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ON OPTIMAL CHOOSING OF ONE OF THE THREE BEST OBJECTS*

ZDZISLAW POROSINSKI!

Abstract. A full-information continuous-time best choice problem is considered. A stream of #d
random variables (rv’s) with a known continuous distribution function (df) is observed. The observations
appear according to some renewal process independent of observations. The objective is to maximize the
probability of selecting of one of the three best observations when observation is perfect, one choice can
be made and neither recall nor uncertainty of selection is allowed. The horizon of observation is a positive
rv independent of observations. For the natural case of the Poisson renewal process and of exponentially
distributed horizon it is shown that an optimal strategy is of barrier type. |
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1. Introduction. The following full-information best choice problem was studied
by Gilbert and Mosteller (1966). A known number, N, of #d r's X1, Xz,..., Xy from
a known continuous df F' are observed sequentially. The objective is to maximize the
probability of selecting the largest. After X, is observed it must be either accepted (then
the observation process is terminated) or rejected (then the observation is continued).
Neither recall nor ﬁncertainty of selection is allowed. The full-information best choice
problems have been solved also for choosing the largeSt by accepting exactly once when
the number of observations NV is random (Porosir’lski (1987)), for selecting the largest with
two choices allowed when N is fixed (Tamaki (1980)) and for choosing one of the two best
for geometric number of observations (Porosifiski and Szajowski (1990)).

The full-information best choice problem in some continuous time version was first
posed by Sakaguchi (1976) and Bojdecki (1978). They independently considered a situ-
ation when observations appear according to the Poisson process and a decision about
stopping must be made beforéa random moment T.

In this paper the full-information best choice problem with one choice is considered
when one of the three best observations are counted as wins. The observations appear ac-
cording to some renewal process independent of observations and decision about choosing

must be made before a moment 7", which is a positive rv independent of observations.
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The problem is reduced to the classical optimal stopping problem for some Markov
chain. The natural case of the Poisson renewal process with parameter A and exponentially
distributed T with parameter p is examined in detail. The optimal strategy is of barrier

type and depends on A and y only.

2. Model formulation. Assume that
(a) X1,Xs,Xs,... are iid rv's with a continuous df F, defined on the probability
space (2, F, P),
(b) p1, p2, ps3, . .. are id positive rv’'s with & continuous df G,
(c) T is a positive rv with a df H,
(d) the rv's Xy, Xs,...,p1,p2,...,T are independent.
The rv’s pq, ps, - .. Mmay be interpreted as the length of time intervals between consec-
utive values of X’s. The rv T represents the moment when the observation is terminated.
Let

(1) Spn = p1+...+pn, n=12..., So=0,
(2) N(it) = max{n>0:S5,<t}, t>0.

So S,, is the waiting time of the nth observation and N (t) is the total number of X’s that
appeared up to the time ¢. At the moment when X, is seen, all previous values of X’s
and p’s are known and moreover it is known whether the moment T" follows or not i.e.

the o-field of information is
Fn = 0'(.X1,. . ,Xn,pl,. . 7me{T251}:- . ,I{Tzsn}), n = 1,2,.. .y

where I4 denotes the indicator function of the event A.
Let 7T be the set of all Markov moments with respect to the family of o-fields (F7.)5> ;.
Let &1, 82,0, &3,n denote the largest, the second largest and the third largest value of the
sequence X, ..., Xy, respectively (€1 = &1 = €32 = —00 by deﬁnitidn).
Consider the following problem:
(P) Find a stopping time 7* € T such that

P(r* < N(T), X 2 & ny) = Slel’I;P(T < N(T), X: = & n(m))-

In the general case we can show the following theorem.
THEOREM 2.1.
(a) Under the assumptions (a) — (d) Problem (P) can be reduced to an optimal stop-

ping problem for some Markov chain.
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(b) A solution of Problem (P) exists and has the form

™ = inf{n € N: X, = &in, (Sn, F(&1n), F(€an), F(€3,)) € Ay
or Xn = &any (Sny F(€1n), F€an), F(€sn)) € As
or Xpn = &a,n, (S, F(€1n), F(€an), F€sn)) € As),
where Ay, Ag, Az are some subsets of the space (0,+00) x [0, 1] ><.[O, 1] x [0,1]
depending on G and H only. v
Proof. Since F' is known and continuous, without loss of generality it can be addi-

tionally assumed that X, has the uniform df on the interval [0,1],n € N. Let Z, = 0 for
n > N(T') and
Zn = P(n < N(T),Xn > 53,N(T))
[e<]
= Iix,2e50) 2 P(Sm < T < Sma1, (Xp = &, and X, is the largest from X, .. Xn)

m=n

or (X, = & and X, is at most the second largest from X,,..X,,)
or (X, = &,n and X, is at most the third largest from X,,,..X,) | Fn)
= I{Xn263,fa}Wn’

otherwise, where

Wn = Z qk (Sn) (I{an'ffi,n}X’I,: + I{Xn=f2,n} ('X:Lc + kXTkL—l(]' - Xn))
k=1

+ Ixmes o (X + RXETN(1 = X5) + (k- D)XE2(1 - X,)%/2))
(3) @) = P(exactly k observations appear in [t,T] | T > t)

- 1_H(t) /(Hw) /w J(1= G —t — ) dG™(u) dH ),

and G** stands for a df of Si. Hence EZ, = P(r < N(T), X, > & ner)-

It suffices to consider Markov moments belonging to the set of candidates
={reT:T=n& X, >&,,ne N}
Now,let e =k if Sy <T, 7, =+00if Sy > T, k=1,2,3, and
Terr = f{n:n > m,n < NT), X, > &}, k>3,

and let the v R, indicate the range of nth observation: R, =k if X,, = &, k= 1,2,3,
and R, = 0 otherwise. Define, for k € N,

(4_) Yi = { (Srkygl,'rk’ 62,7';“, Ea,-,-k,RTk) if < +00,

) if 7, = +o0,
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“where § is a label for the final state. Y = (¥%)%, is a homogeneous Markov chain with
respect to (Fr, )52, with the state space

(5) E =[0,+00) x A x {1,2,3} U {4},
where A = {(&,&2,€3) : 0 < &3 < & < & < 1}. The transition function is

(6) p(s,a,b,¢,4; [0,t],[0,2],a,b,1)
= P(S’Tk_l.l S t’é-l,Tk+1 S x7£2,7‘k+1 = a,€8,7k+1 = b) R’rk_H =1

l S’rk =8, gl,Tk = a, 52,7‘;, = b; 53,'7';‘, =¢, R’rk = 7‘)
= Yy 3 N0 [ G A s)dH /(1 H(5)
n=1

m=n-+1 (s,
= (z—-a)*) " gils, 1),
k=1

where

) a(s,) = = . G (¢ Au — s)dH (u),

- ‘Hr(s) (8,+00)
yT = max{0,y} and t A u = min{t,u}. Also

(8) p(s,a,b,¢,%; [0,8],0,00,2],0,2) = (zAa—-b1> " g(s,b),
k=1

(9) p(s,a,b,¢,%; 0,1],0,0,[0,2],3) = (zAb—0)" Y gils,t).
k=1

The state § is absorbing and the transition function for other states can be obtained in a
similar way. |
If, for any 7 € Ty, & Markov moment o with respect to (Fr, )32, is defined as ¢ = k

on the set {7 =17, < +0),k € N, and 0 = +00 on {7 = +00}, then

W, if
(10) Zq':{ T 1T<+OO}

= f(Y,),
0 ifr =400 f()

where f(§) =0 (Yoo = & by definition) and

SR 0 et (azk +kz* (1 — z) + M gk-2(1 a:)"’) , i=1,
(1) f(t,2,9,2,9) = § T2oaq) (¥* + k> (1 -1y)), i=2
Tio 32", =3

In this way the initial Problem (P) is reduced to the problem of optimal stopping of

the Markov chain Y given by (4) with the reward function f given by (11). The statement
(a) is thus proved.
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In order to solve an optimal stopping problém for the Markov chain Y with the reward
function f, the function

S(ta x,Y,%, Z) = S‘ég E(t,ac,y,z,i)f(sﬂ gl,’ra 62,’1': é?:,'ry R‘r)
T

should be calculated, where E; ., . ;) denotes the expectation with respect to Pltayzi() =
p(t,z,y,z,4;.) and an optimal 7 ought to be exhibited. It is known (cf. Shiryaev (1969))
that the function s(t, z,y, z,1) can be obtained as the limit

S(t’ mayyz’i) = kli)n;; Qkf(tvxay7za7:)a

where

(12) Qf(t’:E?y) z) Z) = nlax{f(t7 x’ y) Z’ z))Pf(t’ m? y’ Z, Z)}

and P is the operator defined for a bounded function 4 : E — R as

Ph(e) = /E h(a)dP.(a),
where the space E is given by (5). So Ph(6) = 0 and we infer from (6)—(9) that

(13) Ph(t,z,y,2,1) = i—:—lH_(t-)-[iZk_l/(t,+oo)(l_H(r)) (/zyh(r,m,y,u,?))du

T 1
+/ h(r,z,u,y,2)du + / h(r,u,z,y, l)du) dG**(r —t)
Yy z .

for i = 1,2, 3. It is well known that the Markov moment 7, = inf{n € N : Y,, € A}, where
A={ecE:s(e)= f(e)} (A is called the stopping set), is optimal if 75 < +o00 almost
surely (as). The moment 7, is finite as because the chain Y attains as the state § and
6 € A. Since by (11) and (13) both the reward function and Pf(t,x,y, z,1) depend on H
and G only, the stopping set depends only on H and G, as well. ®

3. Special case. In order to solve Problem (P), successive iterations Q*f (¢, z,v, z, 1)
of the operator @) given by (12) should be calculated. Due to the form of the operator P
given by (13), it is very difficult to obtain the set A explicitly, even if the df’s G and H
are fixed. Nevertheless in a natural case considered below the solution has a simple form.

Let G be the exponential df with the parameter A\. Thus (N(t)):e[o,+o0) i the Poisson
process with the parameter M. Moredver let the horizon T has the exponential df with
the parameter p.

Results for this case are summarized in the following theorem.

THEOREM 3.1. Under the assumptzons (a)- (d) let the df’s G and H be ezponentzal

with parameters A or p respectively.



80

(a) If /(A + p) < o, where o = 0.25997 is a unique root of the equation
6Inu+ 3u? — 12u + 11 = 0 in (0,1), then the solution of Problem (P) is

e
T = inf {n t F(X,) > _)‘_i'_"ﬁ_x_?_ﬁ}

The probability P(win) that, using this stopping rule, at most the third largest X
is obtained is equal to P(win) =1 — (1 — a)® & 0.59473.
(b) If u/(\+ 1) > @, then 7* = 1 is a solution of (P) and

2
: ® p L{ p © 5
Plwin)= — | -3h—— - = [ —— | +3——=].
(win) )\+u( A4 u 2()\-1-#) A+ 2)
Proof. For exponential G it is easy to see that

/\lc

k—1 ,—Ar
_(k— 1)!7“ e~ "dr.

dG*(r) =

This implies that gx(t) for exponential H given by (3) has a simple form

B Y
w0 = 55 ()

and the reward function (11) is transformed to

1-(1-2) =

(14) ftoy20) =9 255k - (/\+:—->\y) » 1=2,
pewrmsvl i=3.
Y .

Since all these functions are independent of ¢, Pf does not depend on ¢t and

N 1 w ’ K o 5
(15) Pf(t,z,y,21) = ( 2<A+u~Aw) Lk vy v sy vk

N b 1 p [
Ad+p—AZA+p—AyrA+pu—Az/) ) A+pu— A2’
therefore so are s(t, z,y,4) and A. Hence from now on ¢ will be omitted in f, Pf and s.
Since the operator P given by (13) for function h independent of ¢ has the form

A

Ph(z,y,2,1) = pE—

Yy T 1
(/ h(z,y,u, 3)du+/ h(m,u,y,2)du+/ h(u,m,y,l)du),
z y T

we obtain

f(z,y,2,3) if (z,y,2) € BY,

16) QrayzY = { Pf(z,y,2,i) if (z,9,2) € A~ B,



81

for some sets B%, B2, B' C A, where B* C B? C B! because Ph(z,, z,1) does not depend

oniand f(z,y,2,1) > f(z,9,2,2) > f(z,y,2,3). The functions (14), (15) can be written
as functions of

p B 2
:-—-——————-—, =——-——-————-7 'u):-————-—-————,
“ A4p— Az Y A p— Ay A4 p— Az

in the following way

1-(1—-u)p, i=1,

(17) f(u,v,’w,z') = 1 (1 - U)z) i= 2,
w, 1=3,
. 1, 5 )
(18) Pf(u,v,w,i) = w(—-z-u +2u+v———2-——1n(u'u'w)), i=1,2,3

and the set A is transformed into {(u,v,w) : p/(A+u) Kw <v<u <1}

The set B is defined by the inequality f(z,y,2,i) > Pf(z,y,2,1) or, equiva-
lently, by f(u,v,w,i) > Pf(u,v,w,i) with conditions py/(A+p) <w <v <u <1
This inequality, considered in a set 0 < w < v < u < 1, is fulfilled in the set
C; = {(u,v,w) : f(u,v,w,i) > Pf(u,v,w,i)}.

Since the functions (17), (18) are independent of u/(A + u), the sets B* in the co-
ordinates (u,v,w) are B* = C; N {(u,v,w) : p/(A+p) <w <v<u<1}, and in the
coordinates (z,y,2) their forms are similar, because the above transformation preserves
monotonicity.

In order to obtain s(z,y, 2,1) successive iterations of Qf(z,v, z,1) should be calcu-
lated. As a consequence of induction, Az = {(2,y, 2) : s(z,y,2,3) = f(z,y,2,3)} = B®
and there exist sequences (B;),?;l, i = 1,2, such that

" . f(@,9,2,1) if (z,y,2) € B;,
(19) Q f(a:)%zaz) = ( -1 . N s ( ’ :
PQ* f(z,y,2,1) > f(z,9,2,1) if (z,9,2) € A~ B},
where B® C B C B} _;,n > 2, B} = B*. Therefore the limit A; = lim,,_,, Bf, exists and
the stopping set has the form

A = (0,400) x (A1 x {1} U Ay x {2} U A3 x {3}) U {é}.

We shall find A; and A, in the explicit form. To this end denote by h(z,y, ) the probabil-
ity that the stopping set will be reached from the state (z,y, z,4). The function h(z,y, 2)

does not depend on range of current observation being a candidate. For (z,y,2) € A—-B?,
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if the next candidate of value r satisfies the inequality z < r < y, it does not attain the set
B? for z < r < 2z = min{y, 2(z,y)}, where the function z(z,y) describes the boundary of
B®. If r > y then the new state (z,7,y,2) or (r,,y,1) does not depend on z. Thus

A 20
h(z,y,2) = P (/z h(z,y,r)dr + g(x,y)> ,

where g(z,y) is some function independent of z. Since the partial derivative of A with
respect to z is equal to 0, h(z,y, 2) is independent of 2. Since f(z,y,2,1) and f(x,y,2,2)
are also independent of z, (z,y,2) € A implies (z,y,r) € A for every 0 < r <y and
(z,r,y) € A for every y < r < z. Similarly h(z,v, 2) is independent of y and z as well.
Hence h(z,y, z) = const and the sets A; and A, are of the form {(z,7,2) € A : z > L}.
As the result of the above properties, the optimal strategy allows us to stop obser-
vation only in such a moment, when an observed candidate is the largest one so far and
exceeds some level L (independent of the second largest and third largest so far). So the
optimal strategy can be obtained by maximization of the probability of reaching of A;.

Let the event that the objective is achieved be called a win. Then

P(stop at the moment k & win | N(T) = n)
= PX;<L,...,Xp1 <L, X} > L, at most two X's
from Xjy1,...,X, are greater than X, | N(T') = n)

= [k /Ll (1Z—k +(n— ka1 —zy) + (n— k)(g" k-1)

Ty 2 (1 - a:k)2) dzy,
fork=1,...,n,and

P(win) = D 75:72 (ﬁ—u) gp(stop at k& win | N(T) =n)

_ (_l (____&__)2+3____u__ 5 ._31n_____/£___) |

A+p—AL\ 2\ A+pu—AL A4+p—AL 2 A+ pu—AL

Let u/(A+ p — AL) = u. The function f(u) = u(—u?/2 + 3u — 5/2 — 31nu) associated
with P('win), has a unique local extremum (maximum) in (0, 1) at the point a £ 0.25997
for which the derivative f'(u) = —3u®/2 + 6u — 5/2 — 3 — 3Inu is equal to zero. So,
since u € [u/(A + w),1], f(w) attains its maximum at « if p/(A + p) < @ (equivalently if
f'(u/(A+p)) > 0) or at p/(A+ p) if p/(A\+p) > o. Thus

_Atp—-alp
A

for p/(A + p) < @ while L* = 0 and P(win) = f(u/(A+ ) for u/(A+p) > . ®

r , P(win) = f(a) = 1 — (1 — a)® = 0.59473
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In the special case when both the time intervals between observations p and the
curtailment time T are exponentially distributed, it is interesting and quite unexpected
that the probability of winning in all natural situations (i.e. when u/(\ + p) is small,
because T should not be, on the average, small in comparison with p) is constant. The
optimal strategy does not depend on the number of preceding observations and the time
that elapsed. In accordance with the optimal rule, given in Theorem 3.1, the observation
should be stopped at the moment when the first candidate occurs which exceeds some
constant barrier. The same property is possessed by the optimal strategy in selecting
the largest when observations appear according to a Poisson process and 7T is exponen-
tial (Bojdecki (1978)) and when the number of observations N is geometric (Porosinski
(1987)). This interesting fact seems to be a consequence of the memoryless pfoperty of
the geometric and exponential df’s. |
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