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Strong Convergence Theorems with Compact Domains

RILTERFRER EHE T EMER
JEZ EF (SACHIKO ATSUSHIBA)

ABSTRACT. In this paper, we prove a nonlinear strong ergodic theorem for nonexpan-
sive mappings of a compact convex subset of a strictly convex Banach space into itself.

Further, we prove a nonlinear strong ergodic theorem for a one-parameter nonexpansive
semigroup.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space E. Then, a mapping
T': C — Cis called nonexpansive if | Tz ~Ty|| < |[z—y]| for z,y € C. We denote by F(T)
the set of fixed points of T. Let S = {T'(s) : 0 < s < oo} be a family of nonexpansive
mappings of C into itself such that T(s +t) = T(s)T(t) for s,t € R, t — T(t)z is
continuous for each z € C and T'(0) = I, where I is the identity mapping, which is called
a one-parameter nonexpansive semigroup on C. Let x € C. Then, for a nonexpansive
mapping T': C — C, the w-limit set of z is defined by

wz)={z€C:z=lim Tz with n; > 00 as i— co}.

1—00

Similarly, the w-limit set of z for a one-parameter semigroup S on C' is defined by
w(S,z)={2z€C:2=1imT(s;)r with s, >00 as ¢— oo}.

Edelstein [10] obtained the following nonlinear ergodic theorem for nonexpansive map-
pings with compact domains in a Banach space: Let C be a nonempty compact convex
subset of a strictly convex Banach space and let 7" be a nonexpansive mapping of C into
itself. Let z € C. Then, for any £ € Tow(z), the Cesaro mean S,(§) = (1/n) Ez;é T*k¢
converges strongly to some y € F(T'), where ToA is the closure of the convex hull of A.
Dafermos and Slemrod [9] obtained the following theorem: Let C be a nonempty compact
convex subset of a strictly convex Banach space and let § = {T'(t) : 0 < ¢ < oo} be a
one-parameter nonexpansive semigroup on C. Let z € C. Then, for any ¢ € Tw(S ,:z,;),
(1/t) fot T(s)&ds converges strongly to some y € (Nyc,coo F(T'(t)). On the other hand, the
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first nonlinear ergodic theorem for nonexpansive mappings with bounded domains was
established in the framework of a Hilbert space by Baillon [5]: Let C' be a nonempty
bounded closed convex subset of a Hilbert space and let T be a nonexpansive mapping of
C into itself. Then, for any z € C, the Cesaro mean S,(z) = (1/n) Zz;é T*x converges
weakly to some y € F(T). Bruck [7] extended Baillon’s theorem to a uniformly convex
Banach space whose norm is Fréchet differentiable. Brézis and Browder [6] also proved
a nonlinear strong ergodic theorem for nonexpansive mappings of odd-type in a Hilbert
space (see also Reich [11]). In view of Edelstein’s theorem, it is natural to ask the fol-
lowing question: For any z € C, do the Cesaro mean S,(z) converges strongly to some
z € F(T)?

In this paper, we give an affirmative answer to the problem, that is, using Bruck
[7, 8] and Atsushiba and Takahashi [1], we prove a nonlinear strong ergodic theorem for
nonexpansive mappings of a compact convex subset of a strictly convex Banach space
into itself. Further, we prove a nonlinear strong ergodic theorem for a one-parameter
nonexpansive semigroup.

2. STRONG ERGODIC THEOREM FOR NONEXPANSIVE MAPPINGS

Throughout the rest of this paper, we assume that a Banach space E is real and we
denote by E* the dual space of E. In addition, we denote by R* and N the sets of all
nonnegative real numbers and all positive integers, respectively. For a subset A of E, we
denote by coA the convex hull of A.

A Banach space E is said to be strictly convex if ||z + yl|/2 < 1 for z,y € E with
lz]l = |lyll = 1 and z # y. In a strictly convex Banach space, we have that if

Izl = llyll = (1 = Xz + Ay

for z,y € E and X € (0,1), then z = y. Throughout the rest of this paper, we assume
that E is a strictly convex Banach space. '

~ In this section, we shall give a nonlinear strong ergodic theorem for nonexpansive map-
pings. First, we give two lemmas which play an important role in the proof (see also
[3,4,7,8]).

Lemma 2.1. Let C be a nonempty compact convex subset of E. Then,

n—1 n—1
1 : 1 :
lim sup ||— E T'y—-T1| — E Ty ||| =0,
n—oo yeC || 5y nis
TeN(C)

where N(C) denotes the set of all nonexpansive mappings of C into itself.
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Lemma 2.2. Let C be a nonempty compact convex subset of E and let T be a nonex-
pansive mapping of C into itself. Let z € C and n € N. Then, for any ¢ > 0, there exists
lo = lp(n,e) € N such that

sup
keN

<eg

n~1 n—1
LS iy 7t (% D T“mx)
=0 =0

for every m > ly.
Using Lemma 2.2, we can prove the following lemma (see [3]).

Lemma 2.3. Let C be a nonempty compact convex subset of E and let T' be a nonex-
pansive mapping of C into itself. Let x € C. Then, there exists a sequence {zn} in N such
that for each z € F(T),

lim

n—oo

1 n—1
— E Tty — 2
n im0

exists.

Sketch of the proof of Lemma 2.3. From [7], we have, for any n,m € N
1 m—1
= Z Ti+im+in .
m £
m—1 1

n—1 » ‘ el o

1 P T 1 . L .
P g— E : o T]+zm+zn—1 _ T.H‘zm+zn+m-—1x o = T.7+h+zm+’5n . 1
mn '—1(n~ 4 :L“ ' )+m_7z:n§=:0 : x : ()

Fix z € F(T). From (1) and Lemma 2.2, we obtain

1 m—1
. E :TJ+1m+ln:L. -2
m im0

n—1 .
< || = i Tj+zm+zn—1 _Tj+zm+ln+m—1
< |l Y= ) : o)
j=1
1 m—1 1 n—1 1 m—1 n—1
™m n m
7j=0 h=0 7=0 h=0
1 m—1 1 n—1
+ - TJ+1m <_ Z Th""n :L:) P
m < n
j=0 h=0
1 n—1 1 n—1 Mn 1 n—1
<—N(n—j)2M+e+|=> THirz -z < —+e+ =S rhteg — 2|,
nm ] n heo m n heo
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where M = sup{]|T7z|| : 7 € NU {0}}. Therefore, we have

1 m—1 1 m—1 1 n—1
lim ||— E Titmy — 21l = lim ||— E Titmting _ 2l <e+ ||= E Thting — 2
Then, we can show that
1 n—1
lim {|— E Titng —
n—oo (| <
=0
exists. 0

Remark 2.4. In Lemma 2.3, take a sequence {i,'} in N such that i,,’ > 4, for each n € N.
Then, we can see that

n—1

%ZT”"”':(: — 2.

j=0

n—1

%ZTj+i"$ —2

=0

= lim

lim

n—oo

for every z € F(T).

Now, we can show a nonlinear strong ergodic theorem for nonexpansive mappings (see
31)- |
Theorem 2.5. Let E be a strictly convex Banach space and let D be a nonempty
closed convex subset of E. Let T' be a nonexpansive mapping of D into itself such that
T(D) C K for some compact subset K of D and let € D. Then, (1/n) Y07 Ti*"s
converges strongly to a fixed point of 7' uniformly in A € N U {0}. In this case, if
Qzr = lim, . (1/n) Z?z'ol Ttz for each z € D, then @ is a nonexpansive mapping of D
onto F(T) such that QT* = T*Q = Q for every k € N and Qz € c0{T*z : k € N} for
every r € D.

Sketch of the proof of Theorem 2.5. From Mazur’s theorem, C = @0 ({z} UT(D)) is a
compact subset of D. We see that C = @({z} UT(D)) is convex and invariant under
T and contains co{T*z : k € NU {0}}. Thus, we may assume that 7 is a nonexpansive
mapping of a compact convex subset of D into itself.

From Lemma 2.3, there exists a sequence {¢,} in N such that for each z € F(T),

n—1
1 .
l' _ ) +in —_—
lim nZT T—z (2)
7=0
exists. From Lemma 2.1, we have
111.—1 1n—1
lim ||= ) Totng —T [ =) Tt = 0. 3
t |18t (15 e i




49

Let {®,} = {(1 /n) i, Tj“":z:} . From the compactness, {®,} must contain a subse-
quence which converges strongly to a point in C. So, let {®,,} be a subsequence of {®,}
such that limy_,.o @5, = yo. From (3), we see that yo is a fixed point of 7. From (2), we
have ®, — yo. In the above argument, take a sequence {i,'} in N such that i,,’ > 1, for
each n € N. Then, repeating the above argument, we see that ®," = (1/n) Z;:g Titin'g
converges strongly to some y; € F(T'). From Remark 2.4, we can show yo = y;. Since {3’}
is any sequence in N.such that i, > i, for each n € N, we see that (1/n) Z?;& Tt hting
converges strongly to yo uniformly in A € N U {0}. Then, using an idea of (1), we
can prove that (1/n) 327—) T9**z converges strongly to yo uniformly in h € N U {0},
If Qz = lim,—.(1/n) Z”_Ol Tz for eacha € D, then Q is a nonexpansive mapping of
D onto F(T) such that QT* = T*Q = Q for every k € N and Qz € co{T*z : k € N} for
every x € D (for example, see [12, 13]). » O

We also obtain the following corollary.

Corollary 2.6. Let E,C,T and z be as in Theorem 2.5. Then, {T"z : n € N} is strongly
convergent if and only if

Tz — T "z — 0.
In this case, the limit point of {T"z : n € N} is a fixed pomt of T.

3. STRONG ERGODIC THEOREM FOR A ONE-PARAMETER NONEXPANSIVE SEMIGROUP

A family S = {T'(s) : 0 < s < 0o} of mappings of C into itself is called a one- parameter
nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0)x = = for all z € C;

(i) T(s +t) = T(s)T(¢) for all s,t € R* ;

(iii) || T(s)z — T(s)y|| < |jx — y]| for all z,y € C and s € RY;

(iv) for each x € C, s = T(s)x is continuous.
We denote by F(S) the set of common fixed points of T'(t),t € R*, that is, F(S) =
Nosicoo F(T(1))- | .

In this section, we give a strong ergodic theorem for a one-parameter nonexpansive
semigroup. For a compact subset of a strictly convex Banach space, we obtained the
following two lemmas (see [3]):

Lemma 3.1. Let C be a nonempty compact convex subset of E and let n € N, Then,
there exists a strictly increasing continuous, convex function 7, : Rt — R* such that
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7.(0) = 0 and

N
=1

> -7 (35w
1=1
for every nonexpansive mapping T of C into itself, every sequence {\;}*; in Rt with
i di=1and {y}, in C.

D < 1g3§n(llyi =yl = 1Ty = Ty;l))

Lemma 3.2. Let C be a nonempty compact convex subset of E. For any ¢ > 0, there
exists & > 0 such that for any nonexpansive mapping T of C into itself,

@Fs(T) C F.(T).
Using Lemmas 2.1 and 3.2, we obtain the following lemma (see [2, 4]).

Lemma 3.3. Let C be a nonempty compact convex subset of E and let S = {T'(¢) : 0 <
t < 0o} be a one-parameter nonexpansive semigroup on C. Then, for any h € R,

+ [owas =1 (3 [ 706y005)

Sketch of the proof of Lemma 3.3. Let ¢ > 0 and h € RT. From Lemma 3.2, there exists
d > 0 such that T0Fs;(T) C F.(T) for every nonexpansive mapping T of C into itself.
From Lemma 2.1, there exits n; € N such that

lim sup
t—oo yeC

o

n—1
1
sup [|[= Y T(hi+s)y—T(h ZT(hz—I—s)y
yGC_"_ n =0
R

for every n > ny. Then, we obtain
n—1

= ZT (hi+ s)y € Fs(T(h)) C TFs(T(h)) (4)
=0

for every s € RT,n > ny and y € C. Let n > ny. Then, we have that for any t € RT with
t>h(n—-1)and y € C,

i froms-ro (¢ [ rmows)
(%[ 7owas - [70hi+ owas

EZ
_n >
n— 1 n—1 i
N2 7w _
- ;zo : /o (hi + s)yds (n .7 /T(hl+ s yds)

i=
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and

S Moh(n - 1)

1 t+hi
s)yds — —/ T(s)yds ,
tJ, ¢

)

where My = sup ||z|| Using (4) and the separation theorem, we can prove that there exists
zeC

to € RT with tg > h(n— 1) such that L S0 L [T (hi+ s)yds € TOF5(T(h)) for all y € C
and t > to. From T Fs(T(h)) C FS(T( )), we have
| 2Moh(n—1)

’%/Ot:r(s)yds—ﬁ(h) (% /Ot T(s)yd5> <

for t > to. Since y € C is arbitrary, we have

%/OtT(s)yds— T(h) (-11; /OtT(S)de>

Lemma 3.4. Let C be a nonempty compact convex subset of E and let S = {T(s) : 0 <
s < oo} be a one-parameter nonexpansive semigroup on C. Let z € C and ¢t > 0. Then,
for any € > 0, there exists p; = pi(¢) € R* such that

% /Ot T(h+p+ 7)zdr — T(h) (% /Ot T(p+ T)xdr)

lim sup. =0. O

t—oo yeC

sup
heR+

<ég

for every p > p;.

Sketch of the proof of Lemma 3.4. Let t > 0 and ¢ > 0. We know that there exists
61 = 61(¢) > Osuch that ||T(51)a: T(s2)z|| < e/3if|s1—s2] < 6;. Choose N = N(t,e) €N
buch that N > t/6; and “1 fo T)zdr — 1L >y T(%)x” < £. Then, we can show, for
each h,p € R,

h+p+T).’L‘dT—£—ZT h+p+ i
(h+r+5)e

Hence, for each p € RT,

1/; (p+’r)xd7-—~~—ZT< )

=1

< % (5)

We see that for each i,j € {1,2,... ,N},

tim [7(s+ )= 7(s+ )2

SO0

= lim HT(S)T(—N-)ZQJ - T(s)T(%)ja:
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exists. Let vy be as in Lemma 3.1. Since 75" is continuous and ' (0) = 0, there exists
by = 82(¢) > 0 such that 75'(6) < ¢/3 for every 6 with 0 < § < &. Then, there exists
m = e, 1,7,t) € RY such that

X3 15
De-rlas )

N < 0y

0< HT(3+ Z%)J;——T(s—!— Z]\Er):z:

- “T(q+s+

for every s > p; and ¢ € Rt. Let p, = max{pi(e,i,5,t) : 1 < 4,5 < N}. It follows from
Lemma 3.1 that

—;f-gT(h)T(er %)x —T(h) (-]1\7 éT(p+ %):::)

<y (151?%\, (HT(p+%)w—T(p+%)x —“T(h+p+%)x—T(h+p+th>x ))
-1 e |
<y (52) < ‘3‘ (7)

for every 4,5 € {1,2,...,N}, h € Rt and p > p;. Therefore, from (5), (6) and (7), we
have
€

‘<3'§=€

1 [ 1 [
“¥ / T(h+p+ 7)zdr — T(h) (; / T(p+ T):ZIdT)
0 0
for every h € Rt and p > p;. O
Using Lemma 3.4, we can show the following lemma (see [4]).

Lemma 3.5. Let C be a nonempty compact convex subset of E and let S = {T'(s) : 0 <
5 < 0o} be a one-parameter nonexpansive semigroup on C. Let z € C. Then, there exists
a net {p;} in RT such that for each z € F(S),

t—o00

1 t
lim Hgf T(T+ p)xdr — 2
0

exists.

Sketch of the proof of Lemma 3.5. Let ¢ > 0. From Lemma 3.4, for any ¢ > 0, there exists
p; € R such that

1

T(h) (? /OtT(p + T).’L‘dT) - %/Ot T(h+p+7)zdr|| <e (8)
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for every p > p; and h € R*. From an idea of [7], we have, for any t,s > 0,

1 14
—t-/ T(7+pi+ps)zdr : (9)
0

1 s 1 /1 [ '
== (s— 77)[1" N+pi+ps)x—T(N+pi+ps+1) ]dn+ t/ (;/ T(¢+n+pt+p3)xdn>dr.
0 0

Fix z € F(S) and t,s > 0. Put My = sup{||v|| : v € C}. Then, we have

é/os(s—U)[T(Uﬂ?t+Ps)x—T(77+pt+ps+t)x] dn“ < ?_ill{q/os((swn)dn ) A/[tit_ﬁ’__ o

From (8), we have, for ¢ > 0 with ¢ > p,,

yl/t (l/sT(T+n+pt+ps)xdn—z>d |
< “ / ( fr+pt+n+ps)a:dn) dr — —1—/;T(T+pt) (%/:T(n-%m)xdn)m
i (T(T—I—pt) <% /OS T(77+ps)a:dn) —-Z)d’f

-+

t
1 S
<€+“E/ T(n+ ps)zdn — z|| . (11)
Hence, from (9),(10) and (11), we have
— |1 [t
lim “ / (7 + pi)zdr — z|| = lim ‘z / T(T + pi + ps)zdr — 2
t—o00 t—o0 JO
1 S
<e+ “;/ T(n+ po)zdn — z|| .
0
Then, we can show that
1 t
lim ‘—/ T(r+p)zdr — z
t—oo || T 0 _ -
exists for each z € F(S).. o g

Remark 3.6. In Lemma 2.3, take a net {p,} in R* such that p,/ > p; for each t > 0.

Then, we can see
1 i
l;/ T(T +p)xdr — z
0

for every z € F(S).

lim

t—o0

t
= lim “%/ T(r + p)zdr — 2
0

t—00

Now, we can shgow a nonlinear strong ergodic theorem for a one-parameter nonexpan-
sive semigroup (see [4]).
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Theorem 3.7. Let E be a strictly convex Banach space and let C' be a nonempty
compact convex subset of E. Let S = {T(t) : 0 < t < oo} be a one-parameter
nonexpansive semigroup on C and let £ € C. Then, (1/f) fot T(7 + h)zdr converges
strongly to a common fixed point of T'(t),t € R* uniformly in h € R*. In this case, if
Qz = lim;_(1/t) fot T(7)zdr for each « € C, then Q is a nonexpansive mapping of C' onto
F(S) such that QT(q) = T(q)Q = Q for every ¢ € R* and Qz € To{T'(s)z: 0 < s < oo}
for every z € C.

Sketch of the proof of Theorem 3.7. From Lemma 3.5, there exists a net {p:} in R* such
that for each z € F(S),

1 t
tlim “—t—/ T(7+ p)adr — 2 (12)
- 00 0
exists. From Lemma 3.3, we have, for any ¢ € R¥,
1 t t
lim sup —/ T(7 + p)ydr — T(q) (/ T(r +pt)yd7') \ = 0. (13)
t—oo yelC t 0 J0

Let {®,} = {(1/t) J; T(r +p.)zdr}. From compactness of C, {®,} must contain a subnet
which converges strongly to a point in C. So, let {®;,} be a subnet of {®:} such that
lim, ®;, = yo € C. From (13), we can show that yo is a common fixed point of T(t),t €
R*. From (12), we can prove that ® — y € F(S). In the above argument, take a
net {p,} in R* such that p; > p, for each ¢ > 0. Then, repeating the above argument,
we see that ®, = (1/t) [, T(7 + p/)zdr converges strongly to some y; € F(S). Using
Remark 3.6, we can show 3 = 1. Since {p;'} is any net in R* such that p,/ > p, for each
t > 0, we see that (1/t) fOt T(7 + p; + h)xdr converges strongly to yo uniformly in h € R*.
Then, using an idea of (9), we can prove that (1/t) fot T(7 + h)zdr converges strongly to
yo uniformly in A € RY. If Qz = lime_o(1/¢) fot T(7)zdr for each z € C, then Q is a
nonexpansive mapping of C onto F(S) such that QT(q) = T(q)Q = Q for every ¢ € R*
and Qz € t{T(s)z : 0 < 5 < oo} for every z € C. O

We also obtain the following corollary.

Corollary 3.8. Let E,C,z and S = {T(t) : 0 < t < oo} be as in Theorem 3.7. Then,
{T(t)x : 0 < t < oo} is strongly convergent if and only if

T(s+t)z — T(t)x — 0 for every s € RY.

In this case, the limit point of {T'(t)z : 0 < t < oo} is a common fixed point of T'(t),¢ € R™.
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