<table>
<thead>
<tr>
<th>Title</th>
<th>ON CLASSIFICATION OF QUANTUM ENTANGLED STATES (Mathematical Aspects of Quantum Information and Quantum Chaos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Belavkin, Viacheslav P; Ohya, Masanori</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2000, 1142: 194-212</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63880</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
ON CLASSIFICATION OF QUANTUM ENTANGLED STATES

VIACHESLAV P BELAVKIN† AND MASANORI OHYA‡

ABSTRACT. The mathematical structure of quantum entanglement is studied and classified from the point of view of quantum compound states. We show that the classical-quantum correspondences such as encodings can be treated as diagonal (d-) entanglements. The mutual entropy of the d-compound and entangled states lead to two different types of entropies for a given quantum state: the von Neumann entropy, which is achieved as the supremum of the information over all d-entanglements, and the dimensional entropy, which is achieved at the standard entanglement, the true quantum entanglement, coinciding with a d-entanglement only in the case of pure marginal states. The q-capacity of a quantum noiseless channel, defined as the supremum over all entanglements, is given by the logarithm of the dimensionality of the input algebra. It doubles the classical capacity, achieved as the supremum over all d-entanglements (encodings), which is bounded by the logarithm of the dimensionality of a maximal Abelian subalgebra.

1. INTRODUCTION

Recently, the specifically quantum correlations, called in quantum physics entanglements, are used to study quantum information processes, in particular, quantum computation, quantum teleportation, quantum cryptography [1, 2, 3]. There have been mathematical studies of the entanglements in [4, 5, 6], in which the entangled state is defined by a compound state which can not be written as a convex combination \(\sum_n \mu(n) \varrho_n \otimes \rho_n\) with any states \(\varrho_n\) and \(\rho_n\). However it is obvious that there exist several important applications with correlated states written as separable forms above. Such correlated, or entangled states have been also discussed in several contexts in quantum probability such as quantum measurement and filtering [7, 8], quantum compound state[9, 10] and lifting [11]. In this paper, we study

1991 Mathematics Subject Classification. Quantum Probability and Information.
Key words and phrases. Entanglements, Compound States, Quantum Entropy and Information.

The first author is grateful for the support under the JSPS Invitation Fellowship Program for Research in Japan.
probability such as quantum measurement and filtering [7, 8], quantum compound state[9, 10] and lifting [11]. In this paper, we study the mathematical structure of quantum entangled states to provide a finer classification of quantum states, and we discuss the informational degree of entanglement and entangled quantum mutual entropy.

We show that the pure entangled states can be treated as generalized compound states, the nonseparable states of quantum compound systems which are not representable by convex combinations of the product states.

The mixed compound states, defined as convex combinations by orthogonal decompositions of their input marginal states \(\rho_0 \), have been introduced in [9] for studying the information in a quantum channel with the general output C*-algebra \(\mathcal{A} \). This \(\mathcal{C} \)-entangled compound state is a particular case of so called separable state of a compound system, the convex combination of the arbitrary product states which we call \(\mathcal{C} \)-entangled. We shall prove that the \(\mathcal{C} \)-entangled compound states are most informative among \(\mathcal{C} \)-entangled states in the sense that the maximum of mutual information over all \(\mathcal{C} \)-entanglements to the quantum system \((\mathcal{A}, \rho)\) is achieved on the extreme \(\mathcal{C} \)-entangled states, defined by a Schatten decomposition of a given state \(\rho \) on \(\mathcal{A} \). This maximum coincides with von Neumann entropy \(S(\rho) \) of the state \(\rho \), and it can also be achieved as the maximum of the mutual information over all couplings with classical probe systems described by a maximal Abelian subalgebra \(\mathcal{A}_0 \subseteq \mathcal{A} \). Thus the couplings described by \(\mathcal{C} \)-entanglements of (quantum) probe systems \(\mathcal{B} \) to a given system \(\mathcal{A} \) don't give an advantage in maximizing the mutual information in comparison with the quantum-classical couplings, corresponding to the Abelian \(\mathcal{B} = \mathcal{A}_0 \).

The achieved maximal information \(S(\rho) \) coincides with the classical entropy on the Abelian subalgebra \(\mathcal{A}_0 \) of a Schatten decomposition for \(\rho \), and is bounded by \(\ln \text{rank} \mathcal{A} = \ln \dim \mathcal{A}_0 \), where \(\text{rank} \mathcal{A} \) is the rank of the von Neumann algebra \(\mathcal{A} \) defined as the dimensionality of a maximal Abelian subalgebra. Due to \(\dim \mathcal{A} \leq (\text{rank} \mathcal{A})^2 \), it is achieved on the normal central \(\rho = (\text{rank} \mathcal{A})^{-1} I \) only in the case of finite dimensional \(\mathcal{A} \).

More general than \(\mathcal{C} \)-entangled states, the \(\mathcal{D} \)-entangled states, are defined as \(\mathcal{C} \)-entangled states by orthogonal decomposition of only one marginal state on the probe algebra \(\mathcal{B} \). They can give bigger mutual entropy for a quantum noisy channel than the \(\mathcal{C} \)-entangled state which gains the same information as \(\mathcal{D} \)-entangled extreme states in the case of a deterministic channel.
We prove that the truly (strongest) entangled states are most informative in the sense that the maximum of mutual entropy over all entanglements to the quantum system \mathcal{A} is achieved on the quasi-compound state, given by an extreme entanglement of the probe system $\mathcal{B} = \mathcal{A}$ with coinciding marginals, called standard for a given ρ. The standard entangled state is o-entangled only in the case of Abelian \mathcal{A} or pure marginal state ρ. The gained information for such extreme q-compound state defines another type of entropy, the quasi-entropy $S_q(\rho)$ which is bigger than the von Neumann entropy $S(\rho)$ in the case of non-Abelian \mathcal{A} (and mixed ρ.) The maximum of mutual entropy over all quantum couplings, described by true quantum entanglements of probe systems \mathcal{B} to the system \mathcal{A} is bounded by $\ln \dim \mathcal{A}$, the logarithm of the dimensionality of the von Neumann algebra \mathcal{A}, which is achieved on a normal tracial ρ in the case of finite dimensional \mathcal{A}. Thus the q-entropy $S_q(\rho)$, which can be called the dimensional entropy, is the true quantum entropy, in contrast to the von Neumann rank entropy $S(\rho)$, which is semi-classical entropy as it can be achieved as a supremum over all couplings with the classical probe systems \mathcal{B}. These entropies coincide in the classical case of Abelian \mathcal{A} when $\operatorname{rank} \mathcal{A} = \dim \mathcal{A}$. In the case of non-Abelian finite-dimensional \mathcal{A} the q-capacity $C_q = \ln \dim \mathcal{A}$ is achieved as the supremum of mutual entropy over all q-encodings (correspondences), described by entanglements. It is strictly bigger then the semi-classical capacity $C = \ln \operatorname{rank} \mathcal{A}$ of the identity channel, which is achieved as the supremum over usual encodings, described by the classical-quantum correspondences $\mathcal{A}^o \to \mathcal{A}$.

In this short paper we consider the case of a simple algebra $\mathcal{A} = \mathcal{L}(\mathcal{H})$ for which some results are rather obvious and given without proofs. The proofs are given in the complete paper [12] for a more general case of decomposable algebra \mathcal{A} to include the classical discrete systems as a particular quantum case, and will be published elsewhere.

2. Compound States and Entanglements

Let \mathcal{H} denote the (separable) Hilbert space of a quantum system, and $\mathcal{A} = \mathcal{L}(\mathcal{H})$ be the algebra of all linear bounded operators on \mathcal{H}. A bounded linear functional $\varrho : \mathcal{A} \to \mathcal{C}$ is called a state on \mathcal{A} if it is positive (i.e., $\varrho(A) \geq 0$ for any positive operator A in \mathcal{A}) and normalized $\varrho(I) = 1$ for the identity operator I in \mathcal{A}. A normal state can be expressed as

$$\varrho(A) = \operatorname{tr}_\mathcal{G} \kappa^\dagger A \kappa = \operatorname{tr} A \rho, \quad A \in \mathcal{A}. \quad (1)$$

In (1), \mathcal{G} is another separable Hilbert space, κ is a linear Hilbert-Schmidt operator from \mathcal{G} to \mathcal{H} and κ^\dagger is the adjoint operator of κ from
\mathcal{H} to \mathcal{G}. This κ is called the amplitude operator, and it is called just the amplitude if \mathcal{G} is one dimensional space \mathbb{C}, corresponding to the pure state $\varrho(A) = \kappa^\dagger A \kappa$ for a $\kappa \in \mathcal{H}$ with $\kappa^\dagger \kappa = ||\kappa||^2 = 1$, in which case κ^\dagger is the adjoint functional from \mathcal{H} to \mathbb{C}. Moreover the density operator ϱ in (1) is $\kappa \kappa^\dagger$ uniquely defined as a positive trace class operator $P_A \in A$. Thus the predual space A_* can be identified with the Banach space $T(\mathcal{H})$ of all trace class operators in \mathcal{H} (the density operators $P_A \in A_*$, $P_B \in B_*$ of the states ϱ, ς on different algebras A, B will be usually denoted by different letters ϱ, σ corresponding to their Greek variations ϑ, ς.)

In general, \mathcal{G} is not one dimensional, the dimensionality $\dim \mathcal{G}$ must be not less than rank ϱ, the dimensionality of the range ran $\varrho \subseteq \mathcal{H}$ of the density operator ϱ. We shall equip it with an isometric involution $J = J^\dagger$, $J^2 = I$, having the properties of complex conjugation on \mathcal{G},

$$J \sum \lambda_j \zeta_j = \sum \lambda_j J \zeta_j, \quad \forall \lambda_j \in \mathbb{C}, \zeta_j \in \mathcal{G}$$

with respect to which $J \sigma = \sigma J$ for the positive and so self-adjoint operator $\sigma = \kappa^\dagger \kappa = \sigma^\dagger$ on \mathcal{G}. The latter can also be expressed as the symmetricity property $\xi = \zeta$ of the state $\varsigma(B) = \text{tr} B \sigma$ given by the real and so symmetric density operator $\sigma = \sigma = \tilde{\sigma}$ on \mathcal{G} with respect to the complex conjugation $\tilde{B} = JB^\dagger J$ and the tilda operation (\mathcal{G}-transposition) $\tilde{B} = JB^\dagger J$ on the algebra $B = \mathcal{L}(\mathcal{G})$.

For example, \mathcal{G} can be realized as a subspace of $l^2(N)$ of complex sequences $N \ni n \mapsto \zeta(n) \in \mathbb{C}$, with $\sum_n |\zeta(n)|^2 < +\infty$ in the diagonal representation $\sigma = [\mu(n) \delta_n^m]$. The involution J can be identified with the complex conjugation $C \zeta(n) = \bar{\zeta}(n)$, i.e.,

$$C : \zeta = \sum_n |n\rangle \zeta(n) \mapsto C \zeta = \sum_n |n\rangle \bar{\zeta}(n)$$

in the standard basis $\{ |n\rangle \} \subset \mathcal{G}$ of $l^2(N)$. In this case $\kappa = \sum \kappa_n |n\rangle$ is given by orthogonal eigen-amplitudes $\kappa_n \in \mathcal{H}$, $\kappa_m^\dagger \kappa_n = 0$, $m \neq n$, normalized to the eigen-values $\lambda(n) = \kappa_n^\dagger \kappa_n = \mu(n)$ of the density operator ϱ such that $\varrho = \sum \kappa_n \kappa_n^\dagger$ is a Schatten decomposition, i.e. the spectral decomposition of ρ into one-dimensional orthogonal projectors. In any other basis the operator J is defined then by $J = U^\dagger C U$, where U is the corresponding unitary transformation. One can also identify \mathcal{G} with \mathcal{H} by $U \kappa_n = \lambda(n)^{1/2} |n\rangle$ such that the operator ϱ is real and symmetric, $J \rho J = \rho = J \rho^\dagger J$ in $\mathcal{G} = \mathcal{H}$ with respect to the involution J defined in \mathcal{H} by $J \kappa_n = \kappa_n$. Here U is an isometric operator $\mathcal{H} \to l^2(N)$ diagonalizing the operator ϱ: $U \varrho U^\dagger = \sum |n\rangle \lambda(n) \langle n|$ |. The amplitude operator $\kappa = \rho^{1/2}$ corresponding to $B = A$, $\sigma = \rho$ is called standard.
Given the amplitude operator κ, one can define not only the states $\rho (\rho = \kappa \kappa^\dagger)$ and $\sigma (\sigma = \kappa^\dagger \kappa)$ on the algebras $A = \mathcal{L} (\mathcal{H})$ and $B = \mathcal{L} (\mathcal{G})$ but also a pure entanglement state ϖ on the algebra $B \otimes A$ of all bounded operators on the tensor product Hilbert space $\mathcal{G} \otimes \mathcal{H}$ by

$$\varpi (B \otimes A) = \text{tr}_\mathcal{G} \tilde{B} \kappa^\dagger A \kappa = \text{tr}_\mathcal{H} A \kappa \tilde{B} \kappa^\dagger.$$

Indeed, thus defined ϖ is uniquely extended by linearity to a normal state on the algebra $B \otimes A$ generated by all linear combinations $C = \sum \lambda_j B_j \otimes A_j$ due to $\varpi (I \otimes I) = \text{tr} \kappa^\dagger \kappa = 1$ and

$$\varpi (C^\dagger C) = \sum_{i,k} \overline{\lambda}_i \lambda_k \text{tr} \tilde{B}_i \kappa^\dagger A_i \kappa \tilde{B}_k = \text{tr}_\mathcal{G} \chi^\dagger \chi \geq 0,$$

where $\chi = \sum_j A_j \kappa \tilde{B}_j$. This state is pure on $\mathcal{L} (\mathcal{G} \otimes \mathcal{H})$ as it is given by an amplitude $\vartheta \in \mathcal{G} \otimes \mathcal{H}$ defined as

$$\left(\zeta \otimes \eta \right)^\dagger \vartheta = \eta^\dagger \kappa J \zeta, \quad \forall \zeta \in \mathcal{G}, \eta \in \mathcal{H},$$

and it has the states ρ and σ as the marginals of ϖ:

(2) \hspace{1cm} \varpi (I \otimes A) = \text{tr}_\mathcal{H} A \rho, \quad \varpi (B \otimes I) = \text{tr}_\mathcal{G} B \sigma.

As follows from the next theorem for the case $\mathcal{F} = \mathbb{C}$, any pure state

$$\varpi (B \otimes A) = \vartheta^\dagger (B \otimes A) \vartheta, \quad B \in B, A \in A$$

given on $\mathcal{L} (\mathcal{G} \otimes \mathcal{H})$ by an amplitude $\vartheta \in \mathcal{G} \otimes \mathcal{H}$ with $\vartheta^\dagger \vartheta = 1$, can be achieved by a unique entanglement of its marginal states ζ and η.

Theorem 2.1. Let $\varpi : B \otimes A \to \mathbb{C}$ be a compound state

(3) \hspace{1cm} \varpi (B \otimes A) = \text{tr}_\mathcal{F} \vartheta^\dagger (B \otimes A) \vartheta,$

defined by an amplitude operator $\vartheta : \mathcal{F} \to \mathcal{G} \otimes \mathcal{H}$ on a separable Hilbert space \mathcal{F} into the tensor product Hilbert space $\mathcal{G} \otimes \mathcal{H}$ with $\text{tr} \vartheta^\dagger \vartheta = 1$. Then this state can be achieved as an entanglement

(4) \hspace{1cm} \varpi (B \otimes A) = \text{tr}_\mathcal{F} \tilde{B} \kappa^\dagger \left(I \otimes A \right) \kappa = \text{tr}_{\mathcal{F} \otimes \mathcal{H}} \left(I \otimes A \right) \kappa \tilde{B} \kappa^\dagger

of the states (2) with $\sigma = \kappa^\dagger \kappa$ and $\rho = \text{tr}_\mathcal{F} \kappa \kappa^\dagger$, where κ is an amplitude operator $\mathcal{G} \to \mathcal{F} \otimes \mathcal{H}$. The entangling operator κ is uniquely defined by $\tilde{\kappa} U = \vartheta$ up to a unitary transformation U of the minimal domain $\mathcal{F} = \text{dom} \vartheta$.
Note that the entangled state (4) is written as
\[\varpi(B \otimes A) = \text{tr}_\mathcal{H} \tilde{B} \pi(A) = \text{tr}_\mathcal{H} A \pi_* (\tilde{B}), \]
where \(\pi(A) = \kappa^\uparrow (I \otimes A) \kappa \), bounded by \(||A||_\sigma \in B_* \) for any \(A \in \mathcal{L}(\mathcal{H}) \), is in the predual space \(B_* \subset B \) of all trace-class operators in \(\mathcal{G} \), and \(\pi_* (B) = \text{tr}_\mathcal{F} \kappa B \kappa^\dagger \), bounded by \(||B||_\rho \in A_* \), is in \(A_* \subset A \). The map \(\pi \) is the Steinspring form [18] of the general completely positive map \(A \rightarrow B_* \), written in the eigen-basis \(\{|k\rangle\} \subset \mathcal{F} \) of the density operator \(\nu^\uparrow \nu \) as
\[\pi(A) = \sum_{m,n} |m\rangle \kappa^\uparrow_m (I \otimes A) \kappa_n \langle n|, \quad A \in A \]
while the dual operation \(\pi_* \) is the Kraus form [19] of the general completely positive map \(A \rightarrow A_* \), given in this basis as
\[\pi_* (B) = \sum_{n,m} \langle n| B |m\rangle \text{tr}_\mathcal{F} \kappa_n \kappa^\dagger_m = \text{tr}_\mathcal{G} \tilde{B} \omega. \]
It corresponds to the general form
\[\omega = \sum_{m,n} |n\rangle \langle m| \otimes \text{tr}_\mathcal{F} \kappa_n \kappa^\dagger_m \]
of the density operator \(\omega = \nu \nu^\dagger \) for the entangled state \(\varpi(B \otimes A) = \text{tr} (B \otimes A) \omega \) in this basis, characterized by the weak orthogonality property
\[\text{tr}_\mathcal{F} \psi(m)^\dagger \psi(n) = \mu(n) \delta^m_n \]
in terms of the amplitude operators \(\psi(n) = (I \otimes \langle n|) \tilde{\kappa} = \tilde{\kappa}_n \).

Definition 2.1. *The dual map \(\pi_* : B \rightarrow A_* \) to a completely positive map \(\pi : A \rightarrow B_* \), normalized as \(\text{tr}_\mathcal{G} \pi(I) = 1 \), is called the quantum entanglement of the state \(\varsigma = \pi(I) \) on \(B \) to the state \(\varrho = \pi_*(I) \) on \(A \). The entanglement by
\[\pi_*^\circ (A) = \rho^{1/2} A \rho^{1/2} = \pi^\circ (A) \]
of the state \(\varsigma = \varrho \) on the algebra \(B = A \) is called standard for the system \((A, \varrho) \).*

The standard entanglement defines the standard compound state
\[\omega_0 (B \otimes A) = \text{tr}_\mathcal{H} \tilde{B} \rho^{1/2} A \rho^{1/2} = \text{tr}_\mathcal{H} A \rho^{1/2} \tilde{B} \rho^{1/2} \]
on the algebra \(A \otimes A \), which is pure, given by the amplitude \(\psi_0 \) associated with \(\omega_0 \) is \(\tilde{\kappa}_0 \), where \(\kappa_0 = \rho^{1/2} \).
Example 2.1. In quantum physics the entangled states are usually obtained by a unitary transformation U of an initial disentangled state, described by the density operator $\sigma_0 \otimes \rho_0 \otimes \tau_0$ on the tensor product Hilbert space $\mathcal{G} \otimes \mathcal{H} \otimes \mathcal{K}$, that is,

$$\varpi (B \otimes A) = \text{tr} U^\dagger (B \otimes A \otimes I) U (\sigma_0 \otimes \rho_0 \otimes \tau_0).$$

In the simple case, when $\mathcal{K} = \mathbb{C}$, $\tau_0 = 1$, the joint amplitude operator ν is defined on the tensor product $\mathcal{F} = \mathcal{G} \otimes \mathcal{H}_0$ with $\mathcal{H}_0 = \text{ran} \rho_0$ as $\nu = U_1 (\sigma_0 \otimes \rho_0)^{1/2}$. The entangling operator κ, describing the entangled state ϖ, is constructed as it was done in the proof of Theorem 1 by transposition of the operator νU^\dagger, where U is arbitrary isometric operator $\mathcal{F} \rightarrow \mathcal{G} \otimes \mathcal{H}_0$. The dynamical procedure of such entanglement in terms of the completely positive map $\pi_* : \mathcal{A} \rightarrow \mathcal{B}_*$ is the subject of Belavkin quantum filtering theory [17]. The quantum filtering dilation theorem [17] proves that any entanglement π can be obtained the unitary entanglement as the result of quantum filtering by tracing out some degrees of freedom of a quantum environment, described by the density operator τ_0 on the Hilbert space \mathcal{K}, even in the continuous time case.

3. C- AND D-ENTANGLEMENTS AND ENCODINGS

The compound states play the role of joint input-output probability measures in classical information channels, and can be pure in quantum case even if the marginal states are mixed. The pure compound states achieved by an entanglement of mixed input and output states exhibit new, non-classical type of correlations which are responsible for the EPR type paradoxes in the interpretation of quantum theory. The mixed compound states on $\mathcal{B} \otimes \mathcal{A}$ which are given as the convex combinations

$$\varpi = \sum_n \varsigma_n \otimes \varrho_n \mu (n), \quad \mu (n) \geq 0, \quad \sum_n \mu (n) = 1$$

of tensor products of pure or mixed normalized states $\varrho_n \in \mathcal{A}_*$, $\varsigma_n \in \mathcal{B}_*$ as in classical case, do not exhibit such paradoxical behavior, and are usually considered as the proper candidates for the input-output states in the communication channels. Such separable compound states are achieved by c-entanglements, the convex combinations of the primitive entanglements $B \mapsto \text{tr}_\mathcal{G} B \omega_n$, given by the density operators $\omega_n = \sigma_n \otimes \rho_n$ of the product states $\varpi_n = \varsigma_n \otimes \varrho_n$:

$$\pi_* (B) = \sum_n \rho_n \text{tr}_\mathcal{G} B \sigma_n \mu (n),$$

(11)
A compound state of this sort was introduced by Ohya [9, 13] in order to define the quantum mutual entropy expressing the amount of information transmitted from an input quantum system to an output quantum system through a quantum channel, using a Schatten decomposition $\sigma = \sum_n \sigma_n \mu(n)$, $\sigma_n = |n\rangle\langle n|$ of the input density operator σ. It corresponds to a particular, diagonal type

$$(12) \quad \pi(A) = \sum_n |n\rangle \kappa_n^\dagger (I \otimes A) \kappa_n |n\rangle$$

of the entangling map (6) in an eigen-basis $\{|n\rangle\} \in \mathcal{G}$ of the density operator σ, and is discussed in this section.

Let us consider a finite or infinite input system indexed by the natural numbers $n \in \mathbb{N}$. The associated space $\mathcal{G} \subseteq l^2(\mathbb{N})$ is the Hilbert space of the input system described by a quantum projection-valued measure $n \mapsto |n\rangle\langle n|$ on \mathbb{N}, given an orthogonal partition of unity $I = \sum |n\rangle\langle n| \in \mathcal{B}$ of the finite or infinite dimensional input Hilbert space \mathcal{G}. Each input pure state, identified with the one-dimensional density operator $|n\rangle\langle n| \in \mathcal{B}$ corresponding to the elementary symbol $n \in \mathbb{N}$, defines the elementary output state ϱ_n on \mathcal{A}. If the elementary states ϱ_n are pure, they are described by output amplitudes $\eta_n \in \mathcal{H}$ satisfying $\eta_n^\dagger \eta_n = 1 = \text{tr}\rho_n$, where $\rho_n = \eta_n \eta_n^\dagger$ are the corresponding output one-dimensional density operators. If these amplitudes are non-orthogonal $\eta_n^\dagger \eta_m \neq \delta^n_m$, they cannot be identified with the input amplitudes $|n\rangle$.

The elementary joint input-output states are given by the density operators $|n\rangle\langle n| \otimes \rho_n$ in $\mathcal{G} \otimes \mathcal{H}$. Their mixtures

$$(13) \quad \omega = \sum_n \mu(n) |n\rangle\langle n| \otimes \rho_n,$$

define the compound states on $\mathcal{B} \otimes \mathcal{A}$, given by the quantum correspondences $n \mapsto |n\rangle\langle n|$ with the probabilities $\mu(n)$. Here we note that the quantum correspondence is described by a classical-quantum channel, and the general d-compound state for a quantum-quantum channel in quantum communication can be obtained in this way due to the orthogonality of the decomposition (13), corresponding to the orthogonality of the Schatten decomposition $\sigma = \sum_n |n\rangle \mu(n) \langle n|$ for $\sigma = \text{tr}_\mathcal{H} \omega$.

The comparison of the general compound state (8) with (13) suggests that the quantum correspondences are described as the diagonal entanglements

$$(14) \quad \pi_\ast(B) = \sum_n \mu(n) \langle n| B |n\rangle \rho_n,$$
They are dual to the orthogonal decompositions (12):
\[
\pi(A) = \sum_n \mu(n) \eta_n^\dagger A \eta_n \langle n | = \sum_n |n\rangle \eta(n)^\dagger A \eta(n) \langle n |
\]
where \(\eta(n) = \mu(n)^{1/2} \eta_n \). These are the entanglements with the stronger orthogonality
\[
(15) \quad \psi(m) \psi(n)^\dagger = \mu(n) \delta_n^m,
\]
for the amplitude operators \(\psi(n) : \mathcal{F} \to \mathcal{H} \) of the decomposition of the amplitude operator \(\nu = \sum_n |n\rangle \otimes \psi(n) \) in comparison with the orthogonality (9). The orthogonality (15) can be achieved in the following manner: Take in (6) \(\kappa_n = |n\rangle \otimes \eta(n) \) with \(\langle m|n\rangle = \delta_n^m \) so that
\[
\kappa_m^\dagger (I \otimes A) \kappa_n = \mu(n) \eta_n^\dagger A \eta_n \delta_n^m
\]
for any \(A \in \mathcal{A} \). Then the strong orthogonality condition (15) is fulfilled by the amplitude operators \(\psi(n) = \eta(n) \langle n| = \tilde{\kappa}_n \), and
\[
\kappa^\dagger \kappa = \sum_n \mu(n) |n\rangle \langle n| = \sigma, \quad \kappa \kappa^\dagger = \sum_n \eta(n) \eta(n)^\dagger = \rho.
\]
It corresponds to the amplitude operator for the compound state (13) of the form
\[
(16) \quad \nu = \sum_n |n\rangle \otimes \psi(n) U,
\]
where \(U \) is arbitrary unitary operator from \(\mathcal{F} \) onto \(\mathcal{G} \), i.e. \(\nu \) is unitary equivalent to the diagonal amplitude operator
\[
\kappa = \sum_n |n\rangle \langle n| \otimes \eta(n)
\]
on \(\mathcal{F} = \mathcal{G} \) into \(\mathcal{G} \otimes \mathcal{H} \). Thus, we have proved the following theorem in the case of pure output states \(\rho_n = \eta_n \eta_n^\dagger \).

Theorem 3.1. Let \(\pi \) be the operator (13), defining a \(d \)-compound state of the form
\[
(17) \quad \varpi(B \otimes A) = \sum_n \langle B|n\rangle \text{tr}_\mathcal{F} \psi_n^\dagger A \psi_n \mu(n)
\]
Then it corresponds to the entanglement by the orthogonal decomposition (12) mapping the algebra \(\mathcal{A} \) into a diagonal subalgebra of \(B \).

Note that (18) defines the general form of a positive map on \(\mathcal{A} \) with values in the simultaneously diagonal trace-class operators in \(\mathcal{A} \).

Definition 3.1. A convex combination (11) of the primitive CP maps \(\rho_n \sigma_n \) is called \(c \)-entanglement, and is called \(d \)-entanglement, or quantum
encoding if it has the diagonal form (14) on \(B \). The d-entanglement is called o-entanglement and compound state is called o-compound if all density operators \(\rho_n \) are orthogonal: \(\rho_m \rho_n = \rho_n \rho_m \) for all \(m \) and \(n \).

Note that due to the commutativity of the operators \(B \otimes I \) with \(I \otimes A \) on \(\mathcal{G} \otimes \mathcal{H} \), one can treat the correspondences as the nondemolition measurements [8] in \(B \) with respect to \(A \). So, the compound state is the state prepared for such measurements on the input \(\mathcal{G} \). It coincides with the mixture of the states, corresponding to those after the measurement without reading the sent message. The set of all d-entanglements corresponding to a given Schatten decomposition of the input state \(\sigma \) on \(B \) is obviously convex with the extreme points given by the pure output states \(\rho_n \) on \(A \), corresponding to a not necessarily orthogonal decompositions \(\rho = \sum_n \rho(n) \) into one-dimensional density operators \(\rho(n) = \mu(n) \rho_n \).

The Schatten decompositions \(\rho = \sum_n \lambda(n) \rho_n \) correspond to the extreme d-entanglements, \(\rho_n = \eta_n \eta_n^\dagger \), \(\mu(n) = \lambda(n) \), characterized by orthogonality \(\rho_m \rho_n = 0 \), \(m \neq n \). They form a convex set of d-entanglements with mixed commuting \(\rho_n \) for each Schatten decomposition of \(\rho \). The orthogonal d-entanglements were used in [16] to construct a particular type of Accardi’s transitional expectations [15] and to define the entropy in a quantum dynamical system via such transitional expectations.

The established structure of the general \(q \)-compound states suggests also the general form

\[
\Phi_\ast (B, \varrho_0) = \text{tr}_{F_X} X^\dagger (B \otimes \varrho_0) X = \text{tr}_\mathcal{G} \left(\tilde{B} \otimes I \right) Y (I \otimes \varrho_0) Y^\dagger
\]

of transitional expectations \(\Phi_\ast : B \times A_\ast \to A_\ast \), describing the entanglements \(\pi_\ast = \Phi_\ast (\varrho_0) \) of the states \(\zeta = \pi (I) \) to \(\varrho = \pi_\ast (I) \) for each initial state \(\varrho_0 \in A_\ast \) with the density operator \(\varrho_0 \in \mathcal{A}^\circ \subseteq \mathcal{L} (\mathcal{H}_0) \) by \(\pi_\ast (B) = \text{tr}_{\mathcal{F}} \kappa (B \otimes I) \kappa^\dagger \), where \(\kappa = X^\dagger (I \otimes \varrho_0)^{1/2} \). It is given by an entangling transition operator \(X : \mathcal{F} \otimes \mathcal{H} \to \mathcal{G} \otimes \mathcal{H}_0 \), which is defined by a transitional amplitude operator \(Y : \mathcal{H}_0 \otimes \mathcal{F} \to \mathcal{G} \otimes \mathcal{H} \) up to a unitary operator \(U \) in \(\mathcal{F} \) as

\[
(\zeta \otimes \eta_0)^\dagger X (U \xi \otimes \eta) = (\eta_0 \otimes J \xi)^\dagger Y^\dagger (J \zeta \otimes \eta).
\]

The dual map \(\Phi : A \to B_\ast \otimes \mathcal{A}^\circ \) is obviously normal and completely positive,

\[
(18) \quad \Phi (A) = X (I \otimes A) X^\dagger \in B_\ast \otimes \mathcal{A}^\circ, \forall A \in A,
\]

with \(\text{tr}_\mathcal{G} \Phi (I) = I^\circ \), and is called filtering map with the output states

\[
\varsigma = \text{tr}_{\mathcal{H}_0} \Phi (I) (I \otimes \varrho_0)
\]
in the theory of CP flows [17] over $\mathcal{A} = \mathcal{A}^\circ$. The operators Y normalized as $\text{tr}_\mathcal{F}Y^\dagger Y = I^\circ$ describe \mathcal{A}-valued q-compound states

$$E (B \otimes A) = \text{tr}_\mathcal{F}Y^\dagger (B \otimes A) Y = \text{tr}_\mathcal{G} \left(\tilde{B} \otimes I \right) \Phi (A),$$

deфинирован как нормальная положительно определена $t_F Y t_F Y = I^\circ$.

If the \mathcal{A}-valued compound state has the diagonal form given by the orthogonal decomposition

$$(19) \quad \Phi (A) = \sum_n |n\rangle \text{tr}_\mathcal{F} \Psi (n)^\dagger A \Psi (n) \langle n|,$$

corresponding to $Y = \sum_n |n\rangle \otimes \Psi (n)$, where $\Psi (n): H_0 \otimes F \rightarrow H$, it is achieved by the d-transitional expectations

$$\Phi_\star (B, \rho_0) = \sum_n \langle n|B|n\rangle \Psi (n) (\rho_0 \otimes I) \Psi (n)^\dagger.$$

The d-transitional expectations correspond to the instruments [20] of the dynamical theory of quantum measurements. The elementary filters

$$\Theta_n (A) = \frac{1}{\mu (n)} \text{tr}_\mathcal{F} \Psi (n)^\dagger (n) A \Psi (n), \quad \mu (n) = \text{tr} \Psi (n) (\rho_0 \otimes I) \Psi (n)^\dagger$$

define posterior states $\rho_n = \rho_0 \Theta_n$ on \mathcal{A} for quantum nondemolition measurements in B, which are called indirect if the corresponding density operators ρ_n are non-orthogonal. They describe the posterior states with orthogonal

$$\rho_n = \Psi_n (\rho_0 \otimes I) \Psi_n^\dagger, \quad \Psi_n = \Psi (n) / \mu (n)^{1/2}$$

for all ρ_0 iff $\Psi (n)^\dagger \Psi (n) = \delta_n^m M (n)$.

4. **Quantum Entropy via Entanglements**

As it was shown in the previous section, the diagonal entanglements describe the classical-quantum encodings $\chi: \mathcal{B} \rightarrow \mathcal{A}_\star$, i.e. correspondences of classical symbols to quantum, in general not orthogonal and pure, states. As we have seen in contrast to the classical case, not every entanglement can be achieved in this way. The general entangled states ϖ are described by the density operators $\omega = vv^\dagger$ of the form (8) which are not necessarily block-diagonal in the eigen-representation of the density operator σ, and they cannot be achieved even by a more general c-entanglement (11). Such nonseparable entangled states are called in [13] the quasicompound (q-compound) states, so we can call also the quantum nonseparable correspondences the quasi-encodings.
(q-encodings) in contrast to the d-correspondences, described by the diagonal entanglements.

As we shall prove in this section, the most informative for a quantum system (A, ϱ) is the standard entanglement $\pi^* = \pi_0$ of the probe system $(B^o, \sigma_0) = (A, \varrho)$, described in (10). The other extreme cases of the self-dual input entanglements

$$\pi_*(A) = \sum_n \rho(n)^{1/2} A \rho(n)^{1/2} = \pi(A),$$

are the pure c-entanglements, given by the decompositions $\rho = \sum \rho(n)$ into pure states $\rho(n) = \eta_n \eta_n^\uparrow \mu(n)$. We shall see that these c-entanglements, corresponding to the separable states

$$\omega = \sum_n \eta_n \eta_n^\uparrow \otimes \eta_n \eta_n^\uparrow \mu(n),$$

are in general less informative than the pure d-entanglements, given in an orthonormal basis $\{\eta_n^o\} \subset \mathcal{H}$ by

$$\pi^o(A) = \sum_n \eta_n^o \eta_n^\uparrow A \eta_n \eta_n^0 \mu(n) \neq \pi^o_*(A).$$

Now, let us consider the entangled mutual entropy and quantum entropies of states by means of the above three types of compound states. To define the quantum mutual entropy, we need the relative entropy [21, 22, 23] of the compound state ω with respect to a reference state φ on the algebra $A \otimes B$. It is defined by the density operators $\omega, \varphi \in B \otimes A$ of these states as

$$S(\omega, \varphi) = \mathrm{tr} \omega (\ln \omega - \ln \varphi).$$

It has a positive value $S(\omega, \varphi) \in [0, \infty]$ if the states are equally normalized, say (as usually) $\mathrm{tr} \omega = 1 = \mathrm{tr} \varphi$, and it can be finite only if the state ω is absolutely continuous with respect to the reference state φ, i.e. iff $\omega(E) = 0$ for the maximal null-orthoprojector $E \varphi = 0$.

The mutual entropy $I_{A,B}(\omega)$ of a compound state ω achieved by an entanglement $\pi_* : B \rightarrow A_*$ with the marginals

$$\varsigma(B) = \omega(B \otimes I) = \mathrm{tr}_B \varrho \sigma, \quad \rho(A) = \omega(I \otimes A) = \mathrm{tr}_A \rho$$

is defined as the relative entropy (21) with respect to the product state $\varphi = \varsigma \otimes \rho [9]:$

$$I_{A,B}(\omega) = \mathrm{tr} \omega (\ln \omega - \ln (\sigma \otimes I) - \ln (I \otimes \rho)).$$

Here the operator ω is uniquely defined by the entanglement π_* as its density in (7), or the G-transposed to the operator $\bar{\omega}$ in

$$\pi(A) = \kappa^\dagger(I \otimes A) \kappa = \mathrm{tr}_A \bar{\omega}. $$
This quantity describes an information gain in a quantum system \((\mathcal{A}, \varrho)\) via an entanglement \(\pi_*\) of another system \((\mathcal{B}, \varsigma)\). It is naturally treated as a measure of the strength of an entanglement, having zero value only for completely disentangled states, corresponding to \(\varpi = \varsigma \otimes \varrho\).

The following proposition follows from the monotonicity property [24, 14]

\[
\varpi = K_\varpi \varpi_0, \varrho = K_\varrho \varrho_0 \Rightarrow S(\varpi, \varrho) \leq S(\varpi_0, \varrho_0).
\]

of the general relative entropy on a von Neuman algebra \(\mathcal{M}\) with respect to the predual \(K_*\) to any normal completely positive unital map \(K : \mathcal{M} \to \mathcal{M}^o\).

Proposition 4.1. Let \(\pi^\circ_* : \mathcal{B}^\circ \to \mathcal{A}_*\) be an entanglement \(\pi^\circ_*\) of a state \(\varrho_0 = \pi^\circ_*(I)\) on a discrete decomposable algebra \(\mathcal{B}^\circ \subseteq \mathcal{L}(\mathcal{G}_0)\) to the state \(\varrho = \pi^\circ_* (I)\) on \(\mathcal{A}_*\), and \(\pi_* = \pi^\circ_* K\) be an entanglement defined as the composition with a normal completely positive unital map \(K : \mathcal{B} \to \mathcal{B}^\circ\).

Then \(I_{\mathcal{A},\mathcal{B}}(\varpi) \leq I_{\mathcal{A},\mathcal{B}^\circ}(\varpi_0)\), where \(\varpi, \varpi_0\) are the compound states achieved by \(\pi^\circ_*\) and \(\pi_*\) respectively. In particular, for any \(c\)-entanglement \(\pi_*\) to \((\mathcal{A}, \varsigma)\) there exists a not less informative \(d\)-entanglement \(\pi^\circ_* = \chi\) with an Abelian \(\mathcal{B}^\circ\), and the standard entanglement \(\pi_0 (\mathcal{A}) = \rho^{1/2}A\rho^{1/2}\) of \(\varrho_0 = \varrho\) on \(\mathcal{B}^\circ = \mathcal{A}\) is the maximal one in this sense.

Note that any extreme \(d\)-entanglement

\[
\pi^\circ_*(B) = \sum_n \langle n|B|n \rangle \rho^\circ_n \mu (n), \ B \in \mathcal{B}^\circ,
\]

with \(\rho = \sum_n \rho^\circ_n \mu (n)\) decomposed into pure normalized states \(\rho^\circ_n = \eta_n \eta_n^\dag\), is maximal among all \(c\)-entanglements in the sense \(I_{\mathcal{A},\mathcal{B}}(\varpi_0) \geq I_{\mathcal{A},\mathcal{B}^\circ}(\varpi)\). This is because \(\text{tr}\rho^\circ_n \ln \rho^\circ_n = 0\), and therefore the information gain

\[
I_{\mathcal{A},\mathcal{B}}(\varpi) = \sum_n \mu (n) \text{tr}\rho_n (\ln \rho_n - \ln \rho).
\]

with a fixed \(\pi_* (I) = \rho\) achieves its supremum \(-\text{tr}\mathcal{H}\rho \ln \rho\) at any such extreme \(d\)-entanglement \(\pi^\circ_*\). Thus the supremum of the information gain (22) over all \(c\)-entanglements to the system \((\mathcal{A}, \varrho)\) is the von Neumann entropy

\[
S_\mathcal{A} (\varrho) = -\text{tr}\mathcal{H}\rho \ln \rho.
\]

It is achieved on any extreme \(\pi^\circ_*\), for example given by the maximal Abelian subalgebra \(\mathcal{B}^\circ \subseteq \mathcal{A}\), with the measure \(\mu = \lambda\), corresponding to a Schatten decomposition \(\rho = \sum_n \eta_n \eta_n^\dag \lambda (n), \eta_m^\dag \eta_n^\circ = \delta_m^n\). The maximal value \(\ln \text{rank} \mathcal{A}\) of the von Neumann entropy is defined by the
The dimensionality rank $A = \dim B^o$ of the maximal Abelian subalgebra of the decomposable algebra A, i.e. by $\dim \mathcal{H}$.

Definition 4.1. The maximal mutual entropy

\[(25) \quad H_A(\rho) = \sup_{\pi(A) = \rho} I_{A,B}(\varpi) = I_{A,B^o}(\varpi_0),\]

achieved on $B^o = A$ by the standard q-entanglement $\pi^o_*(A) = \rho^{1/2} A \rho^{1/2}$ for a fixed state $\rho(A) = \text{tr}_H A \rho$, is called q-entropy of the state ρ. The differences

\[H_{B|A}(\varpi) = H_B(\varpi) - I_{A,B}(\varpi)\]

\[S_{B|A}(\varpi) = S_B(\varpi) - I_{A,B}(\varpi)\]

are respectively called the q-conditional entropy on B with respect to A and the degree of disentanglement for the compound state ϖ.

Obviously, $H_{B|A}(\varpi)$ is positive in contrast to the disentanglement $S_{B|A}(\varpi)$, having the positive maximal value $S_{B|A}(\varpi) = S_B(\varpi)$ in the case $\varpi = \varpi^0 \otimes \rho$ of complete disentanglement, but which can achieve also a negative value

\[(26) \quad \inf_{\pi(A) = \rho} S_{B|A}(\varpi) = S_A(\varpi) - H_A(\varpi) = \text{tr} \rho \ln \rho\]

for the entangled states as the following theorem states. Obviously $S_A(\varpi) = H_A(\varpi)$ if the algebra A is completely decomposable, i.e. Abelian, and the maximal value $\ln \text{rank} A$ of $S_A(\varpi)$ can be written as $\ln \text{dim} A$ in this case. The disentanglement $S_{B|A}(\varpi)$ coinciding with the conditional entropy $H_{B|A}(\varpi)$, is always positive in this case, as well as in the case of Abelian B when also $S_{B|A}(\varpi) = H_{B|A}(\varpi)$.

Theorem 4.2. The q-entropy for the simple algebra $A = \mathcal{L}(\mathcal{H})$ is given by the formula

\[(27) \quad H_A(\rho) = -2\text{tr}_H \rho \ln \rho = 2S_A(\rho),\]

It is positive, $H_A(\rho) \in [0, \infty]$, and if A is finite dimensional, it is bounded, with the maximal value $H_A(\rho^o) = \ln \text{dim} A$ which is achieved on the tracial $\rho^o = (\dim H)^{-1} I$, where $\text{dim} A = (\dim \mathcal{H})^2$.

5. Quantum Channel and Its Q-Capacity

Let \mathcal{H}_0 be a Hilbert space describing a quantum input system and \mathcal{H} describe its output Hilbert space. A quantum channel is an affine operation sending each input state defined on \mathcal{H}_0 to an output state defined on \mathcal{H} such that the mixtures of states are preserved. A deterministic quantum channel is given by a linear isometry $Y: \mathcal{H}_0 \to \mathcal{H}$ with $Y^\dagger Y = I^\circ$ (I° is the identity operator in \mathcal{H}_0) such that each input state vector $\eta \in \mathcal{H}_0$, $\|\eta\| = 1$ is transmitted into an output state vector $Y\eta \in \mathcal{H}$, $\|Y\eta\| = 1$. The orthogonal mixtures $\rho_0 = \sum_n \mu(n) \rho_n^\circ$ of the pure input states $\rho_n^\circ = \eta_n^\circ \eta_n^{\circ\dagger}$ are sent into the orthogonal mixtures $\rho = \sum_n \mu(n) \rho_n$ of the corresponding pure states $\rho_n = Y \rho_n^\circ Y^\dagger$.

A noisy quantum channel sends pure input states ϱ_0 into mixed ones $\varrho = \Lambda^* (\varrho_0)$ given by the dual Λ^* to a normal completely positive unital map $\Lambda : \mathcal{A} \to \mathcal{A}_0$,

$$\Lambda(A) = \text{tr}_F Y^\dagger A Y, \quad A \in \mathcal{A}$$

where Y is a linear operator from $\mathcal{H}_0 \otimes \mathcal{F}_+$ to \mathcal{H} with $\text{tr}_{\mathcal{F}_+} Y^\dagger Y = I^\circ$, and \mathcal{F}_+ is a separable Hilbert space of quantum noise in the channel. Each input mixed state ϱ_0 on $\mathcal{A}_0 \subseteq \mathcal{L}(\mathcal{H}_0)$ is transmitted into an output state $\varrho = \varrho_0 \Lambda$ given by the density operator

$$\Lambda_\ast (\varrho_0) = Y (\varrho_0 \otimes I^+) Y^\dagger \in \mathcal{A}_\ast$$

for each density operator $\varrho_0 \in \mathcal{A}_0$, where I^+ is the identity operator in \mathcal{F}_+. Without loss of generality we can assume that the input algebra \mathcal{A}_0 is the smallest decomposable algebra, generated by the range $\Lambda(A)$ of the given map Λ.

The input entanglements $\kappa : \mathcal{B} \to \mathcal{A}_0^\circ$ described as normal CP maps with $\kappa(I) = \varrho_0$, define the quantum correspondences (q-encodings) of probe systems (\mathcal{B}, ς), $\varsigma = \kappa^* (I)$, to $(\mathcal{A}_0^\circ, \varrho_0)$. As it was proven in the previous section, the most informative is the standard entanglement $\kappa = \pi^\ast_\circ$, at least in the case of the trivial channel $\Lambda = I$. This extreme input q-entanglement

$$\pi^\circ (A^\circ) = \rho_0^{1/2} A^\circ \rho_0^{1/2} = \pi^\ast_\circ (A^\circ), \quad A^\circ \in \mathcal{A}^\circ,$$

corresponding to the choice $(\mathcal{B}, \varsigma) = (\mathcal{A}_0^\circ, \varrho_0)$, defines the following density operator

$$(28) \quad \omega = (I \otimes \Lambda)_\ast (\omega^\circ_q), \quad \omega^\circ_q = \varrho_0 \varrho_0^\dagger$$

of the input-output compound state $\omega_q^\circ \Lambda$ on $\mathcal{A}_0^\circ \otimes \mathcal{A}$. It is given by the amplitude $\varrho_0 \in \mathcal{H}_0^{\otimes 2}$ defined as $\varrho_0 = \rho_0^{1/2}$. The other extreme cases of the self-dual input entanglements, the pure c-entanglements corresponding to (20), can be less informative then the d-entanglements,
given by the decompositions $\rho_0 = \sum \rho_0(n)$ into pure states $\rho_0(n) = \eta_n \eta_n \mu(n)$. They define the density operators

$$\omega = (I \otimes \Lambda)_\ast(\omega_d^0), \quad \omega_d^0 = \sum_n \eta_n \eta_n \otimes \eta_n \eta_n \mu_0(n),$$

of the $\mathcal{A}^0 \otimes \mathcal{A}$-compound state $\omega_d^0 \Lambda$, which are known as the Ohya compound states $\omega_d^0 \Lambda$ [9] in the case

$$\rho_0(n) = \eta_n \eta_n \lambda_0(n), \quad \eta_n \eta_n = \delta_n^m,$$

of orthogonality of the density operators $\rho_0(n)$ normalized to the eigenvalues $\lambda_0(n)$ of ρ_0. They are described by the input-output density operators

$$\omega = (I \otimes \Lambda)_\ast(\omega_o^0), \quad \omega_o^0 = \sum_n \eta_n \eta_n \otimes \eta_n \eta_n \lambda_0(n),$$

coinciding with (28) in the case of Abelian \mathcal{A}^0. These input-output compound states ω are achieved by compositions $\lambda = \pi \Lambda$, describing the entanglements λ^* of the extreme probe system $(B^0, \rho_0) = (\mathcal{A}^0, \rho_0)$ to the output (\mathcal{A}, ϖ) of the channel.

If $K : B \rightarrow B^0$ is a normal completely positive unital map

$$K(B) = \text{tr}_{F^-} X^\dagger BX, \quad B \in B,$$

where X is a bounded operator $F^- \otimes G_0 \rightarrow G$ with $\text{tr}_{F^-} X^\dagger X = I^0$, the compositions $\kappa = \pi^0 \Lambda, \pi = \Lambda \kappa$ are the entanglements of the probe system (B, ς) to the channel input (\mathcal{A}^0, ρ_0) and to the output (\mathcal{A}, ϖ) via this channel. The state $\varsigma = \rho_0 K$ is given by

$$K_\ast(\rho_0) = X (I^- \otimes \rho_0) X^\dagger \in B^0.$$

for each density operator $\rho_0 \in B^0_\ast$, where I^- is the identity operator in F^-. The resulting entanglement $\pi \ast = \lambda \ast K$ defines the compound state $\omega = \omega_0 (K \otimes \Lambda)$ on $B \otimes \mathcal{A}$ with

$$\omega_0 (B^0 \otimes A^0) = \text{tr}^{\Lambda}_0 (A^0) = \text{tr} v_0^\dagger (B^0 \otimes A^0) v_0.$$

on $B^0 \otimes A^0$. Here $v_0 : F_0 \rightarrow G_0 \otimes \mathcal{H}_0$ is the amplitude operator, uniquely defined by the input compound state $\omega_0 \in B^0_\ast \otimes A^0_\ast$ up to a unitary operator U^0 on F_0, and the effect of the input entanglement κ and the output channel Λ can be written in terms of the amplitude operator of the state ω as

$$v = (X \otimes Y) (I^- \otimes v_0 \otimes I^+) U$$

up to a unitary operator U in $F = F_- \otimes F_0 \otimes F_+$. Thus the density operator $\omega = vv^\dagger$ of the input-output compound state ω is given by
$\omega_0(K \otimes \Lambda)$ with the density

$$\omega_0 (K \otimes \Lambda) = (X \otimes Y) \omega_0 (X \otimes Y)^\dagger,$$

where $\omega_0 = \nu_0 \nu_0^\dagger$.

Let \mathcal{K}_q be the convex set of normal completely positive maps $\kappa : B \rightarrow A^o$ normalized as $\text{tr}\kappa(I) = 1$, and \mathcal{K}_q^o be the convex subset $\{ \kappa \in \mathcal{K}_q : \kappa(I) = \rho_0 \}$. Each $\kappa \in \mathcal{K}_q^o$ can be decomposed as $\pi_*^o K$, where $\pi_*^o = \pi^o$ is the standard entanglement on (A^o, ρ_0), and K is a normal unital CP map $B \rightarrow A^o$. Further let \mathcal{K}_c be the convex set of the maps κ, dual to the input maps of the form (11), described by the combinations

$$\kappa(B) = \sum_n \zeta(B) \rho_0(n).$$

of the primitive maps $\kappa_n : B \mapsto \varsigma_n(B) \rho_0(n)$, and \mathcal{K}_d be the subset of the diagonal decompositions

$$\kappa(B) = \sum_n \langle n|B|n\rangle \rho_0(n).$$

As in the first case \mathcal{K}_c^o and \mathcal{K}_d^o denote the convex subsets corresponding to a fixed $\kappa(I) = \rho_0$, and each $\kappa \in \mathcal{K}_c^o$ can be represented as $\pi_*^o K$, where π_*^o is a d-entanglement, which can be always be made pure by a proper choice of the CP map $K : B \rightarrow A^o$. Furthermore let $\mathcal{K}_o(\mathcal{K}_o^o)$ be the subset of all decompositions (32) with orthogonal $\rho_0(n)$ (and fixed $\sum_n \rho_0(n) = \rho_0$):

$$\rho_0(m) \rho_0(n) = 0, m \neq n.$$

Each $\kappa \in \mathcal{K}_o^o$ can be also represented as $\pi_*^o K$, where π_*^o is a diagonal pure σ-entanglement $B \rightarrow A^o$.

Now, let us maximize the entangled mutual entropy for a given quantum channel Λ and a fixed input state ϱ_0 by means of the above four types of compound states. The mutual entropy (22) was defined in the previous section by the density operators of the compound state ω on $B \otimes A$, and the product-state $\varphi = \varsigma \otimes \varrho$ of the marginals ς, ϱ for ω. In each case

$$\omega = \omega_0 (K \otimes \Lambda), \quad \varphi = \varphi_0 (K \otimes \Lambda),$$

where K is a CP map $B \rightarrow B^o$, ω_0 is one of the corresponding extreme compound states $\omega_q^o, \omega_c^o = \omega_d^o, \omega_o^o$ on $A^o \otimes A^o$, and $\varphi_0 = \varrho_0 \otimes \varrho_0$. The density operator $\omega = (K \otimes \Lambda)_* (\omega_0)$ is written in (31), and $\phi = \sigma \otimes \rho$ can be written as

$$\phi = \kappa_*(I) \otimes \lambda_*(I),$$
where $\lambda_* = \Lambda_* \pi^o_*$.

Proposition 5.1. The entangled mutual entropies achieve the following maximal values

\[
\sup_{\varpi \in \mathcal{K}_q} I_{A,B}(\varpi) = I_q(\varrho_0, \Lambda) := I_{A,A^o}(\varpi^o \Lambda),
\]

\[
I_c(\varrho_0, \Lambda) = \sup_{\varpi \in \mathcal{K}_c} I_{A,B}(\varpi) = \sup_{\varpi_d^o} I_{A,A^o}(\varpi^o \Lambda) = I_d(\varrho_0, \Lambda),
\]

\[
\sup_{\varpi \in \mathcal{K}_o} I_{A,B}(\varpi) = I_o(\varrho_0, \Lambda) := \sup_{\varpi_o^o} I_{A,A^o}(\varpi^o \Lambda),
\]

where ϖ^o are the corresponding extremal input entangled states on $A^o \otimes A^o$ with marginals ϱ_0. They are ordered as

\[
I_q(\varrho_0, \Lambda) \geq I_c(\varrho_0, \Lambda) = I_d(\varrho_0, \Lambda) \geq I_o(\varrho_0, \Lambda).
\]

We shall denote the maximal informations $I_c(\varrho_0, \Lambda) = I_d(\varrho_0, \Lambda)$ simply as $I(\varrho_0, \Lambda)$.

Definition 5.1. The supremums

\[
C_q(\Lambda) = \sup_{\varpi \in \mathcal{K}_q} I_{A,B}(\varpi) = \sup_{\varrho_0} I_q(\varrho_0, \Lambda),
\]

\[
C_c(\Lambda) = \sup_{\varpi \in \mathcal{K}_c} I_{A,B}(\varpi) = \sup_{\varrho_0} I(I(\varrho_0, \Lambda),
\]

\[
C_o(\Lambda) = \sup_{\varpi \in \mathcal{K}_o} I_{A,B}(\varpi) = \sup_{\varrho_0} I_o(\varrho_0, \Lambda),
\]

are called the q-, c- or d-, and o-capacities respectively for the quantum channel defined by a normal unital CP map $\Lambda : A \to A^o$.

Obviously the capacities (37) satisfy the inequalities

\[
C_o(\Lambda) \leq C(\Lambda) \leq C_q(\Lambda).
\]

Theorem 5.2. Let $\Lambda(A) = Y^* A Y$ be a unital CP map $A \to A^o$ describing a quantum deterministic channel. Then

\[
I(\varrho_0, \Lambda) = I_o(\varrho_0, \Lambda) = S(\varrho_0), \quad I_q(\varrho_0, \Lambda) = S_q(\varrho_0),
\]

where $S_q(\varrho_0) = H_{A^o}(\varrho_0)$, and thus in this case

\[
C(\Lambda) = C_o(\Lambda) = \ln \text{rank} A^o, \quad C_q(\Lambda) = \ln \text{dim} A^o.
\]
REFERENCES

†DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTTINGHAM, NG7 2RD NOTTINGHAM, UK

‡DEPARTMENT OF INFORMATION SCIENCES, SCIENCE UNIVERSITY OF TOKYO, NODA CITY, CHIBA 278-8510, JAPAN