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Abstracts

In usual computer, there is an upper bound of computational speed because
of irreversibility of logical gate. In order to avoid this demerit, Fredkin and Tof-
foli [3] proposed a conservative logical gate. After that, Milburn [4] constructed
a physical model of reversible quantum gate with beam splittings and a Kerr
medium. This model is called FTM (Fredkin - Toffoli - Milburn gate) in this
paper.This FTM gate was described by the quantum channel and the efficiency
of information transmission of the FTM gate was discussed in [10]. FTM gate
is using a photon number state as an input state for control gate. The photon
number state might be difficult to realize physically. In this paper, we introduced
a new device on symmetric Fock space in order to avoid this difficulty.

In Section 1, we briefly review noisy quantum channels and generalized beam
splittings. In Section 2, we explain the quantum channel for FTM gate based
on the notation of Section 1. In Section 3, we intruduced a new operator on
symmetric Fock space and discuss the truth table for our new gate.

1. Quantum channels and generalized 8beam splittings

Let (B(H1),&(H;y))and (B(H3),&(H2)) be input and output systems, respec-
tively, where B(H) is the set of all bounded linear operators on a separable
Hilbert space Hy and &(Hy) is the set of all density operators on Hy (k = 1,2).
Quantum channel A* is a mapping from &(H;) to 6(Hz).

(1) A* is called linear if A*(Ap; + (1 — A)p,) = AA* (p;) + (1 — X\)A* (p,) holds
for any p;, p, € 6(H;1) and any A € [0, 1].
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(2) A* is called completely positive (CP) if A* is linear and its dual A :
B(H;) — B(H;) is completely positive.

Almost all physical transformation can be described by the CP channel (5],
[7], (8]8

Let &; and K, be two Hilbert spaces expressing noise and loss systems,
respectively. Quantum communication process including the influence of noise
and loss is denoted by the following scheme [6]: Let p be an input state in
&( H1), & be a noise state in & (K1). Let ¢ be a state in & (K1), which is called
a noise state. y*from 6 (H;) to & (H1®K,) is given by

Y (p)=p®E& p€G(Hi), (1.1)
and a* from 6 (Ha®K2) to & (Hy) is given as

a* (o) = tri,0, 0 € 6(Ha®K,) . (1.2)

The map IT* is a CP channel from & (H;®K;)to 6 (H2®K;) determined by
physical properties of the device transmitting information. Hence the channel
for the above process is given as

A" (p) = triTT* ( p® €) = (a* o TT* 07°) (p) (1.3)
for any p € &(H;). Based on this scheme, the attenuation channel and the noisy

quantum channel are constructed as follows:

(1) Noisy quantum channel A* with a noise state £ is defined by

A(p) = tr,T(p @) (1.4)
= tri,V(p®& VT,
where ¢ = |m;)(m,| is the m; photon number state in 6(K;) and
V is a mapping from H; ® K1 to Hz ® Ky denoted by

ny+my
V(im) ®ma)) = Y C™ 1) ® |ny +ma — ),
J
cpm (1.5)

K : '
_ Sy Vmdmalghm b m =)
ri(

ny = N —(my — j +7)!

Xaml—j+2r (_B) ni+j—2r )




115

K and L are constants given by K = min{n, 7}, L = max{m; —
4,0} and « and 8 are complex numbers satisfying |a|® + |3|* = 1.
In particular for the coherent input state p = |0) (8] ® |x) (x| €
6 (H1®K1), we obtain the output state of II* by

I1* (|0) (0] ® |k) (k|) = |f + Bk) (d& + BK|®|—B8 + arx) (—B6 + ax|.

IT* was defined by Ohya - Watanabe [9], which is called a gener-
alized beam splitting. Note that IT* with the noise state &, given
by the vacuum state |0)(0| is called the attenuation channel A},
which is formulated as

Aj(p) = triIT(p® &)

=t Vol ® [0) 0]V, (16)

V() @10) = 30l @ s — 5), (17)
n1! j =\ N1 —j

C;-ll = m& (—ﬂ) . (18)

In particular, for the coherent input state p=10) (0] ®|0) (0| €
& (H1 ®K4), we obtain the output state of IT} by

113 (16) (6] © [0) (0]) = [a0) (o] &® | ~6) (~76) .

Lifting & from & (H) to 6 (H®K) in the sense of Accardi and
Ohya [1] is denoted by

£ (19) (6]) = ab) (af] ® |86) (86) .

& (or II}) is called a beam splitting. Based on liftings, the beam
splitting was studied by Accardi - Ohya and Fichtner - Freuden-
berg - Libsher [2].
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2. Quantum channel for Fredkin-Toffoli-Milburn gate

In usual computer, we could not determine two inputs for the logical gates AND
and OR after we know the output for these gates. This property is called an
irreversibility of logical gate. This property leads to the loss of information and
the heat generation. Thus there exists an upper bound of computational speed.

Fredkin and Toffoli proposed a conservative gate, by which any logical gate
is realized and it is shown to be a reversible gate in the sense that there is no loss
of information. This gate was developed by Milburn as a quantum gate with
quantum input and output. We call this gate Fredkin-Toffoli-Milburn (FTM)
gate here. Recently, we reformulate a quantum channel for the FTM gate and
we rigorously study the conservation of information for FTM gate [10].

The FTM gate is composed of two input gates I; I, and one control gate
C. Two inputs come to the first beam splitter and one spliting input passes
through the control gate made from an optical Kerr device, then two spliting
inputs come in the second beam splitter and appear as two outputs (Fig.2.1).
Two beam splitters and the optical Kerr medium are needed to describe the
gate.

I My
Il_)$ Ci - — Cp \}{z’nlC
| B S, Optical Kerr Device | p1inH,y
la=,/1 | pqyin Hay
1 ‘ 1
My \ o=/} BS; \ .0
O,

Fig 2.1 FTM gate _
(1) Beam splitters: (a) Based on [9], let Vi be a mapping from H; ® H; to
H1 ® Hp with transmission rate 7, given by

ni+ng

Vi(lm) @ [n2)) = Y C7*™ ) @ [na + m2 — j) (2.1)
3=0

for any photon number state vectors |n;) ®|ng) € H1®Hz. The quantum channel
1%, expressing the first beam splitter (beam splitter 1) is defined by

Mgs1 (01 ® p2) = Vi(py ®@ o) VY (2.2)
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for any states p; ® p, € 6(H; ® Hsy). In particular, for an input state in two
gates I and I, given by the tensor product of two coherent states p, ® p, =
161)(61] ® [02)(62|, 51 (01 ® py) is written as

Mhsi(py @) = |Vinbs+v/I=mbs) (Vs + /T= 1,6
® |—\/1 =m0+ /2 ) (—/T— 136 + m92| . (2.3)
(b) Let V2 be a mapping from H; ® H, to Hy ® Hz with transmission rate 7,
given by

n1+na

Va(im) @) = 3 G2 o+ ma = 5) @ ) (24)

Jj=0

for any photon number state vectors |n;) ®|ns) € H;®Hs,. The quantum channel
Iz ¢, expressing the second beam splitter (beam splitter 2) is defined by

Mgy (01 ® py) = Va(py ® py) V' (2.5)

for any states p; ® p, € 6(H1 ® Hz). In particular, for coherent input states
p1 ® py = [01)(61] ® |62) (02|, IT555(p1 ® p,) is written as

M50 ® py) = '\/7—7;91 - 1= 77292> <\/ﬁ;91 — /1 =50,
® |\/1 =101+ v/ ) (/T 1gbs + \/77294 . (2.6)

(2) Optical Kerr medium: The interaction Hamiltonian in the optical Kerr
medium is given by the number operators N; and N, for the input system 1 and
the Kerr medium, respectively, such as

Hint = hix (N1 ® L, ® N), (2.7)

where h is the Plank constant divided by 27, x is a constant proportional to
the susceptibility of the medium and I, is the identity operator on H,. Let T
be the passing time of a beam through the Kerr medium and put vF = kxT,
a parameter exhibiting the power of the Kerr effect. Then the unitary operator
Uk describing the evolution for time T in the Kerr medium is given by

Uk = exp (—z‘\/ﬁ (MRL® Nc)) . O (298)
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We assume that an initial (input) state of the control gate is the n photon
number state £ = |n) (n|, a quantum channel A}, representing the optical Kerr
effect is given by

Ak (p1 ® p, ® &) = Uk (py ® py ® §)Uk (2.9)
for any state p; ® p, ® £ € 6(H; ® Ha®K) . In particular, for an initial state
pL® py ® & = 101) (1] ® [02) (62| ® [n) (n], Ak (py ® p, ® §) is denoted by

Ax(py ® p, ® )
= ‘ exp (—Z\/ﬁn) 01> < exp (——z Fn) 01‘
® |02) (02| ® |n) (nl (2.10)
Using the above channels, the quantum channel for the whole FTM gate is
constructed as follows: Let both one input and output gates be described by
H1, another input and output gates be described by Hz and the control gate
be done by K , all of which are Fock spaces. For a total state p; ® p, ® € of

two input states and a control state, the quantum channels Ajg, Apgy from
6(H1 ® Ha® K) to 6(H; ® He ® K) are written by

Apsi(pr ® p ® &) = Hpg(py ® py) ®E (b =1,2) (2.11)
Therefore, the whole quantum channel Ajr,, of the FTM gate is defined by
Aprm = Apgy 0 A 0 Apgy. (2.12)

In particular, for an initial state p; ® p, ® € = |01) (61| ® |02) (62] ® |n) (n],
Apru(pr ® py ® €) is obtained by

Aprm(pr ® Py @ E)
|01 + Vnb2) (1,01 + vnb2]
® s + 1a02) (Vs + 1,02] @ [} (] (2.13)

where

i, = % {exp (—z\/Fk) + 1} , (2.14)
I % {exp (—’I,\/Fk) _ 1} C (k=0,1,2,---). (2.15)

However, it might be difficult to realize the photon number state |n) (n| for
the input of the Kerr medium physically. In stead of the Kerr medium, we
introduce new operator based on symmetric Fock space in the next section.
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3. Quantum logical gate on symmetric Fock space

Let G be a complete separable metric space and G be a Borel o-algebra of G.
v is called a locally finite diffuse measure on the measurable space (G,G) if v
satisfies the conditions (1) v (K) < oo for bounded K € G and (2) v({z}) =0
for any z € G. We denote the set of all finite integer - valued measures ¢ on
(G,G) by M. For a set K € G and a nutural number n € N, we put the set of ¢
satisfying ¢ (K) = n as

Myn = {p € Mip(K) =n} .

Let 2 be a o-algebra generated by Mk,. F' is the o-finite measure on (G, G)
defined by

F (Y) =ly (80() + z / 1Y (Z 6‘51) dml dw")’

where 1y is the characteristic function of a set Y, ¢, is an empty configulation
in M and 6, is a Dirac measure in z;. M = L? (M, m,F) is called a (symmetric)
Fock space. We define an exponetal vector exp, : M — C generated by a given
function g : G — C such that

1 =),
engW)E{ 1 g(z) &Z#gog, (p € M).

3.1. Generalized beam splittings on Fock space

Let a, f be measurable mappings from G to C satisfying &
lo@))?+18@)|)* =1, z€G.
We intoduce an unitary operator Vo 53: M ® M — M ® M defined b

(Vap®) (p1,00) = D D exp, (p1) expy (3 — ¢y)

P1<p1P2502
X eXp_p (@) expg (03 — @)
X O ((231 + sz,(Pl + Yo — @1 - @2)
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for ® € M ® M and ¢, p, € M. Let A =B (H) be the set of all bounded opera-
tors on M and & (A) be the set of all normal stateson A. E3: AQA - AR A
defined by

Eap (C) =V 5CVap, VO EARA

is the lifting in the sense of Accardi and Ohya [1] and the dual map &; 5 of Eap
given by
s (@) (0) =w(lap(e), Ywes(ARA

is the CP channel from 6 (A ® A) to 6 (A ® A). Using the exponetial vectors,
one can denote a coherent state 8/ Bby

07 (A) = <expf, Aexpf> e“”fuz, VfeL?(G,v), VA€ A

In particular, for the input coherent states 7y ® wg = 6’ ® 69, two output states
w1 (8) = 1) @wp (Ewy (8) © 1)) and 7, () = 1 @wo (Eap (I & (#))) are obtained
by

Wy = gaf+ﬂg’
n, = 6°PItag

&,  is called a generalized beam splitting on Fock space because it also hold the
same properties satisfied by the generated beam splitting IT*in Section 1.

Now we introduce a self-adjoint unitary operator U, which denotes a new
device instead of the Kerr medium, defined by

U (D) (p1,,) = (“l)ltplnwl P (¥1, )

for ® € M® M and ¢,,p, € G, where |p,| = ¢, (G) (k=1,2). For the input

state w; @ k=67 ® “1/}“2 (¢, ®1), the output state wq of new device is

we (A) = w1®ﬁ(ﬁ(A®I)U)

1 ll2f )
F(d 26007 (A
o /M (do) I ()] (A)

for any A€ A, ¢ € M (¢ #0) and f € L?(G,v). If k is given by the vacuum

state 8%, then the output state ws is equals to w; and if k is given by one particle

state, that is, Kk = "1/}1“2 (1, o) with 9 [pe(where M; is the set of one-particle

states), then w, is obtained by 0=7. Let M, (resp. M) be the set of ¢ € M




which satisfies that || is odd (resp. even) and M be the union of M, and M..
The output states wy of the new device is written by

wa (A) = M0 (A) + 107 (A) VA e A,
where A\; and )\, are given by

M= [y, F (de) [y ()7,
Aa = bz [, F (de) [y ().
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Two output states w3 (8) = wa®n, (Eay,p, () ® I)) and 0y (o) = wa®n, (8a2,52 (I ®(e)))

of the total logical gate including two beam splittings £, 5 with (low)? + 1Be)? = 1)

(k = 1.2) and the new device instead of Kerr medium are obtained by

wy = MBI B (=B +8g) | ) goa(arf+B1a)+B(~BrS+aug)
Ny = )\19—[32(—(&1f+ﬂ1g))+562(451f+d19)+A20_52(01f+ﬁ19)+552(“B1f+5flg),

where wy = A\ §~(@1f+819) 4 ), gorf+b19 gnd Ny =1, = g—Pif+aag.

3.2. Complete truth table for the new logical gate

In this section, we show the complete truth table giving by the above logical
‘gate on Fock space.

We put w; = 67 and 7, = 69. If we assume the case (1) of A\; =0 and A = 1,
then one has
Wy = 9(a1a2—Blﬁg)f+(a2ﬁ1+alﬂ2)g,

773 — 0(—&152—&231)f+(‘ﬂ152+&1512)g,

and if we assume the case (2) of A\; = 1 and A\; = 0, then one has

w3 = 9(—011042—B;ﬂz)f+(a2ﬂ1+5tlﬂ2)g,

N3 9(0132—6251)f+(—,3152+f¥15tz)9.

For example, we have the complete truth tables for the following two cases (I)
and (II): (I) When o = ap = ; = 2 = % are satisfied, two output states
of the new logical gate become w3 = 69 and 7, = 6~/ under the case (1) and
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ws = 077 and 7, = 69 under the case (2). (II) When a; = %’i and (B, = e:;;
with 7., 8k € [0, 27] hold ayap = 3,0, one has v, + 7, = §; — 6; and two output
states of the new logical gate become w3 = # and 7, = 6§~/ under the case (1)
and w3 = 0~ and 7n; = 69 under the case (2).

The new logical gate treats three initial states wg, 7, and x corresponding to
two input gates I3, I; and the control gate C, respectively. The true T and false
F of the input state w (resp. n) are described by two different states w” and w”
(resp. nT and p'"), that is;

True < coherent state w” = 67 (resp. n” = 69),
False < vacuum state.w? = 0° (resp. n¥ = 0°).

Moreover, the truth state kT and the false state k¥ are denoted by the control
states of the case (1) and (2), respectively. When the initial control state x
is k¥ under the above case (I) or (II), the final states of the new logical gate
corresponding to two input gates O;,0, are obtained as the following truth
table:

L|L[C]O: |0,
T|T|F|T |T

F|T|F|F |T (3.1)
T|F|F|T |F

F|F|F|F |F

When the initial control state s is k7 under the above case (I) or (II), the
final states of the new logical gate corresponding to two input gates O;, O, are
obtained as the following truth table:

L|L[C]O; [0,
T(T|T|T [T

F|T|T|T |F (3.2)
T|F|T|F |T

F|F|T|F |F

It means that the new logical gate performs the complete truth table. Further
results will be appear in our joint paper [11].
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