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1 Introduction and Main Results

As boson-fermion systems, we treat with the generalized spin-boson model proposed by Arai and the author
in [AHI].
We consider mainly the following problems:

I We characterize the existence or absence of ground states of the generalized spin-boson model in terms
of the ground state energy and correlation functions. It is one of the purposes to generalize Spohn’s
criterion by methods of functional analysis, and clarify the mathematical structure causing the existence
or absence of the generalized model.

IT We give expressions for the ground state energy of the standard spin-boson model with infrared cutoff,
and without infrared cutoff.

IIT1 We investigate spectral properties of the Wigner-Weisskopf model.

Problem I is argued in [AHH, AH2], so see them. In this contribution, we consider Problems II and IIL.
The proofs of all statements in this contribution appears in [mHi3].

The spin-boson model describes a two-level system coupled to a quantized Bose field. For the ground
state energy of this model, we know several approximate expression by, for instance, [EG, Ts]. Recently the
author gave an explicit one in the way of [mHi2, Theorems 1.3 and 1.4, the first equalities in Theorem 1.6
(i) and (ii)], still he proved it in the case with infrared cutoff. In this paper, we shall give new upper bounds
for the ground state energy of the spin-boson model without infrared cutoff, and using it we shall express the
ground state energy with a parameter in the way of [mHi2, (1.19) in Theorem 1.5, the second equalities in
Theorem 1.6 (i) and (ii)], and argue how an effect by the spin appears in the ground state energy without
infrared cutoff. '

The Hamiltonian of the spin-boson model is given as follows:

We take a Hilbert space of bosons to be

Fy = F (L* (RY)) = P [orL? (RY)] (1.1)
n=0
(d € N) the symmetric Fock space over L?(R?) (®7K denotes the n-fold symmetric tensor product of a
Hilbert space K, ®2K = C). In this paper, we set both of % and ¢ one, i.e., h = ¢ = 1, where } is the Planck
constant divided by 27, and ¢ the velocity of the light.
Let w : R% — [0, 00) be Borel measurable such that 0 < w(k) < oo for all k € R* and w(k) # 0 for almost
everywhere (a.e.) k € R? with respect to the d-dimensional Lebesgue measure. We here assume that

i = 1.2
kgxédw(k) 0 (1.2)

because we are interested in the case without infrared cutoff. Let & be the multiplication operator by the
function w, acting in L?(R”). We denote by dI['(d) the second quantization of & [RS2, §X.7] and set

Hy = d0(@) = /R dkw(k)a(k)"a(k),



where a(k) is the operator-valued distribution kernels of the smeared annihilation operator, so a(k)* is that
of creation operator:

o) = [ dhalkFE, sy = [ dali)® (13)

for every f € L*(R%) on Fp. Let Qo be the Fock vacuum in F3: Qo := {1, 0,0, -} € Fs.
The Segal field operator ¢, (f) (f € L? (R%)) is given by

1 .
¢s(f) =75 (@(H)" +a(f)- (1.4)

The inner product {resp. Anorm) of a Hilbert space K is denoted (-, -)x, complex linear in the second
variable (resp. || - ||lx). For each s € R, we define a Hilbert space

M, = {f . R? = C, Borel measurable | w*/?f € LZ(RV)}

with inner product (f, ), := (w*/%f,w*/?9) 2(r~) and norm || f|ls == llw*/2 fllL2rey, f € Ms.
We shall assume the following (A.1) to obtain upper bounds for Esg(0):

" (A.1) The function (k) of k € R? satisfies that A € M_; N Mo.

We call the following condition the infrared singularity condition (see [AH2])
M2 =00,  (ie, AwéL?(R7)). (1.5)
The Hamiltonian of the spin-boson model is defined by
Hep = %73 @I +1®Hy +V2a0, ® ¢s(\) (1.6)

acting in the Hilbert space F := C? ® Fp, where 0 < p is a splitting energy which means the gap of the
ground and first excited state energy of uncoupled chiral molecule to a radiation field, « € R a coupling’
constant, and 01,03 the standard Pauli matrices,

(10 (o1 (o - (1o
o=lo 1) TV 10 T\ 0o ) TP \0o 1)

For simplicity, we denote the decoupled free Hamiltonian (a = 0) by Ho:
Hy = %J3®I+I®Hb. 1.7
For the above Hsp, we temporally introduce an infrared cutoff v > 0 as the infrared regularity condition

Mw, € L2(RY), v>0, (1.8)

which raise the bottom of the frequency w(k) of bosons (see [AHZ2]):

wo(k) = w(k) +v, Hy):=dT@G,),v >0, (1.9)
Hy(v) = 503 ® I +1® Hy(v) + V2001 ® ¢5(N). (1.10)

Of course, we shall remove ‘v’ later by taking the limit v | 0 such as making the precision better.

For simplicity, we put Hsg(0) := Hgp.

For a linear operator T on a Hilbert space, we denote its domain by D(T). It is well-known that Hss(v)
is self-adjoint on

D (Hss (v)) = D (I ® Hy (v)), and bounded from below for all o € R (1.11)
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for every v > 0 by [AH1, Proposition 1.1(i)] since o, is bounded now.

For a self-adjoint operator T' bounded from below, we denote by Eo(T) the infimum of the spectrum o(T)
of T: Eo(T) = info(T). In this paper, when T is a Hamiltonian, we call Eo(T) the ground state energy of
T even if T has no ground state.

For Hss(v) (v > 0) we set Egp(v) := Ep (Hgs (v))

It is well known that for v > 0

2 2

Bl A < < B 20wl _ || A
5~ @ o S Ex(v) < 5¢ a o ) (1.12)
by easy estimation and the variational principle [Ar, Theorem 2.4]. So we have for every v > 0
2
Bon(v) = ~Bem20 /w10 _ o2 Lw 0 (1.13)

for some G, € [0, 1]. Under a condition we know a concrete expression of G,, [mHi2, Theorems 1.5 and 1.6].
On the other hand, we can prove that
2
< lim Esg(v) = Esp(0) < —a?
vi0

2
A

7o

even under the infrared singularity condition (1.5) (see [AH2, Proposition 3.2(iii)]), and we have now

(1.14)

[

=00, 0<G, <1, wv>0. (1.15)

Then, the problem of expressing the Eqy(0) in the case without infrared cutoff is as follows: Although
lim, 0 [|A/w, ||2G., is apparently infinite (except for the fortunate case lim, 10 Gy = 0) and the term of 4 is
seemingly removed under the limit » | 0, we cannot believe Ess(0) = —a?||A//wl2. So, how does the term
of p from the effect by the spin survive in Fgp (0)? This is what the author would like to consider, so this
work is the sequel to his in [mHi2].

Moreover, this work is also the first step for another scheme: Considering the result in [BFS], there is a
possibility that the generalized spin-boson (GSB) model [AH1] has a ground state even under the infrared
singularity condition. Actually, as we showed it in [AH2, §6.2], a model of a quantum harmonic oscillator
coupled to a Bose field with the rotating wave approximation has a ground state, and the Wigner-Weisskopf
model [WW] has also a ground state under certain conditions even if we assume the infrared singularity
condition [AH2, §6.3].By our recent theory in [AH2], we know that if the right differential E{ (0+) of Egs(v)
at ¥ = 0 is less than 1, then we have a ground state of H. se in the standard state space F. It may be worth
pointing out, in passing, that Spohn discovered a critical criterion between the existence and absence of a
ground state in 7 for the spin-boson model [Sp2, Sp3] by a method of the functional ﬂxtegration. Our goal
of the scheme is to characterize the existence or absence of ground states of the GSB model in terms of the
ground state energy and correlation functions [AHH, AH2] by methods of functional analysis.

The estimation (1.12) is not suitable to check whether E{,(0+) < 1 or not. Because (1.12) is obtained by
regarding Hsp(v) as the van Hove model Hyy(v) perturbed by bounded operator:

Ug Heo (v)Up = Huy(v) ~ gal, (1.16)

where Hyu(v) = I ® Hy(v) + V2003 ® ¢5()\), Up = (00 — i02) ® I/+/2. And, under the infrared singularity
condition (1.5), the right differential of the ground state energy Eyu(v) = —a?||\/ V@li2 (v > 0) of the
Hamiltonian Hy4(v) of the van Hove model is infinite [AH2, §6.1], i.e.,

A

EL(0+) = = 00.




So, we need another estimation which is not influenced by the van Hove model.

We shall show in Theorem 1.1 that the term of u influenced by the spin remains, moreover, the spin may
make 41/2 play a role such as the lower bound of frequency (a mass) of bosons.

In this paper, we give an answer for the first problem above by using the variational principle. To do it,
we have to assume the following (A.2) in addition to (A.1):

Fix arbitrarily § with

0<8<1/3. , (1.17)

(A.Z) The splitting energy g and the coupling constant o satisfy

2 AR :

4o? | dkIDns < (1.18)
2 —

o? dk AG) < 1-39 =i, (1.19)

R4 (w(k)+§)2 52

Theorem 1.1 (without infrared cutoff) Assume (A.1). For the Hamiltonian Hsy of the spin-boson model
without infrared cutoff (i.e., even under the infrared singularity condition (1.5)), upper bounds and an equality
are given as follows:

(a) (upper bound)

1) B <minl B g 2R o+ (0l
(1) (O)Smm{ 2 e L+ !

(a_2) ESB(O) S _);_l’ + inf 2&%(]" ’ }‘)0 + (f 3 wf)O + #”f“g .

7eD(@) 1+ (11118
(b) (equality) Let po # 0. Then, there exists cu,o > & such that
2
Ew(0) =-£ —c,00® [ dk ﬂ% (1.20)
2 R w(k)+ =
; 2
Moreover, assume (A.2) in addition to (A.1). Then,
B e A& o / A&
5 @ / dk —-— o(h) < Es(0) < dk = FOR (1.21)
and
? 1 ' Ak))?
il 2| G, = -5=In {1-{-———(0#, ~1) aﬂcuT
v]0l Wy o Ot R w(k) + 5
2
-a? | dk ——B—(ﬂ——-ﬁ—} < o0 (1.22)
d —_
R w(k) (w (k) + 2)
Remark 1.1 By the equality in Theorem 1.1 (b), we know that
ESB(O) < EO(HO)‘ (1'23,)

So, considering the diamagnetic inequality by Hiroshima [fHil, Theorem 5.1], (1.23) means that there is a
deifference between the spin-boson model and the Pauli-Fierz model as far as concerning the ground state
energy though the spin-boson model is regarded as an approzimation of the Pauli-Fierz model in physics.

To make comment on a lower bound, we have to assume the following (A.3) at present because of the
reason coming Proposition 2.2:
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(A.3) XV XMy € L2(RY), where

(d—1)A(k)

8
k ok

AD (k) = (k) +

k e RY. 1.24

Remark 1.2 Assuming (4.3) practically amounts to assuming the infrared regularity condition, namely not
the infrared singularity condition:
Mw € L2(RY). (1.25)
Proposition 1.2 Let w(k) = |k|. Assume (A.1), (A.3), (1.18) and (1.25). Then, for all a € R with
1
2

o < m, (1.26)
(a) (lower bound)
Eu(0) > —2 002 [ ar DR (1.27)
2 R (k) + 5
(b) Assume (1.19) in addition. Then c, o in Theorem 1.1(b) is given as
Cua €(6,2) (1.28)

2  Wigner-Weisskopf Model

To prove Theorem 1.1 we use the properties of the Wigner-Weisskopf model [WW, HiS, AH2]. So, in
this section, we shall describe fundamental properties of the Wigner-Weisskopf model.

0 0
c.=<1 0). (2.1)

H,,(oj =Hy,, wo(k) =wk), keR". (2.2)

We define a matrix ¢ by

And let

Then, for every pp € R\ {0} and v > 0, we define Hamiltonian H, (po; v) of the Wigner-Weisskopf model
by

Ho(po; v) = poc*c® I+ 1@ Hy(v) +a(c* ®a (M) +c®a(N)"). (2.3)
We call Hao(po; v) the Wigner-Weisskopf Hamiltonian. We may put for v = 0
Ha([.l.o) = Ha(/l;o; 0) (24)

Remark 2.1 The Wigner-Weisskopf model is one of several examples of the generalized spin-boson model.
We know it if we put By = (¢* +¢)/v2, Ba = i(c* —c)/v/2; A = X and My = iX. This model is very simple,
but it has an unusual property contrary to our expectation (see Remark 2.4).

It is easy to prove that H, {ug; v) is self-adjoint on
D(Hy (po; v))=D(I® H, '(u)) ,and bounded from below (2.5)

for every v > 0 by [AH1, Proposition 1.1(i)] since each Bj is bounded. As we did in [AH2, §6.2], we introduce
a function D , for o € R\ {0} and v > 0 by

Ho v

o — _ 2 AR
DI‘O,V(Z) b z +.u'0 ¢4 R4 dkwu(k) _ z)

defined for all z € C such that |A(k)|?/|z — w, (k)| is Lebesgue integrable on R<.

(2.6)



Remark 2.2 [t is well-known that the Wigner- Weisskopf model is the simplified Lee model [Le, KaMu, We]
and [Ta, §5.2], and the solution of D® (z) = 0 gives the renormalized mass for the Lee model.

Ho,v

In particular, as we mentioned it in [AH2, §6.2], DJ, o, (2) is defined in the cut plane C, :=C\ [v, o),
v > 0, and analytic there. It is easy to see that fooi,,(z) is monotone decreasing in = < v. Hence, the limit

a(1 ) e lim D% ; (k)
d3(pe) = .!51%13 D3, (@) =~v+po — o? ltlﬁ']x dk (2.7)

re wl(k)~v+i
exists. Actually, for a.e. k € R?,

PEE_DEP 2o and i AEP PGP

0< w(k)—v+t  wk)’ 10 wy(k)y —v+t  wk)’

and we assumed )\/v/& € L2(R?) in (A.1), moreover set w, (k) := w(k) +v (v >0, k € R9). So, by the
. Lebesgue dominated convergence theorem, we have

AR
w(k)

2 (po) = —v + o — @” /Rd dk (2.8)

We may put for v = 0 D, (2) := D, o(2) and d*(uo) := dg(po)-

The Wigner-Weisskopf model has a conservation low for a kind of the particle number in the following
sense:

We define

1+
NE =22 QI+I0N, (2.9)

which appeared in [HiiS, §6], where N is the boson number operator,

Ny:=dr(1) =Yy ePY. (2.10)

£=0

Here (2.10) is the spectral resolution of Ny, and P® is the orthogonal projection onto /-particle space in Fp
for each £ € {0} UN. The spectral resolution of NE is given as

NE = Y ePf, (2.11)

£=0

where

150279 PO if =0,

PE = (2.12)

1203 g ptt-1) 4 L% g PO ifLeN.

H,(po;v) is reduced by Pfc}' for every a € R and each £ € {0} UN. So, for every o € R, H,(po;v) is
- decomposed to the direct sum of He,o(po;)’s as i

Ha(po;v) = €D He.oluo; v), _ (2.13)
=0 :

where Hy o(pio; v) is self-adjoint on the closed subspace Fe defined by
Fi:=PF (2.14)

for each £ € {0} UN and

F= é.ﬁ. (2.15)

£=0
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The proof of the above statement is that, for instance, we have only to extend [Ka, Problem 3.29] to its

infinite version by repeating [Ka, Problem 3.29] with the closedness of H, (uo; ).

We call F; the ¢ sector.
We define vector Q° € F, by
QO = ( 0 ) ®Qo
1
For every f € D(&), we define vector O1(f) € F; by
1 1 0 *
V() = o | Bt | |®a() .

When a zero Ej , of DS (2) exists, we define a function by

A(k) 5 d
o (k) = —a—- 00 .
9o (K) o —pe €D@.),  keR

ro.v

Especially, we may forv=0 9y = g5y 0 and EZ = Eg ,.

(2.16)

(2.17)

(2.18)

For a self-adjoint operator T, we denote the set of all essential spectra of T by o.s,(T), and pure point

spectra by o,,(T).

By the definition (2.3) of the Hamiltonian H, (po; v), the free Hamiltonian of the Wigner-Weisskopf model

is Ho(po; v) for every pg € R and v > 0. Then, it is clear that

oo (Ho (po;v)) = {0, po},

Tess (Ho (po; ¥)) = [min {0, po} ,00)
0 and g are simple,

the unique eigenvector of 0 is 0% € 7,

and the unique eigenvector of yq is QL (0) € 7.

(2.19)
(2.20)
(2.21)
(2.22)
(2.23)

The following theorem follows from [AH2, Proposition 6.13, Theorems 6.14 and 6.15]. We note here that

the proof of [AH2, Theorem 6.15] had already proved part (c) below:

Theorem 2.1 (a) Let v,d%(u) > 0. Then,

O0e Tpp (Ha (/"0; l/)),
Tess (Ha (IJ'O; V)) = {l/) OO) .

In particular, 0 is the ground state energy of Hy (Uo ; v) with its unique ground state QP%'

(b) Let d%(uo) <0 < v and o?|IA/ /@y |3 < po. Then,

{0’ Egow} Copp (Ha (I"O H V)) )
Oess (Ha (10 v)) = fv, o),

with 0 < EY , < v. In particular, 0 is the ground state energy of H,(po; v). Moreover,

0< ES

po,v)

if &[]\ ll} < po,

0 is simple, and QY is the unique ground state of Ho(po; v)

0=E;

KoV

states of Ho(po; v)  if &®|| N/ /@, |2 = po.

» and QY and QO (g ) are the degenerate ground

(2.24)
(2.25)

(2.26)
(2.27)

(2.28)

(2.29)



(c) Let d%(uo) < 0 < v and po < c?||A/\/@|l. Suppose that

2

A3
2 — 2 - 3 IAlG '
v —po > o ( -, M (e, po,w )) + M (o, o, 0’ (2.30)
where
A(R)?
M (e, po,wy ::/ dk I . 231
(@bt ) = [ BB = ho + TN/ 231
Then,
{Ef,0: 0} Copp (Ha (no; V) (2.32)
Oess (H (ﬂO) V)) [ 1o,V +v 00) ) (233)
with E3 , < 0. In particular, Ej , is the ground state energy of Hyo(ug; v) with its ground state
QL (g5,.0)-

Remark 2.3 We are also interested in the case for large absolute value of the coupling constant(i.e., |o| >
1). Fiz po and make |a| so large. Then, we have d%(po) < 0. Thus, we have to investigate the case for
d%(uo) < 0 to know the case for large |a|. See Theorem 2.5 below.

Remark 2.4 In [v, 00), we can make a different eigenvalue from EF, , and O by adding some conditions
to w(k) and A(k) as we mentioned it in [AH2, Remark 6.4]. Namely, as an effect of the scalar Bose field, a
new eigenvalue appears in (v, 00).

We note here that, if d*(ug) < 0, then

IA(K)? 2 I/\(k)l2
< .
po < 0 hm Rdde(k)+t_a Rdcl o) (2.34)
since
IA(K)[? / AR
S Pt < s
for all £t > 0.

In Theorem 2.1(c) for the case d*(up) < 0, we cannot show the ground state energy of H,(po) for the
massless bosons, but we can determine the pure point spectra of Hq(uo) completely for the massless bosons
under the condition (A.8) by using [Sk, Theorem 3.1]: '

Proposition 2.2 Assume (A.1), (A.8) and (1.25). Let w(k) = |k| and d*(uo) < 0. Then,

opp (Ha (o)) = {Ef3y , O}, (2.35)
Tess (Ha (10)) = [ Ep; , 00) (2.36)
for all a € R with
1
o? < M (2.37)

Especially, E7, is the simple ground state energy with its unigue ground state ﬂi(g“fo), and 0 is the simple
first excited state energy with its unique first excited state Qs

In the following proposition, we employ the conjugate operator Dys in [HiS, (2.9)):

1 1 1
Dys = (Wkwulz Viwy - Vk 4+ Vi - Viw,: Vro |2) (2.38)
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Proposition 2.3 Let w(k) = |k| and v > 0. Assume

[ MRS o () — o) > 0, (2:39)
/ dk [DusA(R) < 00 and / dk | D2A(E)[? < oo, (2.40)
Rd Rd
and d%(uo) < 0. Then,
()
oo (Ha (uo;v)) = {EZ ,, 0}, (2.41)
Tess (Ha (103 7)) = [min {EZ , 0} + v, o) (2.42)
for all @ € R with
[al|DusAllo < 1. (2.43)

(b) If po > &®||N/\/@, |13, then O is the simple ground state energy with its unique ground state 9°, and

EZ, , is the simple first excited state energy with its unique first excited state 04 (95,,) foralla €R

with (2.43).

(¢) Ifuo < ®|N/\/oill3, then ES, , is the simple ground state energy with its unigque ground state Q4 (g%, ),
and 0 is the simple first excited state energy with its unique first excited state QY. for all @ € R with

(2.43).

(d) Assume po > 0 and \/Igl{DusAllo < ||A/ /@y llo, then Ha (po;v) has degenerate ground states for o, =
Vo/ 1A/ /@i llo with ground state energy 0 = E* _, and ground states are given by Q9 and L (955.)-

Ho,v

We define expectations, figrq and 74, of the number of (massive) photons at the ground and first excited
states, respectively, as follows:

Tgrd = (Ygrd, I ® Ny ¥yp4) 7, (2.44)
M1st := (Uit , 1 ® Ny¥1at) 7, (2.45)

where ¥, 5 and ¥y,, denote the ground state and first excited state of H, (105 v), respectively.

By Proposition 2.3, we obtain the following corollary:

Corollary 2.4 Let w(k) = |k| and v > 0. Assume (2.39) and (2.40), and d%(uo) < 0. Then, for alla € R
with (2.43),

CY)
0 if o >IN/ aLll3,

ﬁgrd =

”ggo,ll”g if Ho < CKZ”A/V“LV“(Z)'
b) A reverse between Tiyrq and Ty, occurs as Sollows:
g

ﬁgrd < Myst 1'f Mo > OP‘P‘/V wV”(z)!

Mgt < ﬁgr‘d if Mo < aznA/le’”(zJ'



(A.4) The functions w(k) is continuous with

lim w(k) = oo, (2.46)

Jk[—o0
and there exist constants v, > 0 and C,, > 0 such that
(k) —w(k)] < Culk -k L +w (k) ~w(k), kK eR™ (2.47)
The A(k) is also continuous.
Theorem 2.5 Let v > 0. Assume (A.1). Then,

(a) there ezists aww(v) > 0 such that

{EZ,, 0} C opp (Ha (Ho; ) (2.48)
with Ey (Hy (po;v)) < min {E:o,v , 0} , (2.49)
Tess (Ha (103 v)) = [Eo (Ha (po; v)) + v, ) (2.50)

for every a € R with |a| > oww(v).

(b) ‘let v > 0 (massive bosons). Assume (A.4) in addition. Then, there exists a ground state ¥ww € F of
H, (no;v), namely

H, (#0; V) Yow = Eo (Ha (ILO; V)) Usrw,

such that
{Eo (Ha (50;v)) » By » 0} C 0pp (Ha (p03¥) (251)
with (2.49)
Uuw ¢ FoUF (2.52)

for every a € R with |a} > aww(v).

(c) Let v =0 (massless bosons). Assume (A.4), Vw € L>*(R%) and (1.25) in addition. Then, there ewists
a ground state Wy € F of H, (po;v) such that (2.51), (2.49) and (2.52) hold for every o € R with
la] > aww(0).

Remark 2.5 When the case of massive bosons (v > 0), we can apply the regular perturbation theory to the
Wigner- Weisskopf model for sufficiently small absolute value of the coupling constant |a|, and then Theorem
1.1 says that we get either ES_
absolute value of the coupling constant, a non-perturbative ground state appears as an influence of the scalar

or0 as the ground state energy. Theorem 2.5 means that, for sufficiently large

Bose field with its ground state energy so low that we cannot conjecture it by the regular perturbation theory
from sufficiently small absolute value of the coupling constant. For other models, the similar phenomenon
were investigated by Hiroshima and Spohn So, Theorem 2.5 may make a statement on the existence of a
superradiant ground state in physics (see, for instance, [Pr1, Pr2, En]) for the Wigner- Weisskopf model.
Namely, we can say that, even for the Wigner- Weisskopf model which is simple and familiar in physics, we
may be able to show a phenomena of superradiant ground state influenced by the scalar Bose field. [HiS].

The foilowing 1-3 show the spectra which we had found, so not all:
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(1) For ja| < aww(¥):
(I-a) Let d%(uo) > 0. Then

Point Spectra Essential Spectrum
V4o moves
~
@ - L
0 l Excited State Energy
Ground State Energy
?

(I-b) Let d%(uo) < 0.
(I-b-1) If po > a2||A/\/i, |2, then

Point, Spectra Essential Spectrum
p
V Lo moves
@ @ -
0 Ef:o Excited State Energy

Excited State Energy
Ground State Energy

(10-2) It o = 0|1\ /13, then

Point Spectrum Essential Spectrum
o v (o Mmoves
had VN
o — - =i
0= El{fo Excited State Energy

Degenerate Ground State Energy



163

(I-b-3) If po < &®||A//@, 112, and all other hypothese in Theorem 2.1(c) hold,
then

Point Spectra Essential Spectrum

Ela!'ﬂ +v Ho moves
E< Excited State Energy

Ho O
Excited State Energy
Ground State Energy

~ Appearance or disappearance of ] depends on the condition for A by an effect of
the scalar Bose field as non-purterbative eigenvalue.

1: Spectra We Had Found for WW Model (I) for » > 0

(II) For |a| > aww(¥): If all hypotheses in Theorem 2.5 (b) hold, then

Point Spectra ~ Essential Spectrum
(o moves
gs.e.tV -
* L e —
Ground State Energy EZ‘O 0 - Excited State Energy

Excited State Energies

Appearance or disappearance of Bl depends on the condition for A, and % appears
by an effect of the scalar Bose field. Both of % and Ml are non-perturbative eigenvalues.

& 2: Spectra We Had Found for WW Model (II) for v > 0
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(I) For |a| < aww(0):
(I-a) If d*(uo) > 0, then

Point Spectra Essential Spectrum
Ho moves
L o . =
0 l Excited State Energy
Ground State Energy

?

Appearance or disappearance of l depends on the condition for A by an effect of
the scalar Bose field as non-perturbative eigenvalue.

(I-b) If all hypotheses in Proposition 2.2 hold, then

Point Spectra Essential Spectrum
{0 moves
o0 S
2

Excited State Energy
Ground State Energy

3: Spectra We Had Found for WW Model (I) for v = 0



(IT) For |a| > aww(0): If all hypotheses in Theorem 2.5 (c) hold, then

Point Spectra Essential Spectrum
. o moves
@ Gl = -
E}, 0

Ground State Energy Excited State Energy

Excited State Energies

Appearance or disappearance of ll depends on the condition for A, and % appears
by an effect of the scalar Bose field. Both of % and M are non-perturbative eigenvalues.

& 4: Spectra We Had Found for WW Model (II) for v = 0

H. Spohn proposed the problem of expressing Ess(0) independently of the existence of its ground state to
me when I held discussions on [mHi2] with him, though I assumed the existence in [mHi2]. So, this is the
beginning, of the problem I dealt with in this paper. I wish to thank him for giving me the beginning of the
problem. Iargued the problem about Esz(0) given by the limit (1.14) of the explicit expression for Egg(v) in
[mHi2] with V. Bach and A. Elgart when I visited Technische Universitét Berlin during September 8-10, "98.
Then the above problem (1.13) - (1.15) on the survival of p arose. I wish to thank them for arrangements
of my visiting Technische Universitdt Berlin and the hospitality. I am indebted to A. Arai for useful discus-
sions which proofs in this paper were based on. I thank H. Spohn and F. Hiroshima for their hospitality
at Technische Universitit Miinchen during April 15-22, 99, and discussing Spohn’s unpublished results. I
wish to express H. Spohn, R. A. Minlos, H. Ezawa, K. Watanabe, K. Yasue, M. Jibu and F. Hiroshima for
valuable advice. I wish to thank J. Derezifiski for discussing several aspects about the generalized spin-boson
model at the summer school “Schridinger Operators and Related Topics,” Shonan Village Center, July 5-9,
’99, and also C. Gérard for telling me how to get his tecent result which broke through a wall in Theorem
2.5 (c). My research is supported by the Grant-In-Aid No.11740109 for Encouragement of Young Scientists
from Japan Society for the Promotion of Science.
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