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1 Introduction

Let G be a connected topological group. We define the right adjoint
action ad : G X G = G by ad(g,h) = h™'gh. Then the cohomol-
ogy H*(G;Z/1) is regarded as a right H*(G; Z/l)-comodule under the
coaction induced by the adjoint action. The comodule is denoted by
H*(G;Z/1). below. In this note, the algebra structure of

E = COtOI‘H*(G;Z/l)(H*(G; Z/l)c, Z/l)

is considered from the viewpoint of the a differential graded algebra
structure of the twisted tensor product due to Brown [1]. The exis-
tence of the following three spectral sequences motivates the consid-
eration of the algebra structure of E.

(1) Let G(F,) be a finite Chevalley group of Lie type over the finite
field F, of ¢ elements and [ a prime number. By applying the Deligne
spectral sequence in the case where the characteristic of F, is prime
to I, Tezuka [7] has constructed a spectral sequence converging to
H*(BG(F,);Z/!). In particular if ¢ — 1 = 0 modulo [, then the Ej-
term of the spectral sequence is isomorphic to F as an algebra for
many cases.

(2) Let BLG be the classifying space of the loop group LG consisting
of all continuous maps from the circle to G. Then there exists the



Eilenberg-Moore spectral sequence, whose FEs-term is isomorphic to F
as an algebra, converging to H*(BLG;Z/1).

(3) Let X be a simply connected finite CW-complex. Following Mil-
nor’s description of universal bundles over a space, we can regard the
loop space 2.X, which is the subspace of the free loop space LX con-
sisting of based loops, as a topological group G. Therefore we have the
Eilenberg-Moore spectral sequence converging to H*(LX;Z/l) with
Es = F as an algebra.

One will know that it is important to clarify the algebra structure
of E as the first step in computing those spectral sequences.

Let G be a connected complex Lie group with the same Lie type as
that of a finite Chevalley group G(F,). As for the cohomology algebras
of BG(F,) and BLG, Tezuka [15] has proposed a problem whether the
cohomologies H*(BG(F,); Z/l) and H*(BLG;Z/!) are isomorphic as
an algebra in the case where [ is odd and divides ¢ — 1 but does not
divide g or [ = 2 and 4 divides ¢ — 1. As mentioned in [15], the answer
is affirmative if the integral cohomology of G has no [-torsion. The
main theorem in [6] and the explicit calculation of H*(BG(F,);Z/1)
due to Kleinerman [3] guarantee the result. To shed light on left part
of the problem, we will consider the structure of F for the case where
H*(G;Z) has [-torsion.

2 Results

Before stating our results, we recall a construction of the twisted tensor
product due to Brown (see [1], [14] or [4]). Let A be a coalgebra over
Z /1 with coproduct ¢4 and augmentation €. Let L be a Z /Ip-subspace
of A, v : L — A the inclusion and § : A — L a map such that
§o. = id;. We define themap§: A — sLbyf =s0fandi:sL — A
by I = 105!, where s : L — sL is a suspension. Construct the tensor
product X = T'(sL) and denote by ¢ the product in T'(sL). The map
@ induces a map A — T(sL) which is again denoted by 0. Let I be
the ideal of T'(sL) generated by (o (A®8) o0 p4) (ker ). The twisted

tensor product (W, d) with respect to 6 is defined as follows; we put
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W=A®X/I =A® X and define the differential operator dw by

dw =1®dg +(1®¢)o(1®0®1)o (44 ® 1), where
dy = —to(B®0)oporl.

We may denote the twisted tensor product W with respect to 6 : A —
sL by A Qy X.

Let G be a compact, simply connected, simple exceptional Lie
group. Then it is known [9] that a suitable choice of a subspace L
of H*(G;Z/!) makes the twisted tensor product into an injective res-
olution 0 — Z/l — H*(G;Z/1) ®y X over the coalgebra A. Moreover
the algebra structure of X induces that of the complex

(Z/10g Gz (H (G Z/1) @ X),10dw) = (X, dx)
Consequently we have
Cotorg(gzm(Z/l,Z/1) = H(X,dx) as an algebra.

In this note, we consider a multiplication my on the twisted tensor
product A®y X for a Hopf algebra A, in the sense of Milnor and Moore
[8], such that the differential dy is derivative under the multiplication.
In order to define a multiplication my explicitly, we will assume that
the Z/l-subspace L of A satisfies the following condition.

(I) There exist the set Q of indecomposable elements of A and a basis
{z;} of L such that {z;} C QU Q?, where Q* = {o*|a € QN Prim A}
and, as an algebra,
A= Q Z/plz]/(«F) @ @ Alzy) ,
r,€S ’ €T
where SUT = QN {x;} and SNT = ¢. Moreover, we also assume
that

(I1) (Yo (0 ®0) o ¢pa)(ker) = Z/I{(¢p o (0 @ 0) 0 pa)(ziz;)|zs, z; €
{wi}7i 7 .7};

(III) for any a € Q, 6O(ya)) = 0 for any y € A, where ¢4(a) =
Yiai®a! +a®1+1®a and that

(IV) for any « and y € {z;}, 0(zy) # 0 if and only if x = y and



z? € Q.
We mention here that the conditions (I), (II) (III) and (IV) hold in

the cases (PU(3),3), (F4,3), (Es,3), (Es,p), (Er,p) for | = 2 and
3 which have been studied by Kono, Mimura, Sambe and Shimada

([4],[5], [10], [11]).

The following is one of the our main theorem.
Theorem 2.1. Let A be a Hopf algebra over Z/l. For any elements
a®60zx and b0y of AQe X, definemy : AR X QAR X - AQp X
by

and
(Ozy - --0z,) - a = (Ox1(0z2(- - - (025 - a)) - - ),
where g4 (b) = T; L@V, If my is well-defined, then (A®¢ X, dw, mw)
is a differential graded algebra.
By comparing the differential algebra structure of the cobar resolu-

tion [13, 7.A, 1.2] of the left A-comodule Z/I and that of the twisted
tensor product mentioned above, we can prove Theorem 1.

Theorem 2.2. Ifl = 2 or 3 and the condition (1), (II), (III) and (IV)
hold, then the multiplication my ts well-defined.

In the case where A = H*(Fjg;Z/5), explicit calculation for the
differential dy and the multiplication my on A ®y X allow us to
obtain the following theorem.

Theorem 2.3. Let A®yX be the twisted tensor product of H*(Eg; Z/5)
constructed in [12]. Then (A ®¢ X,dw, mw) is a well-defined differ-
ential graded algebra.

In the case where A = H*(FEjg;Z/2), indecomposable elements z
on A can be chosen so that A(z) is in P ® P, where P is the Z/2-
subspace of A consisting of primitive elements. Thanks to this fact,
we can easily verify that the multiplication my is well-defined.
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Theorem 2.4. Let A®yX be the twisted tensor product of H*(Eg; Z/2)
constructed in [9]. Then (A®eX,dw, mw) is a well-defined differential
graded algebra.

In order to prove that the multiplication mp induces the algebra
structure on Cotor4(A, Z/p), it suffices to prove

Proposition 2.5. Let p be a prime number and p: AQ A — A the
multiplication of A. Then the map mwy : AQs X QAR X — ARy X
18 a p-morphism if my is well-defined, that is, the following diagram
18 commutative:

AR X @A X L (ARA)QARX QAR X
mwl l#@mw
A(X)gX — A®A®()X,

P2

where 11 and 1 are the comodule structures of ARy X @ AR X and
A ®¢ X respectively.

Let A denote the mod ! cohomology H*(G;Z/p). Since ad* ® 1 :
A® X — AO4(A® X) is the isomorphism with the inverse 1 Qe ®1,
we can define a differential on A ® X by the compositions

ARX L8 AD4(A®X) 4 AR(A0X) 2 A9(A®X) 28! AQX.
A straightforward calculation for the differential d : A® X — A®X

enables us to obtain the following explicit formula for d.

Lemma 2.6. We write as Ay(z) =z ®@1+1Qz+ Xz} ® =] for

z € A. If z} is primitive for any 1, then

— = S(-1) N0 @ 6+ 5(-1)! @ 02!

The multiplication my on the twisted tensor product A ®y X in-
duces a multiplication m on A ® X defined by

ARX®A®X Y AD,(A@ X) @ AD4(A® X) 24

AR(ARX)RA®(ARX) — AQARQ (AR X)® (A X) ™E8w
AQAX) e8] A X.



We can obtain an explicit formula for the multiplication m on A ®

X.

Lemma 2.7. We write as A4a) = a®@1+1Qa+ T;a; ® af for
a € A. If a; is primitive for any 1, then

bz -a = (—1)Pelllg @ gz — y(—1)lalaliHlal 1ozl gt & g(zql)
+5i(—1)4¥laf © 6(zaf) .

Thus we can obtain a differential graded algebra (A ® X, d, m). From
the construction of this differential graded algebra, we have

Theorem 2.8. For the case where A = H*(G;Z/l), if the twisted
tensor product (A ®y X,dw,mw) is a well-defined differential graded
algebra, then, as an algebra,

Cotorg gz (H(G; Z/1)e, Z/1) = H(A® X ,d, m).

The proofs of theorems and propositions in this note will be given
in a further article [7].
This note will be concluded with some examples of the differential
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graded algebras A0 4(A®,X) for computing the algebras Cotor 4(4, Z/1).

The case (G, p) = (PU(3),3).
W = A04(A®y X) = Z/3[a:2]/(a:§)®A(x1,x3)®Z/3{a2,a3,c5,b4}/I,

db4 = —Qa9as, dC5 = a%,
d(z3) = 2 ® ag + 1 ® as,

as-r3 = —r3®az+ T S Cs.

Therefore,we have, as a Cotorg-(pu(s);z/3)(Z/3,Z/3)-module,

Cotorg-(pu(s);z/3) (H*(PU(3);Z2/3),2/3) =
{Z/3[m2]/($3) ® A(z1) ® Z/3ly2, y3, y7, ys, Y12}/ (y2us, ?JQ%, Yoy, y%
Y2y + Y3y7)

D3 - (2123, T1y7, T1Ys + T2Y7, T3Y2, y3)}/($2y2 + z1y3).
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The case (G, p) = (Fy, 3).
W' = AO4(A®¢ X) = Z/3[xs])/(x}) ® Alzs, z7, 211, T15)
®Z/3{a4) as, ay, b127 blG) 617}/Ia

d(z;) = 13 ®aj-s11 +Tj—3®ay (j=11,15),
d|z/3; 31 = the ordinary differential on Z/3{ }/I,

ag-rj=—T;Qag+ Tj-g & cry (] =11, 15)

The case (G, p) = (Es, 3).
W'=AO4(A®y X) =
Z/3[zs)/(z}) ® A(zs, 27, g, T11, T15, T17) ®
Z/3{ay, as, ag, ayp, b12, b, b1s, 17} /1,

d(z;) = s @ aj_s+1 + Tj_s ®ag (j = 11,15,17),
d|z/s3( y/1 = the ordinary differential on Z/3{ }/I,

ag-Tj=—2;Qag+ ;s ®ciy (j=11,1517).

The case (E7,3).

W'= AO7(A® X) = Z/(2}) ® A(zs, z7, T11, T15, T19, T27, T35)
RZ/3{a4, as, ay, azo, b12, bre, bas, 17, €36 } /1,

d(:vj) =23®aj_gy1+ Tj—8 D ag (7 = 11,15,27),
d(z35) = T @ bag + Tor ® a9 — T§ ® azo + T19 @ c17,
d|z/3( y/1 = the ordinary differential on Z/3{ }/I,

ag - T; = —T; ®ag+ Tj_8 & ci7 (j =11, 15,27, 35)

The case (Eg, 3).

W' = ADA(A®H X) =
Z/3[$8, 3320]/(352, ﬂ?go) & A($3, T7, 15, 19, T27, L35, L39, $47)
®Z/3{as, as, ag, aso, a1, €17, Ca1, big, bao, dos, €36, €48}/ 1,

d(z15) = T3 @ ag + 7 @ ag, d(39) = T20 ® ag + T19 ® azi,
d(ze7) = g @ g0 + T19 @ ag + T2 @ ag + 7 @ as,
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d(z35) = 3 ® dag + Tor ® ag — T2 @ agy + T19 @ 17 + Tag ® byg
+x15 @ a1 + T20Ts  as,

d(zsr) = 28 ® bgo + 239 @ ag + T20 ® dos + a7 @ a9 + T7 @ cqy
—z3) ® ag + T20Ts ® as,

d|z/3{ 3/1 = the ordinary differential on Z/3{ }/I,

ag - T15 = —T15 O a9 + T7 Q C17, Q21 T39 = —T39 @ a1 + T19 @ 41,
ag - Toy = —T27 @ A9 + T19 Q C17, A21 - Tor = —To7 @ 21 + T7 & c41,
ag - T3s = —T35 Q ag + Toy Q C17, Q21 T35 = —Z35 Q A21 + T15 @ C41,
ag - Tyr = —T47 Q ag + T39 ® C17, @21 * Ty = —Ty7 ® A2 + To7 Q C41.

The differential operator d and the bracket [ , | are trivial on the
generators if they are not indicated above.
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