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Existence of oscillatory solutions of neutral differential equations

BIEA - ¥  H9P B (Satoshi Tanaka )

1. INTRODUCTION

In this paper we consider the neutral differential equation

(11) & 10(0) + At = 7))+ (4, (9(0)) = .

Throughout this paper, the following conditions (H1)-(H3) are assumed:

(H1) ne N, A>0and 7 > 0;

(H2) g € Clty, 00) and lim;_,o g(t) = 00;

(H3) f € C([to, ) x R) and there exists a function F' € C([ts, 00) x [0, 00)) such
that F(t,u) is nondecreasing in u € [0, 00) for each fixed t > ¢, and satisfies

[f(t,w)| < F(, ul), (4 w) € [to,00) X R.

By a solution of (1.1), we mean a function z(t) which is continuous and satisfies
(1.1) on [tz,00) for some t, > t,. Therefore, if z(t) is a solution of (1.1), then
z(t) + Az(t — 7) is n-times continuously differentiable on [t;,00). Note that, in
general, z(t) itself is not continuously differentiable.

A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros; oth-
erwise it is said to be nonoscillatory. This means that a solution z(t) is oscilla-
tory if and only if there is a sequence {¢;}3°; such that t; = oo as ¢ — oo and
z(t;) =0 (i = 1,2,...), and a solution z(t) is nonoscillatory if and only if () is
either eventually positive or eventually negative. '

There has been much current interest in the existence of oscillatory solutions and
nonoscillatory solutions of neutral differential equations, and many results have been
obtained. For typical results, we refer to the paper [1, 5-15] and the monographs
[2, 3].

Neutral differential equations find numerous applications in natural science and
technology. For instance, they are frequently used for the study of distributed
networks containing lossless transmission lines. See, for example, Hale [4].

Now consider the equation

—C—li .

(12 ol (t) = At = )]+ 1 (t,3(0(8)) = .



Let w and w_ € C(R) satisfy w(t +7) = —w(t) and w_(t + 7) = w_(t), respec-
tively, for ¢ € R. For example, w(t) = sin(nt/7) and w_(t) = cos(2nt/7) are such
functions. We easily see that A/ "w(t) and A¥"w_(t) are solutions of the unperturbed
equations '

. a |

ﬁ[x(t) +Mz(t—7)]=0 and d—tn[a:(t) - Az(t — 1)} =0,
respectively. Thus it is natural to expect that, if f is small enough in some sense,
equation (1.1) [resp. (1.2)] has a solution z(t) which behaves like the function
A7 (t) [resp. AY7w_(t)] as t — oco. In fact, the following results have been
established by Jaro§ and Kusano [7].

Theorem A. Suppose that 0 < A < 1 and that there exist constants p € (0, )
and a > 0 such that

(o.¢]
/ LRt XD/ dt < oo
to

Then
(i) for each w € C(R) such that w(t +7) = —w(t) fort € R and max lw(?)]| < a,

equation (1.1) has a solution z(t) satisfying

(1.3) z(t) = X/"w(t) + o(1)] (t — o0),

(ii) for each w_ € C(R) such that w_(t+7) = w_(t) fort € R and max lw_(?)] <

a, equation (1.2) has a solution z(t) satisfying
(1.4) z(t) = XT[w_() + o(1)] (£ = o0).

Theorem B. Suppose that A > 1 and that there exist constants u € (1, ) and
a > 0 such that :
o0
/ p~ " (t, X O/ dt < oo,

to

where g*(t) = max{g(t), t}. Then (i) and (ii) of Theorem A follow.

We note that a solution z(t) satisfying (1.3) is oscillatory if w(t) # 0, and that
a solution z(t) satisfying (1.4) is oscillatory or nonoscillatory according to whether
the function w_ (%) is oscillatory or nonoscillatory. In particular, Theorems A and B
are first results concerning the existence of oscillatory solutions of nonlinear neutral
differential equations. _

For equation (1.2), Theorems A and B have been extended to the following results
by Kitamura and Kusano [9]. (See also [5, 8, 10, 14].)
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Theorem C. Let A = 1. Suppose that

- _
/ t"F(t,a)dt < oo for some a > 0.
¢

0

Then, for each w_ € C(R) such that w_(t+7) = w_(t) fort € R and max lw—(t)| <

a, equation (1.2) has a solution z(t) satisfying

z(t) =w_(t) +o(l) (t— o0).
Theorem D. Let A # 1. Suppose that

(o9} .
(1.5) / AT, aXW/T)dt < 0o for some a > 0.
\ .

0
Then (ii) of Theorem A follows:

However, very little is known about extensions of Theorems A and B for equation
(1.1) such as Theorems C and D. In this paper we have the next results which are
improvements of Theorems A and B for equation (1.1).

Theorem 1.1. Let A = 1. Suppose that

(1.6) / t"'F(t,a)dt < oo for some a > 0.
to .

Then, for each ¢ € R and w € C(R) such that w(t + 7) = —w(t) fort € R and

max lw(t)| + || < a, equation (1.1) has a solution x(t) satisfying

(r.7) z(t) = w(t) + c+o0o(l) ast— oo.

Theorem 1.2. Let A #£ 1. Suppose that (1.5) holds. Then (i) of Theorem A
follows.

Remark 1.1. The solution obtained in Theorem 1.1_'i.s oscillatory or nonoscil-
latory according to whether the function w(t) + c is oscillatory or nonoscillatory.
Since condition (1.6) is independent of the choice of the function w(t) +c, equation
(1.1) possesses both oscillatory solutions and nonoscillatory solutions if (1.6) holds.
For the case w(t) # 0, the solution of (1.1) obtained in Theorem 1.2 is oscillatory.

The proof of Theorem 1.1 is given in Section 2. The proof of Theorem 1.2 will
be omitted. (See [16].) To prove the existence of solutions, we will use Schauder-
Tychonoff fixed point theorem.
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2. PROOF OF THEOREM 1.1

In this section we give the proof of Theorem 1.1. Consider the neutral differential
equation
n

(2.1) | Et—n[ﬂﬂ(t)‘+ z(t = 7)) + f(t,2(g(2))) = 0.

Let T and T, be constants with T — 7 > T, > to. We denote by U[T,, co) the set
of all functions u € C[T}, c0) such that the series

Z(—l)“‘lu(t + i7)

converges for each fixed ¢t € [T — 7,00). For each u € U[T,, ), we assign the
function ®u on [T}, 00) by

o0

(=1)"*Mu(t+47), t>T -7,
(®u)(t) = 2:1' )
(®u)(T — 1), te T, T -]
Then we see that
(2.2) (Qu)(t) + (Pu)(t —7) =u(t), t>T, wueU[T,, o).
In fact,
(Du)(t) + (@u)(t —7)= Z(—l)”lu(t +i7) + Z(——l)”lu(t + (i—1)7)
= Z(—l)“‘lu(t +iT) — Z(—l)i“u‘(t +147)
= u_(t), t>1T, we U[’l:*,oo).

Hereafter, C[T,, o) is regarded as the Fréchet space of all continuous functions

on [Ty, 00) with the topology of uniform convergence on every compact subinterval
of [T, 00).

The following lemma will be used in the proof of Theorem 1.1.

Lemma 2.1. Let T and T, be constants with T — 7 > T, > to. Suppose that
n € C[T — 7,00) such that n(t) > 0 for t > T — 7 and limy 0o (t) = 0 and define

V={veUTo0) : |(®v)(®)| <nt), t>T-71}.

Then ® maps V into C[T.,00) and is continuous on V in the C[T, 00)-topology.
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Proof. If v €V, then

(2.3) sup Z (=1)* o (t + iT)
‘ te[T—7,00) i=p+1
el
= sup Z(~1)’+1v(t + pT +47)
te[T—7,00)| 31

< sup n(t+pr)
te[T—T1,00)

- sup U(t)7 p=0,1,2,... "
tE[T+(p—1)T,OQ)

which means that the series 350, (—1)**1v(t+47) converges uniformly on [T'—, 00).
Cohsequently, ®v is continuous on [T, 00) for each v € V and ® maps V' into
C[T, ). .

Now we prove that ® is continuous on V. It suffices to show that if {v;}52,
is a sequence in C[T,, 00) converging to v € C[T,00) uniformly on every com-
pact subinterval of [T'*7 00), then Q¢v; converges to &y uniformly on every compact
subinterval of [T, 00).

For any € > 0, there is an integer p > 1 such that

(2.4) " sup n(t) < =
te[T+(p—1)7,00) 3

Take an arbitrary compact subinterval I of [T — 7,00). There exists an integer
jo > 1 such that

p
. . g . .
ZIUj(t+ZT)—v(t+%T)I<§, tel, j=j.

=1

It follows from (2.3) and (2.4) that

|(Dv;)(2) — (Pv)(1)] SZ |vj(t + i) — v(t +i7)]
+ .Z (—=1)i* o, (t + i7)
+ i (=)o (t +ir)
i=p+1

< &€, te Ia .7 Z jO,

which implies that ®v; converges ®v uniformly on I. In view of the fact that
(®v)(t) = (®v)(T — 1) for t € [T, T — 7] and v € V, we conclude that @ is
continuous on V. The proof is complete.
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Now let us show Theorem 1.1.

Proof of Theorem 1.1. Putd =a—|c|— max lw(t)| > 0. We can take a number
T > ty so large that

T, =min{T — 7, inf{g(t) : t >T}} > 1o

and
(2.5) / s"'F(s,a)ds < 6.
T

Let

/ LL;—_—t)———F(s a)ds, n>2,

Ge)={ Ji (-2

F(t,a), n=1,
for t > T. Notice that
(2.6) /m G(s)ds = /w =" p(s a)ds, t>T

' ¢ ¢ (n—1)! ’ , -

We consider the set Y of all functions y € C[T}, c0) such that
y(t) = y(T) forte[T,T], ly(t)| < / G(s)ds fort>T
' t

and
t+T7

ly(t) —y(E+7)| < G(s)ds fort>T.

t
Obviously, Y is a closed convex subset of C[T, 00).

Now we claim that if y € Y, then

(2.7) Y (-)Fyt+in)| < [ Gls)ds, t>T—1
i=1 t+7’
form=1,2,.... We see that if m is odd, then
m _ (m—-1)/2
S0yt +in)| = Y [y + (25— 1)7) — y(t + 247)]
=1 i=1

+y(t + m7)

(m—1)/2 t-+2571 o0
<3 / G(s)ds+ | Gls)ds

+(2] DT t+mr

< G( ds, t>T—71, yev.
t+7
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For the case where m is even, using the equality

. m - m/2
Z(—l)"“y(t +ir) = Z[y(t + (2 — V7)) —yt+2jm)], t>T -,

we can conclude (2.7).
According to (2.7),if m >p>1land t € [T — 7,00), then
m—p+1

N (D) +in)| = | Y (1Yt + (i +p—1)7)

i=p i=1
m—p+1
=| > (~1)*My(t+ (p— V)7 +ir)
i=1
o
< G(s)ds -0 asp— oo.
t+pr

for each y € Y. Hence, Y C U[T,, ). Letting m — oo in (2.7), we obtain
(2.9 @)OI< [ Gs, t>T-r yev
Lemma 2.1 implies that <I> maps Y into C[T,,00) and is continuous on Y. From
(2.5), (2.6) and (2.8), it follows that
lim (®y)(t) =0 and |(@y)(®)| <4, t2T., yeY.

Set
(Q)(t) =w(t) +c+ (- D™ 1(@y)() t>T., yev.
Then we find that

(2.9) , Q) =w®t)+c+o(l) (- oo)

and
(2.10) Q)@ < w@®)|+]c| +0<a, t2T.

foreach y € Y.
We define the mapping F : Y — C[T,, 00) as follows:

/too (?n——_t)fn)_Tlf(S, Q) (g(s)))ds, t> T,

(Fy)(T), te [T, T].

In view of (H3) and (2.10), we see that the mapping F is well defined. It can be
shown that F(Y) C Y. In fact,if t > T and y € Y, then

Eol< [ S rean= [T at

(Fy)(t) =

1)



by (2.6), and

t+71

o (s, (2y)(g(s)))ds

t+7 t+7
g/ F@@@:/ G(s)ds
t t

e - e an=| [ [ s @t

t+T (7, _ )n -2
< /t /s WF(T’ a)drds
t+7 :
= / G(s)ds
t
for the case n # 1.

Since (2 is continuous on Y, the Lebesgue dominated convergence theorem shows
that F is continuous on Y.

Now we claim that F (Y) is relatively compact. We note that F(Y) is uniformly
bounded on every compact subinterval of [T}, c0), because of F(Y) C Y. Ascoli-
Arzela theorem, it suffices to verify that F(Y') is equicontinuous on every compact
subinterval of [T}, 00). Observe that

1(FY) () ~ (Fy)(t+71)| =

for the case n =1, and

F(t,a), n=1,

[(Fy)' ()] < o0 t>T, yeY
/ s"2F(s,a)ds, n#1,
Jr

Let I be an arbitrary compact subinterval of [T, 00). Then we see that {(Fy)'(¢) :
y € Y} is uniformly bounded on I. The mean value theorem implies that F (Y) is
equicontinuous on I. Since |(Fy)(t1) — (Fy)(t2)| = 0 for t1, t5 € [T, T], we conclude
that F(Y") is equicontinuous on every compact subinterval of [T,,o0). Thus F(Y)
is relatively compact as claimed.

Consequently, we are able to apply the Schauder-Tychonoff fixed point theorem
to the operator F and find that there exists a ¥ € Y such that § = Fy. Set
z(t) = (Q7)(t). From (2.9) it follows that z(t) satisfies (1.7). In view of (2.2), we
obtain

2(t) + 2t — 1) = w(t) +w(t —7) + 2c + (=1)" (@Y (©) + (8F)(t — )]
=2c+ (-1)""'g(t),
=2c+ (-1)""H(FYP(E), t>T,

89
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Therefore we see that
Zle® + a2t =] = (1" (FDTO) = ~f(t2(6@), 2T,
so that x(t) is a solution of (2.1). The proof is complete.
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