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Unconventional DDM & parallel method for fluid computation

Shi Dongyang (TIT/ZZU)
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A new finite element Domain decomposition method, which is based on a point-by-point scheme, domain

dccon;position method (DDM) and the matrix-storage free formulation, is developed and implemented to the

model equation for Navier-Stokes equations, convection-diffusion equation, Numerical experiments demonstrated

that the proposed method is efficiently to solve the madel equation.
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1. Introduction

The finite element method (FEM) has been widely used
in engineering science computing for solving different
equations arisen from many field such as structure, heat and
fluid etc..The excellent properties of FEM compared with
the finite difference method are its applicability to an
unstructured mesh, simplicity for managing boundary
conditions and etc.. But , the general FEM should create the
stiffness matrix, and there are some strict limits to create the
stiffness matrix. The defects of FEM are larger storage
requirements and higher CPU cost than the finite difference
method and would especially become a barrier when
handling large scale problems.

Domain decompositioh method (DDM) is interesting for

several reasons, One is the possibility to use different
. physical models on the subdomains in order to get a more
accurate modelization. It also reduces complex geometry to
simpler subregions. Last but riot least, as this method is
easily paralielizable, we can take advantage of parallel
computers,

The Jocally implicit finite element scheme is a unique
kind of finite élemcnt method. The distinct feature of this
scheme, comparing with the general FEM, is not need to
build the stiffness matrix and the numerical computational
procedure carried with point-by-point scheme, which
provides us with more space to improve numerical
computation procedure and more flexibility in applications.
on the other hand, Theoretical analysis and numerical
simulations show that the proposed locally implicit finite

element scheme has good stability.

2. Governing Equation and Discretization

we discuss the following model equation, convection-
diffusion equation, for Navier-Stokes :

du  d(au 2y
EIM f—,» % =y ax*
with the time initial condition is,

#(x,0) = H(x) (2.2)
and boundary conditions
w0, =a,u(L,)=b
W (0,1)=0,u'(L,1)=0

a, b are two constants.

(0sx<1) @D

(2.3)

Assume [0, L) is divided uniformly by M)+M; points

O=xoSx .83, =L, Ax=x,-x_

vi=1-§ vy,=§ (0s¢<1) @3
For every interval [x.,, x], the coordinate transformation is
X=X,V XY, (2.6)

Let @ J be the shape function responding to point X

wy = ulx L, O+ ulx,, Dy,

Uy =u(x, O +u(x,,, Oy,

Vx E[X_H,xl] @n
Vxe[x.,.,xh,]

then the finite element approximation problem of (2.1) is

J L L du, do,

2y - ey NPT g (2.8)
a,Ioul‘dex Jo (au, -v ax) e dx=0

Afier integration, we have

2 (1 2 1 o

:;7('6‘ PR (275)(""’ “4) s

-(-A—xy—;)(uj,, -2u, +uj_,)=0

Discretizing the time‘by the Euler implicit scheme for every

[t tani], Al = L=t
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v —]6-(11;’:,' -y ) + % (u}'“ ~ u}')
e =) (o o o)
- (X‘;T)(u;;,' ~2up ) =0

where u; =u(x,1,)

(2.10)

ujy = H(x) J=012, M= (M, + M, ~1)

" T
U =a UpgaMy-1 = b n= O:L"',[—E]
C=abt/ax, Q=VAl/AS*

Equation (2.10) is similar to the finite difference scheme.

fet Auj = ,,;_'*‘ - u",’ then (2.10)can be wrilten as

Lau  +2 80+t
6 i 3 6 .
+'§(Au,‘. "A“‘_.')' O(Au - -2Ay, + Ay ,_,)

=Res" (2.11)

it R g = '%("7'" — )+ Qugy — 2] + )

We construct the following iteration scheme. For the m+]
iteration, let

{m+1) __ (m) 0) . =
A = Au" +duy, Bu =0.du, =0
(m=0,1,2,..) (2.12)

and du, computed by the following formulas (2.14) and

(2.16).
From (2.11), the left to right scheme is

2 1 C
-é-dllj +’gduj” +'2—duj+] (2.13)
- Q(-— 2du; + du,ﬂ) = RHS(u)

here

} m+.
RHS(uy=Res] - [_16 AU + %—Auﬁ’"’ e AT

Jl

C
+3~(

I+

(41 (m (m) 4 A mD)
AT — ATy )) - Q(Au dn = 280" + AujTy )]

Resume dy = du " and let |C] instead of the C

(%:f l—? + Q]du} = RHS() @19

Similarly, the right to lefi scheme is

2 1 C
Eduj +gdu/_, ""i‘duj_,

- O 2du, + du,.,) = LHS(x)

(2.15)

here

LHS(u)=Res) - [% Al + % A +% A
+ —i— (Au;',:’l’ - AUl ) - Q(Au_‘,’ff D286 + AU )]

Resume gy = du : and let {C] instead of the C

“ (% - '-?. + deu, = LHS(u) (2.16)

So we get the locally implicit finite element scheme
(2.11),(2.14) and (2.16) for the convection-diffusion
equation.

3 Error Estimation
Let a‘l" is the exact solution of (2.1)—(2.3),
p, =1, ~u) e} = O(Ar + Ax*),
i i N BN N I | i \T
p '—'(P,,P;,.-.,P;,_,) > —(e,’,ez,...,e;,_‘) ’
then p;, satisfies the following equation:
Ap™' = Bp" + Ate”
p'=0

T
) =031:-': - —l .
(n [A!] JRNERY

where 4, Bare (N —1yx(N, -1) matrices

2 I ¢
l-§+2Q-6-:—2'—Q10 0
[4 ¢
P IR N A
- 0 L ot ZyE
57570 30 o o .
. ) . . C
0 0 0 le
0 00 -2
2 1
200 0.
g °
121 4 0
6 3 6
B={ 1 2 1
0= <220..0
6 3 6
o0000 .12
6 3
and so

p" =AffATe" + A7 BA e
+(A7BY A7 e+ (AT B) A7)

1t is easy to see that

18], =1. |4 21, |47]_s1-

sl sl i<,
el sheLle] o s e

because g« n < _T__,

Al
Il < aNO(ar+ Ax?y < OB + Ax?)

eﬂ
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So when step ratio ;- _A_’_ = cons.
sz

p7]. < o).

A solmji-_- O(Ax?)- (32

(3.6) indicate that approximation scheme (2.14) is
convergent for arbitrary value §. So the error of the jocally
implicit finite element scheme is first-order for time, and is
second-order for space. As to the stability analysis, we

refer to reference [ 4 ).

4. Domain Decomposition Method
Suppose the initial domain £ is divided into two sub-

domains, denoted by £, = [Xo X M, ], and

Df'-[le, XM1+M2_,] . Q3=[le~l,le] is the
overlapping area. 4, = ”‘n, (7 = 1,2)For the £y, the
node number is M;, and for the £2;, the node number is M,.

Then we construct the iterations (u," s u;'{ ) for arbitrary
time interval
{151 , ta } with the locally implicit finite element scheme as
follow:
1). When n=1, Case 1.k=1,
xeQ,

(2415 o)) = sty

(% - I_ZC_l + Q]du," (j1)= LHS(4)
Yu,(x) = H(x)
uf (M, =1,n) = u( M, = 1,0)+ Cu,( M, = 2,0) - (M, ~1,0))

uf (M, n) = u,(M,0)+ Clu, (M, = 1,0)- u,( M,,0))
(4 (0,n)=a

CB))
for xeQ,

(2L o)aut (= rasun

(%- J§l+ Q)duf(j,]): LHS(uz)(4'2)
u,(x)= H(x)

uj (M, =1,n)=uf (M, -1,n)

uy (M n)=uf(M,,n)

.":(Ml + M, ']=”)= b

A

Case 2. k>1,
for x eQ,

(‘2‘+ &, Q)du:' (43 = RES(ui™)
@.3)

uf (M, =11)=u;" (M, - 1))

up (M,,0) = u3™ (.1

17 (01)=a

for xel),

[_Z_+l§_|+ Q)duf(j,l): RHS(ul)

A

2
(4.4)
(2L oJaut = st
uy (M, - U)"’ “xk(Ml - ]’])
uy (M,,1)=uf (M,,1)
(3 (M, + M, = 11)=b

2). When n=2,3,...
Case 1, k=1,
xef,

(%Jr'—jh Q]du,“ (Jim)= RHS(u;)

A

(%-‘—2‘1+Q)duf<f, )= LAS(u)

uf (M, )= (M,,n=1)+C(& (M, ~1,n=1)~7,(M,, n-1))
(4.5)
Where 3, %, are the approximation values of above
step for several iteration steps.

for xeQ,

(%J%», Q)du;(j,n)= RHS (1)

(3-Geofptvim=rmswy 49
<

b (M, =1,n) = ut (M, =1,n)

us (M, n)= uy (M, n)

(4 (M, + M, - 1,m)=b

Case 2. k=2,3,...

for .Qj

[%+ 2 Q)du," () = RES()

3
6
ul (M, =1,n)=2" (M, -1n)

“{(Mn”):“:_](Ml»”)
u'(0,n)=a

N[_Q_N

Q]du," (Jom)= LHS(y™) 47
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(M, ~1,n)=%,(M, ~1,n=1)+C(# (M, ~2,n-1)- %, (M, -, n-1))



for xeQ,

(%Jg + Q)du;' ()= RHS(™)

s_1d

(2-ofasvin=tmsuy 2

6 2

uf (M, =1,n)=uf (M, ~1,n)
u;(M,,n) = u,"(M,,n)
k(M + My=1,m)=b

Here we mention that the boundary conditions imposed
on the intersection are different from the typical DD method.
In order 1o impose the boundary conditions more exactly
“during the procedure, we take into account of the convection
effect in (4.5)

5. Numerical Results

Two numerical experiments were done for the
discontinues problem, and Ar=04, Ax=10, a=10.
In the first numerical experiment, u is varied about 20.0 to
10.0. In the second numerical experiment, the  is varied
about 10.0 to0 20.0.
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Fig, 1 Computational Result (u=20.0 ~ 10.0)
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Fig. 2 Computational Result (1=10.0 ~20.0)

In Fig. 1 and Fig. 2, the vertical line is a symbol of two
domains. there are three states, t=20, t=80, t=150.When
t=20, the discontinuity is in the part 1, not to cross the
vertical line to part 2. The curve is smooth both in part 1 and
part 2. When =80, the discontinuity is crossing the vertical
line to the part2. There is some undulation in the curve.
Because of the error of this scheme, the boundary condition
of part 1 on the vertical line would be imposed 10 exactly
true value. The imposed value would be undulating around

the exact value. Then the curve is not very smooth. After the

discontinuity crossed to the part2 (t=150), the curve is
smooth. But accumulating the historical effect, and under
the dissipation and the convection, there is a wave on the
inlet of the part 1. So the numerical results is satisfied, The
numerical results are coincide with the error analysis. i.e.,
for the space, the error is second-order, for the time, the

error is first-order,

6. Concluding Remarks

In the present study, we discussed the locally implicit
finite clement scheme, which is base on a point-by-point
scheme, domain decomposition method (DDM) and the
matrix-storage free formulation, then developed and
implemented it to the model equation for Navier-Stokes

equation, convection-diffusion equation. By virtue of the

_point-by-point scheme, the implementation is quite

simple.

The validity of the Scheme was verified through two
numerical experiments which convection is dominated. In
order to impose the boundary conditions more exactly
during the procedure, we take into account of the convection
effect in (3.3) for the DD method. The results of the
numerical experiments were satisfied. And the error is
coincided with the theoretical analysis.
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