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- Robustness and Global Bifurcation
of Three-species Ecological Model

SEHER-HE-D FE R ( Tamiyuki Uno )

§0. INTRODUCTION

We shall consider three-dimensional Lotka-Volterra equations defined by the following
vector fields:

(LV) Z; = vz (1 + Z ai;;), 1 € Z3,
: j€Z3

on the closed positive cone R3 := {z € R3: z > 0}, where ¢ = (21,3, 23). We denote
by ° a differential d/dt and Z3 := {1,2,3} is considered cyclic.

In the case of the competitive systems (see Hirsch [H]), the global behaviors of the
three-dimensional Lotka-Volterra systems (with a;; < 0) have been studied by Driessche
and Zeeman [DZ], Chi, Hsu and Wu [CHW].

The analysis of the global behaviors of orbits in this paper is featured that the system
is not always competitive. For example in the case when 71 = 75 = 73 (> 0), we have
Theorem 1.1. below.

Consider the following systems:

(LVl) T; = a:','(l + Z aij:c]-), 1 € Zs.
jedis

THEOREM 1.1.[UO] In the vector field of (LVy) with v; > 0, a;; < 0 and a1 < ai <
aiiv1 (1 € Z3), almost every orbit v in (R3)° satisfies one of the following:

(D) If 11 (aii+1 = aii) > I (s — aiz-1) and det A < 0, then every orbit ¢ in (R3)°
i€l icZy

tends toward the equilibrium point x*. .

(2) If I (aii+1—ai) < II (ais —aii-1), then every orbit ¢ in (R3)°\T'y winds toward
i€Z3 'iEZ;)

the heteroclinic cycle T'.

Here we denote by (-)° the interior of -, by A = (ai;) called the interactive matriz
of the system, by z* the equilibrium point which is in (R3)° and by T'; the half line
from 0 passing through the equilibrium z*. Three singularities e; := (5_1—1,0,0), €y =
(0, -;—;—2—, 0), e3 := (0,0, ;_;];) are connected one another by three orbits called the heteroclinic
orbits. The union of these singularities and orbits forms a curved triangle T, called the
heteroclinic cycle.

On the other hand, in the case when 7;’s are not necessaly the same, there is an im-
pressive result Theorem 1.3. below.

DEFINITION 1.2. The system (LV) is said to be permanent, if there exists a compact
set K C (Ri’_)t’ such that for any ¥(0) € (Ri)°, we have 9 (t) € K for ¢ sufficiently large.

Namely the system (LV) is permanent, if 8Ri is-a repelloi on Ri, where BRi denotes
the boundary of Ri including points at infinity.

THEOREM 1.3.[HS] Constider the vector field of (LV) with v; > 0, a;; < 0 and a;;_1 <
Q5 < Q541 (Z € Z3)



(1) If TI (aiir1—ai) > I (@i —ai;—1) and det A <0, then the system (LV) 1s perma-

icZis icZ
nent.
(2) If 11 (asi+1 — @) < II (as — aizi-1), then the heteroclinic cycle T is an attractor.
iEZ:} iGZ:}
The above results determine the behaviors of the orbits in the neighborhood of (‘)Ri in
R?. |

Now we shall define the structural stable-like idea on a stability of the system (LV).
Consider the system (LV.) which is obtained by perturbing the system (LV) as follows:

(LVE) I; = fyz-wi(l + Z ai;T; + ezd)z(a:)), 1 € Zg,
jeZs

where the ¢; are affine linear, the |¢;| are sufficiently small and € ;= (€1, €2, €3).

DEFINITION 1.4. We say a property of the system (LV) is robust, if it holds in the
system (LV,).

The following theorem is our first result.

THEOREM 1.5. Consider a vector field of (LV1) as in Theorem 1.1.
(1) The global property that z* is a global atiractor on (R%)° are robust.
(2) The global property that T is a global attractor on (R%)°\ Te are robust.

Here I, is the one-dimensional stable manifold of the z*. This result has the following
corollary.

COROLLARY 1.6. Consider the system (LV) as «n Theorem 1.3.[HS]. Then there exists
sufficient small € > 0, such that for |v; —v;| < € (i,j € Z3), every orbit ¢ in (R3)°\ .
satisfies one of the following:

(1) If I (aiiy1 — @) > I (@i — asi-1) and det A < 0, then ¢ lends toward the
=Y 4T} ’iEZs

equilibrium point =*.

(2) If TI (aiit1 — ais) < II (ais — asg1) then ¢ winds toward the heterochinic cycle T'.
icdy icZs .

In the case (1) of Theorem 1.3.[HS], the system is permanent but the z* need not be
locally stable. Infact it may be locally unstable with a certain condition. And with some
additional conditions, the system may have a limit cycle which is robust in competitive
systems. We shall show the above case in Proposition 2.2. and Corollary 2.3. as our
second result.

PROPOSITION 2.2. Consider the system (LV) with a;; = —1, det A < 0. Suppose that
vizt are constant k, a;;—1 (i € Z3) have negative values ( end not all the same ) and
satisfy the following conditions (C1) and (C2):

(C1) 1+ J] (0 +aii1) > 0.
i€Z3
(C2) Co 84 H a;i—1 < 0.
’iGZs

If aii+1 (i € Z3) close enough to 0, then there exists a non-trivial w-limit set in (R3)e.
In particular, when a; ;11 (i € Z3) close enough to 0 from below, the w-limit set is a limit
cycle.



For our interests where the limit sets exist, we conclude by showing the existence of a
positively invariant set which includes them in Theorem 3.1. and Corollary 3.2.

THEOREM 3.1. Given system (LV) with a;; + aj; < 0 (4,7 € Z3). If the set I satisfies
(G1),(G2) and (G3), then the set I is positively invariant and the every orbit from (R3)°
has an w-limit in the set .

For details see §3.

§1. PROOF OF THEOREM 1.5.

We denote by (LVi) the system (LV.) with 73 = v2 = 43 (> 0). The assertion of
Theorem 1.5. means that, in the system (LVy.), every orbit ¢ from (Ri)° tends toward
z* or every orbit ¥ from (R3)°\ T winds toward 7' if det A < 0 and ] (ai;t1 — ai) +

. ieZs
I (aii-1—aiu) #0.
icly

LEMMA 1.7. There ezists a open set K. C (R3)°, a neighborhood n(T'1) of 1 and a
smooth scalar function G(z) on (Ri’_)c’ \ T'1 such that (LVy,) is transverse to Cy := {z €
(R3)°: G(z) = 0} for any 0 in (0,7), and G has a constant sign on K.\ n(I'1).

Proof of Lemma 1.7. We consider the projected vector field (&) of (LV1) on S2 := {z €
R3 :|z| = 1} as follows:

(%) & =F —|z| (e Fe,

where F' = (Fy, F», F3) is the vector field of the system (LVy). We denote by 7, (t) the
orbit of (%) through the point z at ¢t = 0. ’

We define the map ¥ : R x 52 — 82 by P(t,z) = 712 (t).

Then we have
' $(0,z) = z €S2

and ) ) )
"/](tl +t(),33) = ¢(t1,¢(t0’$)) tlatO e R.

For each t € R we have a map
P83 — 52

defined by N )
Yi(z) = (1, z) (t,z) e R x S3.

We shall consider the system (LV1) in the case (1). Because z* is locally asymptotically
stable, in the vector field (%) there exists a positive real number d such that (%) is transverse
to the closed curve Cy inward, where Cy := {z € (S%)° : |z — z*| = d}.

For each ¢ < 0 the closed curve 4(Cy) = {¢y(z) € (82)°:z € Cy) is smooth because
@; is a diffeomorphism. For each ¢ < 0, let

Cs:= |J st(Ca) C (RI),
. s>0

where 6 = cot ™! ¢.

Now we consider the system (LV1c) in the case (1). We define the function G : (R3)° —
R as follows:
0 (CDE (R:-}}-)O\Fl )7

G(w)={0 (.’L‘Erl).



We consider
&= va. f= Z
’lez;;
where V := (6z1 , 39:2 , 6wn) and f := (f1, f2, f3) is the vector field of the system (LV1c).

Hence for the sufficiently small ¢, there exists a open set K. C (R3 )° and the neighbor-
hood n(T';) of 'y such that '
G<O0 on K.\ n(Ty).

Similarly in the case (2), we have
G>0 on K¢\ n(T1).

]

Proof of Theorem 1.5. First we consider sail-like surfaces D, := {z € (R%)°: D(z) = r}
and a family of cone-like annuluses Cy , where D(z) := |z|? on (R )° and G (:1:) are smooth
scalar functions defined in Lemma 1.7.

For r1,72(0 < 71 < 72 < 00) and 61,02(0 < 6 < 63 < ) we suppose the domain:

Diry 2y i={2 :71 < D(z) <73}, Clo0,) = {2 :01 < G(z) < b2}

Clearly we have
Diog) € D@o,g)r  Clom € Clo,0):

for p < q. And we have
;.il’%Cg =TI, glm Cp = OR3 \ {oo} and lirr(l) D, = {0}.

We shall consider the system (LVy). If det A < 0 and [] (a;i+1 — aiu) + [] (ajz—1 —
i€Z3 ‘iEZ:;
a;) > 0, then the system (LV;) is permanent by Theorem 1.3. Therefore there is some

bounded domain I(g) C (R3)° such that for any orbit ¢ from any point in I(g) and
sufficiently large ¢, ¥(t) € (R3)°\ I(g).

Hence there is some 6,6 (0 < § < § < co) such that for any orbit 1 from any point in
(R2)°, liminf;,o0 %*(t) > 6 and limsup;_,o, ¥*(t) < 6 (i € Z3) , Where the 1*(t) are the
components of 1(t).

When we consider the system (LV, ) there exists some domain I(g)., the construction
of which is similar to that of I(g) in the (LV1) , because the permanence of the system is
robust in this case (see [HS]). In addition to existence of I(g)¢, from the Appendix 1 if €
is enough close to 0, then I(q). is close to I(g) enough. '

Now we consider the system (LVi.) in the case (1). For sufficiently large [ we have

D> D(1 - l(zy + 22 + z3)),

where D :=VD - f.
Therefore for sufficiently small m we have

DlD(O,m,) > 0.
On the other hand for sufficiently large L and T we have
W(T) € Do,ry if ¥(0) € Dz 00)

where %)(t) is the orbit of the system (LV1e).



In the system (LVy), if necessary we shall exchange once, there exists a family {Cy},
such that G <0 on {z € Cp: 0 < 0 < oco}. Therefore in the system (LVy), for any r,

7(0<r<7<oo)andany§, 8 (0 < @ < 0 < 7), if necessary by resetting ¢; enough small,
then there is 71,72 (0 <7 <7 <7 < 7y < o0) and 65, 05 (0 < 01 <0 <0 <8y <7)such
that

G <0 on D, N Cio, s (1)

and ‘
D(O,'rl), D(rg,oo), C(Gz,‘rr) C I(Q) (2)

On the other hand, there exists a tubular neighborhood n(T.) of one dimensional mani-
fold I'c which is tangent to the eigenspace spanned by an eigenvector with real eigen value
of the Jacobian matrix Dy« f of f at z} such that for any orbit ¢ from any point in n(T)
we have w(y) = 2}, where w(-) is w-limit set of - and z? is an interior equilibrium point
of the system (LV,).

Now we define a domain J,:

Je = maxmm{ ze(Ry):z ¢ D yNCrogy C n(le) .
01 7.1 172 ’ .
If necessary by resetting ¢; more close to 0, 7} can be close to 0 enough, 4 can be large
enough and ¢’ can be close to 7 enough, namely for any 1, ro (>0) and 6, € (0,7), there
are € (0 < |e;| < 1), such that 0 <7} <r; <72 <rh <ooand0< 6; <6 < . Hence,

Coay C {I{9)eU e} C {I(g)eUn(Te)}. (3)

Therefore by (1), (2) and (3), for any orbit ¢ from any point in (R3)°, we have w(3) =
In the other case that [] (a;s41—ai)+ I (asi-1—as) < 0, the proof is done similarly.
icZs icZs
O

This theorem has the following corollary.

COROLLARY 1.6. Consider the system (LV) as in Theorem 1.3.[HS]. Then there ezists
sufficient small € > 0, such that for |y; —vj| < € (i,j € Z3), every orbit ¢ in (R%)°\ I
satisfies one of the following:

(1) If H (@ii+1 — ai) > TI (e — aii-1) and det A < 0, then ¢ tends toward the

ZE 3 iEZs
equilibrium point x*.

(2) If TI (@541 — aii) < I (@i — a;5—1) then ¢ winds toward the heteroclinic cycle T.
icZy icZs
§2. EXISTENCE OF A LIMIT CYCLE

In another case that the system is not so near the system (LV}), an w-limit set which is
another type one in Theorem 1.1. is happened. In some case, it is a limit cycle. We shall
show these cases in Proposition 2.2.

PROPOSITION 2.2. Consider the system (LV) with a;; = —1, det A < 0. Suppose that
viz; are constant k, a;;_1 (i € Z3) have negative values ( and not all the same ) and
satisfy the following conditions (C1) and (C2):

(C1) 1+ JT @+ aii-1) > 0.
icZs



(C2) ' 8+ H aii-1 <0.
iéZa
If aii+1 (i € Z3) close enough to 0, then there ewists a non-trivial w-limat set in R3)°.

In particular, when a; ;41 (i € Z3) close enough to 0 from below, the w-limit set 1s a limat
cycle.

The above proposition has the following corollary.

COROLLARY 2.3. Consider the system (LV) with aj; = —1, detA < 0, v; > 0 and
z* € (RY)° (i € Z3). Suppose that a;;_1 are negative and not all the same, and the
parameters of the system holds the following condition (D1) and (D2): -

(D1) I A+ aii) + T+ i) > 0.
iEZa t
(D2) (Y el 3 vvialal(l —agei)} + ([] wad)det4 < 0.
icls iaﬁjéza icd

Then there exists a non-trivial w-kimit set in (R3)°. In particular, if aiir1 <0 (i € Z3),
then the w-limit set 1s a limit cycle.

§3. STATEMENT AND PROOF OF THEOREM 3.1.

For our interests where the limit set exists, we shall consider the following set I and
conditions (G1), (G2) and (G3).

T T z
I;:{a} ER?{— :Cmin < _l+_2+_3 Scmax}
. 7 Y2 Y3
where
Chin = ]Ilin(C,lnin, C;) and Chax = maX(C;na.x’ Cs).
Here

! =inf{c>0:(Gl) N (G2)}, Cha.e :=sup{c>0:(G1) N (G2)}

and Cj is defined in (G3).
(G1) : For some 1,5 € Zs (i # j),

1—cpn)(l—cy) <0 (6)

(G2) : For some i,j € Z3 (i # j) if

¥ + (aig + aji)viv; + 75 > 0,

(292 + (aij + ajo)yvy) > vi— v and (27 + (ag + aji)vivi) > v — Vi
holds, then

he(l—cy) <0 or he(l—cy;) <0, (7)
where
2y e + aji + 2)(aig + aji = 2) + 2y + agi + 2) (e + (4 — %)

he :
‘ v+ (as; + aji)vivi + 73




(G3) : We put 141, 4ay, s and Z as follows.

1a1 = (17171) (A+tA)—1 t(lalyl)a

1 1 1 1 1 1
Qmy ‘= Ty T, T A+tA _1t—,+,m,
L (71 Yo 73)( ) (71 Y2 ’73)
Thus 111
10, = (1,1,1) (A+4) (=, —, =) =01.
Y1 Y2 Y3
And .
s = —(1a1/40,)7,
5= s, N S @,1,10) (A4 ta)t
Y1 Y2 Y3
If € (R3)°, then
Cz = =10y — (101 ya,)7, | (8)

where - is the ordinary multiplication of numbers.

THEOREM 3.1. Given system (LV) with a;; +aj <0 (3,5 € Zg). If the set I satisfies
(G1),(G2) and (G3), then the set I is positively invariant and the every orbit from (R3)°
has an w-limit in the set I.

Proof We consider the function S as follows:

S(z) :=—:P—1+ﬁ+ﬁ,
4t Y2 Y3
on Ri. Thus the differential of S is
S =z +z9+x3+aAlc. (9)

Define a plane S, for ¢ > 0 and a quadratic surface Q) as follows:

Se:={zeR3: S(a:).z c},

Q:={a:€Ri:S"=O}.

Remark that the surface ¢ includes all équjlibrium points of the system (LV).
For enough large I € R and the matrix F1 whose all elements are equal to 1,

S>xz1+z0+z3— 1 zEltz = (@1 + 1+ z2){l — l(z1 + 22 + z3)}.
. Thus for an enough small ¢ > 0,
S[mESc: >0 on (R3)°.
And for the identity matrix Ey,

S < 2y + xz2 + .23 — eEo'e = z1(1 — 1) + z2(1 — z2) + 23(1 — z3).

Thus for an enough large ¢/ > 0,



S|m€50,<0 on (R%)°.

If for sdme c >0

Q n S. n RY =0,
then for an arbitrary initial value ¢(0) € R3 N S, and arbitrary ¢ > 0,

¥(t) € {z: S(z) >c} or ¢P(t) € {x:85(z)<c}.

Here we denote the minimum value and maxmum value of ¢ such that Q ns.n R3 #
by Cpin and Cpax respectively.

Now +v; and ai; (3,7 € Z3) are fixed. The quadratic curve Q N S. does not change the
type of it (but may degenerate).

Hence we shall consider the value of ¢ such that this quadratic curve ¢ N S. and the
- compact set 5. N R3 have a common point.

In the case of (Gl) and (G2), we shall consider the common set of S.NOR> and QN Sc,
where OR? := {z € R®: [[ z; = 0}. We may assume z3 = 0 without loss of generality. So
if z

{z€R}:2€QNS;and z3 =0} C {z € R} :z € S.NOR%},
then QN S.NR3 # 0.

It becomes a simple problem where the solution of the quadratic equation exist.

In the case of (G3), we can not determine the value of Cpip and Cpax in this way. But
just on Chyin or Cpax, the following equality holds.

sVS, = le{m:S:Cmm or Crmax }? (10)

where s (£ 0) € R.

Since VS, = (_711 5 713 ), and @ is quadratic, the point & € R> which holds (10) are less
than two or equal two. For those points, the JllSt value of C such that & € S, is Cpjn or
Cax-

We shall calculate in the state as follows:

VQ=g+zD.g=(1,1,1) + (z1,z2,23) (A + t4),

where we put the system (LV), #; = v;z;9; (¢ € Z3) and g := (91, 92, 93)-
From the equation (10),

1 1 1 )
5= {s(—,—,—) = (1,1,1) 14 +t4)"L. 11
{(71 oy 73) (L1, 1K ) (11)
Since Z € @Q,
. .
(1L,1,1)& + S5(A+ tA) 'z = 0. (12)
By (11) and (12),
2 __
§° = 1a1/50. (13)
When % € R%, we may put é:={c: & € S.}.
Thus
- 11 1. 1 11
i=(—,—, =) =—(—,—, =) A+'4)"T ¥(1,1,1) — (101 - 7a7)2
Y o7Y2 78 Y72 73



where we put s = —(1a1/7a,y)% by (13), because if s = (10,1/7%)% then ¢ <-0. The value
of ¢1is Cpin or Chax in the case. O

For arbitrary v, > 0 (i € Zs), we shall consider the set:

T1 I9 T3
.[57 :Z{mERi:CminS‘-,—-l'—,‘-f'*T SCmax}-
1 T2 M

Here the value of Chin and Cipay are the minimum and the maxmum value respectlvely
such that

Qy, N Sy N RE #0,

where
3
Sc::{:cERS:S'=—1-+—2+——=c}
? n v %
S, = ﬂm +—Bx2+ ac3+a:d1g{71 72 7?Aa:,
7 v'2 Y3 1 2 3

Qy:={z € R : S, = 0}.
Here diag{-} is a diagonal matrix with components - . Remark that all equilibrium
points of the system (LV) are included in @, too.
COROLLARY 3.2. Consider the system as in Theorem 8.1. For an arbitrary vector
fi=(71,72,78) (i >0 i€ Z3), we put

I:= ﬂfg,y.
il

Then the set I is positively invariant, and every orbit from (R )° has an w-limit in the
set I.

Remark that in the case of (G3), it is well knoWn that if the ), is elliptic, then the z*
is exactly a global attractor on (R )° .
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