Title: Optimizing multiple selection with a random number of objects: full information case (Mathematical Decision Making under uncertainty and ambiguity)

Author(s): Ano, Katsunori

Citation: 数理解析研究所講究録 (2000), 1132: 68-68

Issue Date: 2000-02

URL: http://hdl.handle.net/2433/63716

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Optimizing multiple selection with a random number of objects - full information case

Katsunori Ano
Nanzan University

We consider the generalization of the no-information secretary problem to the full-information case, allowing also multiple choices and a random number of objects. The goal is to maximize the probability of choosing the overall best. Previously, different authors studied no-information cases with multiple choices and fixed number of objects; or, as Porosinski(1987) did, extended Presman and Sonin's secretary problem with random number of objects to the full-information case with a single choice. He showed that if (P) holds, \(d_j(x) \geq 0 \) implies \(d_{j+k}(y) \geq 0 \) for \(k \geq 1, y \geq x \), then the problem is monotone, where \(d_j(x) = P(N=j) - \int_x^1 \Sigma_{k>j} P(N=k)y^{k-j-1}dy \). It is reasonable to expect that if single-choice problem is monotone, then two-choices, three-choices, \ldots, \(m \)-choices problems are also monotone. We investigate this monotonicity related to the condition (P) through a recursive function on \(m \) constructed from the optimality equation. As an example, the case of uniform number of objects is studied. This case satisfies (P). The optimal stopping rules is shown to be a threshold rule with multiple threshold values, which can be described as follows: The optimal stopping time, when we can make \(m \) more choices, is \(\tau_m = \min\{j \geq 1 : x \geq s_j^{(m)}\} \), where the threshold value \(s_j^{(m)} \) is a unique solution in \([0, 1]\) of the equation

\[
h_j^{(m)}(x) = h_j^{(1)}(x) + \sum_{n>j} \int_{x<s_n^{(m-1)}}^1 x^{n-j-1}h_n^{(m-1)}(y)dy
\]

with \(h_j^{(1)}(x) = \sum_{n \geq j} x^{n-j}d_n(x) \). \(s_j^{(m)} \) is nonincreasing in \(j \) and in \(m \).