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1 Introduction

In this paper we derive sufficient conditions for the non-existence of nonconstant periodic
solutions of Volterra differential equations with distributed delays where the delay kernels
are chosen among v-functions or their suitable convex normalized combinations. The
reason of this choice for the kernels is that the Volterra delay differential equations can
thus be transformed in an expanded system of ordinary differential equations by the
standard ”linear chain trick” method [1]. To this expanded o.d.e. Volterra system we
can apply the conditions, encoded by the logarithmic norm of some Jacobian related
matrix, that Li and Muldowney [2] have obtained for the nonexistence of (nontrivial)
periodic solutions for autonomous ordinary differential equations in RY, conditions that

generalize to the case N > 2 the Bendixon and Dulac critera.

*This paper is performed in the frame of the research project Cofin 99” Analysis of Complex Systems
in Population Biology”.

tResearch partly supported by the Ministry of Education, Science and Culture, Japan, under Grant
09640256.
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2 General results

The Volterra delay differential systems with distributed delays can be written as

= z;(e; + ‘Lja”acJ + Z'ym / fiit — v)z;(u)du),

zGN—{l,Z,..., n}

2.1)

where for each v;; # O fii : [0,+00) — R are continuous nonnegative functions obtained

by convex combination
Jij(u Zc(k) Pu), o >0, Zc(k) =1 (2.2)

of functions which are solutions of linear differential equations with constant coeflicients:

of
(k)(u) zk———)—uk‘l exp(—ayu), o € Ry, ke{l,2,...,py} (2.3)

and satisfy the normalized condition

+oo
/ fii(w)du = 1.
0

We remind that the average time delay of (2.3) is T = k/cay;. We refer to (2.3) as to a

~-distribution (or y-function) of order k. According to linear chain trick ([1] ) we put

t
2O = [ 1P - wzds, k=17

o0 (2.4)
e () == 2;(t), L,5EN, 75 #0.

Let ”p” the number of distinct functions a: ) and P = {n+1,...,n+ p} the set of all
their indices. According to (2.4), system (2.1) is transformed in an expanded system of

"n + p” ordinary differential equations

a:z—:J:,(ez—FZa,J:z:,JrZ’ych(k) () ), T€N

(k) = OA,,JIB(k 1) — QT gc)’ k= 17-- <y Pij, i)j EN: Yij 7é 0

where the last ”p” are linear differential equations with real constant coefficients. The

(2.5)

initial conditions for (2.1) require the knowledge in the past of the nonnegative, continuous

and bounded functions

zi(u) = @i(u), u € (—o0,0] forall i€ N. (2.6)
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The (2.6) provide the i.c. for (2.5). In fact:

£:(0) = v:(0), €N,
(k) 0w L (2.7)
x’ij (O) = /; fij ('—U)QDJ(U)dU, k= 17 ceesPigy, 1,0 eN
Consider the general system of differential equations
dz '
— = 2.
= F() 28)

where F(z) € RN, z + F(z) is C! in an open subset Dy of RY. Denote by J = (0F/dz)
the Jacobian of (2.8) and by A; > Ay > --- > Ay the eigenvalues of (1/2)[(0F/0z) +
(0F/0z)T]. Denote by J? the (g ) X (1;’ ) matrix which is the second additive compound
matrix associated to the Jacobian matrix J ([2]) and remind that if z € RN then the

corresponding logarithmic norms of J? (that we denote by u(J1?))) endowed by the vector

norms (i) |z} = ¥ |z, (i) |2]eo = sup; |z;| and (iii) |z|; = (27z)/? respectively are:

: OF, OF. OF; OF;
] [2} e —T _S J J . < < M
H  m(J*) sup 6,err(,)strj;s ('fm +|8$s) 1<r<s<N}
OF, OF, OF, OF,
i 2y = Ty -2 T 1]1:1< < :
(i) poo(JB) Sup § 7 + B2, +#Er’s (lamj |+ Iaa:j I) 1<r<s<N};

(iii) pa(JE) = X+ g

where po(J?) < 0 implies the diagonal dominance by row of the matrix J®2 and

p1(J®) < 0 means its diagonal dominance by column. Then the following holds|2]:

Theorem 2.1 If Q@ C RY is a compact global attractor of (2.8) on which u(J®) < 0
for some logarithmic norm then in Q there is no simple closed rectifiable curve which is

invariant with respect to (2.8).

3 2-dimensional Volterra systems with 2 delays

Now let us consider n-dimensional Volterra delay differential systems with distributed
delays expressed by (2.1) with delay kernels (2.2) and (2.3). The systems can be expressed
as (2.5) by using p new variables (2.4) and become (n + p)-demensional o.d.e.. Their
Jacobian has a size (n+ p) x (n+ p) and its second additive compound, is (";””) X ("'2”’).

Hence, in the following we restrict our systems with n = 2 and p < 2, that is, we consider
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2-dimensional Volterra systems with at most 2 delays, whose kernels are given by the

first or second order y-distributions (k = 1 or 2 in(2.3)). Hereafter, for the simplicity of

notation, we denote a:g“) as xg-k).

Because of the symmetry of the systems, they are described as follows:

e a system with one first order delay:

Iy
T2
. (1)
;

= zi(ey + anzy + apze + vxg-l))

= $2(€2 + a1 + CLQQSL‘Q)

ar;j — amg-l) j=1lor2.

e a system with one-second order delay:

z

Ty

)

e
j

= z1(e1 + anzi + apT, +"7$9(’2))

= .'1,'2(62 + a2121 + G:22.’.I72)

e a system with two-first order delays:

\

= az;—aziV
J J
= aa:g.l) — ax&z), j=1or?2.
(1)

z1(e1 + anzy + apxs + mzy + ’Yﬂgl))

T (82 + as1x1 + 022.’82)

ary — legl)
(1)
Bze — Py

z1(e1 + anuz1 + 1222 + 7137§1))

= z3(ex + ag121 + Gy + 72$§1))

=~ o — oz
= 1 aﬂ:l
By — Bz
z1(e1 + angy + apzs + Nzy")
= To(ex + ap Ty + apTy +"72SC§1))
= az; — aa:gl)
Bz — fiz)
2 Ty
zi(e1 + anzr + appzy + ’71159))
= xo(ez + o121 + agpz2 + %f;gl))
= I — Oé.’ﬁgl)
_ . ax()
= Pz, — PIy7.

(3.1)

(3.2)

(3.4)

We will distinguish between two systems in (3.1) as (3.1); for j = 1,2. Similarly we define

system (3.2); for j = 1,2. For all systems, we always assume that a; < 0,e; # 0 (i = 1,2)
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and a, B > 0. The first assumptions imply self-crowding effects biologically and the last
comes from (2.3).
First, we consider the boundedness and ’partial permanence’ of the solutions to Ssys-

tems (3.1);-(3.6). Note that R3 or R is positive invariant for each system.
Theorem 3.1 Suppose that

(a) for (3.1)1; one of the following is satisfied
(a;l) apay <0 andan +v<0
(a-2) a12 <0, a21 <0 andayj; +v<0
(a-3) anaze > ajpas; and y < 0:

(b) for (3.1)z; one of the folowing is satisfied
(b-1) amdm < 0 and ay1a92 > —v%ay1/(4a0)
(b-2) a1 <0 and ay; <0
(b-3) a11a29 > agrag; and v < 0:

(c) for (3.2)1; one of the following is satisfied
(c-1) arpasn <0 and ajy + |y <0

(6-2) ag < 0, a1 <0 and ay + I'}/l <0

(c-3) anag > |aiz||laz|, a1 + |awz| < 0 and v < 0:
(d) for (3.2);; one of the following is satisfied

(d-]) —a > |a12I + h’l and —Qgy > |(121|
(d-2) the same as (c-2)

(d-3) the same as (c-3):
(e) for (3.3); one of the following is satisfied

(e-1) —an > |aw] + ||+ el and —az > |ay]
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(e-2) a1p < 0,a5 L0 and —ap; > 1] + |l

(e-3) arzaze > larg||asi], —aun > lawe], m <0 and 3, <0:
(f) for (34) or (3.5) or (3.6); one of the following is satisfied
(f-1) ap <0, az <0, —ayy > || and —az > ||
(f-2) the same as (e-3).
Then the solutions of (3.1);-(3.6) are bounded for any o >0 and 8> 0.

Theorem 3.2 Suppose that the solutions of (3.1);-(3.6) are bounded and at least one of
e; (i = 1,2) is positive. Consider the solution z(t) starting in R3 (system (3.1);) or in
R (system (3.2);-(3.6)). Choose a sufficiently large number T' > 0 and a sufficiently

small number € > 0 and define sets

Q;‘ ={z € R}z, + 2, > E,a:g«l) >0}, j=1,2
M= {zeRi|z+ 2o > e,xg-l) >0,7=1,2}
V= {zreRiz> g,z > 0,i=1,2}

M ={zeRzi+z2> e, zV > 0,#" > 0}.

(i) For (3.1)1, the solution stays in O3 fort >T, ify <0 or —an > >0;
(ii) For (8.1)y, the solution stays in Q3 fort > T;

(ii) Suppose that —ayy > |y|. Then for (3.2);, the solution stays in O fort > T, if
ez > agei/(a1+v) when e >0
or ej; > apey/azp when ez >0; (3.7)
(iv) For (3.2), the solution stays in Q* fort > T, if
ey > agzier/a;; when e >0
or ej >ey(an+7)/ax when ey >0; (3.8)

(v) For (3.3), the solution stays in Q* for t > T, if —an > Iml;
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(vi) For (3.4), the solution stays in Q* fort > T, if
—a; > |yl (E=1,2); (3.9)
(vii) For (3.5), the solution stays in Q* fort > T,

(viti) For (3.6), the solution stays in Q* fort > T, if —ay; > |ml.

4 Non-existence of periodic solutions

Let us apply Li-Muldowney’s criteria (Theorem 2.1) for the non-existence of periodic
solutions of systems (3.1),-(3.6) (j = 1,2). The Jacobian matrix of (3.1); becomes
o

e1 + 2anz; + aprs + vz Q12T Y1
J = a1 €9 + as1r + 2a22x2 0
o 0 —Q

The logarithmic norm p; endowed by the norm |z|; of the second additive compound
matrix J? associated to J is negative in R3, if and only if the supremums of the following
functions satisfy

(e1 + 2a1121 + apzy + y2) + (63 + amzy + 2a0029) + ¢ < 0

(e1+ 2a1171 + apzs + 'y:z:gl)) —a+ |ag|za <0
(e2 + a1z + 2a0:22) — a + |asa|z1 + |y]z1 <0,

in R‘j’ro. From the second and third inequalities, we have ajp + laz1] <0 and ag; + |aia| +
|v] < 0 as necessary conditions for pu; < 0 in R3,. These two conditions hold true only
for ¥ = 0, which gives us a Lotka-Volterra system without a delay term. This shows that
the direct application of Li-Muldowney’s method does not work for (3.1);.

Now let us transform (3.1); by change of variables

1 = (e1 + ane¥ + a2 + yz{M) /)
U2 = (e2 + g™ + agoeta¥2) /), (4.1)
i = aern — gz (M

where new variables y; (i = 1,2) are defined by y; = (log z;)/\;, for some positive constants

Ai chosen later. The Jacobian matrix of (4.1) is

aj et Aoa1pe®¥ /Ay v/
J} = A] a21€'\1y1/)\2 0228/\2312 0
ol eMn 0 —
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The logarithmic norm pq(J] [2]) is negative in R3 (note that it must be negative in R3,

not in R, because of change Qf variables) if and only if the folowing is satisfied in R3

sup{aue’\”’1 + Gppe™Y? + az\le’\”’l} <0
sup{aue’\”’1 —a+ Allaglle’\lyl/)\g} <0

sup{agge)‘zyz — o+ Aglalglehyz/)q + l’}’!/)\]} < 0. (42)

Suppose that for sufficiently small € > 0 and large T' > 0, the following is satisfied by the
solution y(t) = (y1(1), v2(8), 73" (1)) of (4.1)

y(t) € Q?y = {y € R¥|eM¥t t eho¥2 > g,2) >0} for t>T. - (4.3)
Under the assumption (4.3), the conditon given in Theorem 2.1 is ensured if

. a1 + Ol)\l < 0, a1+ /\1|a21|/)\2 S 0,

a22+)\2|a12|//\1 SO, ~C¥+I’YI/>\1 < 0.

The above is equivalent to

_ a21| <

222 i ' )
an S S , <a< (4.4)

A2 a2 1l an
1 012| M A

Suppose that aiiaps > |a||asi| and —ay > |y]. Then it is easy to check that we can
choose \; > 0(i = 1,2) satisfying (4.4) for each a > 0. Note that Q?y corresponds to
3 defined in Section 3 and (43) is equivalent that the solution of (3.1); stays in 3 for
t > T. For the last property, a sufficient condition is given in Theorem 3.2 (i). This

proves the following Theorem 4.1 (i):

Theorem 4.1 Suppose that the solutions of (3.1);-(3.6) are bounded and at least one of
e; (1 = 1,2) is positive. Then each system has no periodic solutions for any o > 0 and

B > 0 if the following conditions are satisfied:

(i) For (3.1),

andg > |apllen|, —an > vl; (4.5)

(i) For (3.1),,

anag > |ala], ana > |aallyl; (4.6)



(iii) For (3.2),, (3.11) and

az2(|7] + a11) > |asz||aal;

 (iv) For (3.2);, (3.12) and

11092 > |ag | (|| + lasa|);

(v) For (3.3),
az(Iml|+ ai1) > laa|(|e| + lawzl);

(vi) For (3.4), (3.13) dand
(@11 + [ma[)(a22 + [rel) > |awzllazil;
(vii) For (3.5),
anaz > (|1l + lawl) (el + |azi));
(viii) For (3.6),
aza (vl + an) > latz|laz1],  anae > |as|(laa| + [1]);

and
|laz1] > |al;

or (4.12) and
—anlag| > (laa| + |2l 2lml+aen <0.
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