binary classification problem. We
use the bootstrap expression of the prediction error to identify the
optimal re-sampling proportions.

1 Introduction

Since a neural network minimizes an overall error, the proportion of types
of data in the training set is critical. A network trained on a data set with
900 good and 100 bad cases will bias its decision towards good cases, as

_ this allows the algorithm to lower the overall error (which is much more
heavily influenced by the good cases). If the representation of good and
bad cases is different from the real population, the network’s decisions may
be biased. A typical example would be disease diagnosis. Perhaps 90% of
patients routinely examined are clear of a disease. A network is hence trained
on an available data set with a 90/10 split. It is then used in diagnosis on
patients complaining of specific physical problems, where the likelihood of
disease might be 50/50. The network will naturally fail to recognize disease
in some unhealthy patients. In contrast, if trained on the ”complainants”

- data, and then tested on ”routine” data, the network may raise a number
of false positives. In such circumstances, the training set may need to be
re-sampled to take account of the distribution of data (i.e. replication of the
less numerous cases, or removal of some of the numerous cases). A common
practice is to re-sample the training set so that there is the same number
of patterns for each class. The question we address here is whether this is
‘appropriate for empirical learning of neural networks.



This paper is organized as follows: First, we present the bootstrap for-
mulation of the problem. Then we run a numerical experiment to asses
empirically the impact of re-sampling on the network ability to learn.

2

Bootstrap

The Bootstrap techniques (see [1]) were introduced in 1979 as a computer-
based method for estimating the standard error of empirical distributions.
The method enjoys the advantage of being completely automatic and not
requiring theoretical computations or assumptions on the original distribu-
tions. It was further extended to estimate prediction error.

2.1

Definitions

Let x; = (I;,0%), i = 1,...,n be the i** element (pattern) of the training
set x. I, is an input vector and O¢ is the desired output as opposed to
the actual output of the network O;.

A bootstrap sample x* has n elements, generated by sampling with
replacement n times from the original data set x. For example, if
x = {X;, X9, X3, X4, X5} , & possible bootstrap re-sampling may result in
X = {X3,X3,X1,X4,X2}.

Having observed a random sample of size n from a probability distri-
bution F', the empirical distribution function F is defined to be the
discrete distribution that puts probability 1/n on each pattern x;.

A plug-in estimate of a parameter § = ¢(F) is defined to be § = t(F).
In other words, we estimate the function 6 = ¢(F') of the probability
distribution F' by the same function of the empirical distribution F,
6 = t(F). For example, if we c0n51del the mean of the desired values,

it is defined as § = Er(0%) = Z O¢. In the same manner, the plug-
in estimate of the mean is § = E5 (0% = + Z(O{-‘)*. In the above
=1

example, Er(0%) = Od and its plug-in estimate is: E5(0%) =

o=
i Mcn

Suppose we train the network on the patterns contained in x, producing
a predicted value Oy for the input I = I,. We write: Og = fx(Ip), where
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Oy is the output of the network trained with the set x and presented
with the input I,.

e Q[0 O] denotes the measure of error between the desired output O¢
and the prediction O. In the case of classification, a common measure
of error is Q[0% 0] =0 if O¢ = O and 1 otherwise.

2.2 Prediction Error

Let (Ip,Of) denote a new observation (i.e. a new pattern) from F, the
complete population of patterns. The prediction error for fy(Iy) is defined
by

err(x,F) = EF{Q[Og’ fx(To)]} (1) .

where the notation Er denotes the expectation over a new observation.
On the other hand, the plug-in estimate of err(x,F) is given as:

err(x*,F) = ZQ 0> Jxx (L (2)

In this expression, fyx«(I;) is the predlcted value at I = I;, based on the
network trained with the bootstrap data set x*.

We could use err(x*,ﬁ ) as an estimate of the prediction error, but it
~involves only a single bootstrap sample and hence is prone to be biased.
Instead we focus on the average prediction error. The approximation to
the prediction error is an average on B bootstrap samples and n observed
patterns:

E#lerr(x*,F)] ZZQ [O8, fe(1))]/n (3)
b—l i=1

If the distribution F' is known and finite, the n observed patterns are
replaced by the complete population and the pledlctlon error of the network
trained on bootstrap samples is:

1 B n

Erlerr(x",F)] = 5 3° 3" QIO fen(1)/n @)

b_l i=1
In our bootstrap experiment, we will estimate the average prediction error
for various schemes of re-sampling of the data set.

3 Numerical Experiments

3.1 Pétterns_ |

Each pattern is composed of six inputs, arranged as a vector, and one output.
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3.1.1 Inputs

All elements in the input can take the values in {0,1} exclusively:

where o, 3,7, 9, ¢, € {0,1} (5)

MmN o2 ™R

The pattern is said to be symmetric if it has the form:

where «, 5,7 € {0,1} ' (6)

Q™R R ™

and it is said to be asymmetric otherwise. There is 2° = 64 different vectors in
the complete sample space and 23 = 8 symmetric vectors. There is 64—8 = 56
asymmetric vectors.

3.1.2 Outputs

If the input vector of the pattern is symmetric, the output is 1. It is O
otherwise. This is a symmetry detection problem for 6 bits code.

3.2 Architecture and Training Algorithms

We trained feed-forward neural network with one hidden layer of 3 ~ 10
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neurons as varying parameters, using back-propagation ([2]) and a conjugate
g g pag g

gradient algorithm ([6] and [7]). A stochastic noise based algorithm proposed
by the second author was also experimented (see [5]; [3] and [4]). The results
presented in the next experiment is the 6 hidden neurons’ case with conjugate
gradient. The results did not differ significantly and were quite independent
from the architecture and the learning algorithms.

3.3 Re-sampling Scheme

The complete patterns in the sample space consist of 8 symmeﬁ'ic vectors
and 56 asymmetric vectors for a total of 64. The proportion of symmetric



vectors is 8/64. The re-sampling scheme will modify systematically this
proportion to create different training sets on which the network learning
ability is assessed. We will:

1. decide a proportion (for example 40/64), then

2. take randomly with replacement 64 vectors such that the proportion
decided in step 1 is respected: if the proportion is 40/64, pick randomly
40 times a vector in the set of symmetric vectors and take randomly
24 (= 64 — 40) asymmetric vectors to complete the training set.

A second experiment is also undertaken where we apply duplicated boot-
strapping: Instead of a re-sampling set of 64 vectors, we take 128 (= 64 x 2)
vectors.

3.4 Expefiment

We re-sample the sample space in order to assess the network learning ability.
In the experiment,

1. The proportion ranges the values from 4 to 60 by step of 4.
2. For each proportion, we construct 100 re-sampling sets.

3. For each of these sets, we estimate the weights of the network. Each
network must converge on the bootstrap set.

4. For each network, we compute the bootstrap prediction error on the
original sample set as expressed in Eq. (4):

n

ZQ Omfx"‘" z)]/“

11=1

[V]u:

Erlerr(x*,F)]
- Bj

Il

This experiment allows us to address the following issue: if we know the
true population F' of the patterns, how should we sample in order to optimize
the empirical learning of neural networks in general?

3.5 Results

The results are presented graphically in Figs. 1 and 2 for cases re-sampling
64 and 128 vectors, respectively. The vertical axis denotes the mean number
of miss-classified patterns when the network that learned the training set
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was tested on the complete sample space. If the error is 0, it means that
the network ability to generalize is perfect. The standard deviation of this
. error is also presented under the form of a box surrounding the mean. The
horizontal axis denotes the proportion of symmetric vectors in the training
set. When the abscise is 48, it means that the 64 patterns of the training set
consists of 48 symmetric and 16 asymmetric vectors.

The classification error attains a minimum - corresponding to a maxi-
mum in the generalization ability - around values for the proportion between
12/64 and 20/64. The same observation repeats when we re-sample 128 vec-
tors. In that case, the optimal proportion seems to lie in the range between
24/128 and 40/128. Clearly the optimal proportion is neither the original
distribution in the sample space nor the 50%-50% proportion often applied in
practice for binary classification problems. Rather, it lies somewhere between
these two values.

One might remark that when re-sampling with replacement, the number
of different patterns in the training set varies. This certainly has an impact
on the network performance on the sample space. We plotted in Figs. 3 and
4, the mean number of different patterns for each re-sampling proportion.

We observe that this mean number is higher when the original proportions
in the sample space are respected. We may conjecture that even though
there is fewer different patterns to learn from, the network still perform
better where the proportion is optimal. This indicates the importance of
identifying the optimal proportion when training a network.

4 Conclusions

We presented the bootstrap expression of the prediction error to base our
work on sound statistical theory. Then, we set up numerical experiments
meeting the following requirements:

1. all sample space is known,
2. it is finite and small so that training is fast and easy,

3. its distribution function is unbalanced so that the effects of re-sampling
are easy to assess.

We assessed empirically the impact of re-sampling on the network ability
to learn and the importance of the re-sampling proportion. In binary clas-
sification problems, it has been a common practice to present networks to
be trained with an equal number of patterns in each class, irrelevant of the
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Figure 1: Miss-classification Error for 64 Patterns
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Figure 2: Miss-classification Error for 128 Patterns
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Figure 3: Mean Number of Different Patterns for 64 Patterns
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Figure 4: Mean Number of Different Patterns for 128 Patterns
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original distribution. The numerical results of this paper indicate that the
learning ability of the network is indeed enhanced by re-sampling, but only
a few repetition of the scarce patterns may be a most efficient scheme.
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