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1 Introduction

It is well known that the theory of classical communication systems are fairly different from
that of quantum communication systems. For example, though information sources in the
classical theory are formulated as complete event systems and information sources in the
quantum theory are formulated as density operators, not all entropy values attached to the
density operators are finite but all entropy values attached to the complete event systems
are finite. The following table clarifies the difference between the classical information
theory and the quantum information theory.

classical cases quantum cases
information sources | complete event systems density operators
information channels transition matrices completely positive mappings
entropy Shannon’s entropy von Neumann’s entropy
finite values all few
infinite values none almost all
dimension none Ohya’s entropy dimension

In this paper, it is shown that Ohya’s entropy dimension on the set of all normal states is
a surjective and homeomorphic isomorphism invariant. Moreover, the new topology over
the set of all bounded linear mappings defined on the set of all operators with values in the
same set is defined. Finally, the Banach-Alaoglu type theorem of the unital completely
positive mappings is proved.

2 Ohya’s entropy dimension on the set of all normal
states

Throughout this paper, N, R and C denote the set of all positive integers, the set of all real
numbers and the set of all complex numbers, respectively. Let H and B(H) be a separable
Hilbert space and the set of all bounded operators on H, respectively. Let N, 1 1(B(H))
be the set of all normal states on B(H). If S is a weakly™ compact and convex subset
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of N +1(B(H)), then the set of all extremal points belonging to S, which is denoted by
exS, is non-empty. For any normal state €8, if there exist both a non-negative sequence
{\x; k € N} satisfying >y \x = 1 and a sequence of normal states {dx; k € N} C exS, which
enable ¢ to be represented by the following countable convex combination:

d=3"" M,

then, we define D(¢,S) as the set of all non-negative sequences that enable ¢ to be
represented by the above way. Now, for any positive number o # 1, Ohya’s (S, a)-entropy
of ¢ is defined as

log> 224 ,\g‘
«a

5(¢,S, ) =inf{ R {M;keN} e D(¢,3)}.

Here, Ohya’s S-entropy dimension of ¢ is defined as
d(¢,S) = inf{a > 0;5(¢,S,a) < co}.

Throughout this paper, we will treat the case that & = N, 4 1(B(H)) holds and we will
abbreviate d(¢, Ny +1(B(H))) to d(¢) for simplicity.

Theorem 2.1. Let H; and H,, be separable Hilbert spaces, and h be a surjective and
identity-preserving *-isomorphism on B(H;) with values in B(H;). Then, for any normal
state ¢ defined on Hs, d(¢) = d(¢oh) holds.

Proof. For any z € H, satisfying ||z|| = 1, the vector state constructed from z, Wthh
is denoted by w;, is defined as 4

wa(A) =< zlAle >, A€ B(Hy).

Here, we can assume that ¢ is represented by

P  = Z)\klek >< ekl
k=1

o) = tr(od), AcB),

where {\} is a non-negative sequence satisfying Zk A =1, and {ex} is an orthonormal
system of Hy. Then, ¢ can be represented by :

¢ = z)\kwek

Since ¢oh = 0 implies that ¢ = 0 holds , j # k implies that We,0h #- We, oh
holds. Therefore, it is sufficient to prove that, for any positive integer k, we,oh be-
longs to ez, 41 (B(H1)) holds. Let w be an element of exN, 1.1(B(Hz)), ¢ be woh and
(Mo, Tw, 2o} (resp. {Hy, Ty, Ty}) be the cyclic representation of B(Ha) (resp. B(H.))
constructed from w (resp. ). Let h,y be the operator on {my(B)zy; BEB(H,)} with
values in {m,(4)z,; AEB(H;)} defined as

o yTy(B)zy = my(h(B))z,, BeB(H.). |
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Then, for any B,C € B(H,), we have

< hw,¢ﬂ¢v(B):u¢|hw,¢7r¢(C)z¢ > = < WW(h(B))xwlﬁw(h(C))xw >
- = <L gy|m,(h(B)*h(C))z,, >
=" < z,|m,(h(B*C))x, >
= W((B"C)) = ¥(B'C)
< .’Z‘¢|7T¢(B*C).’E¢ >
< Ww(B)$¢|7T¢(C)fL‘¢ >.

These equalities imply that h:,,,/,hw,gp is the identity mapping. It is clear that the uni-
form closure of {m,(h(B))z.,; BEB(H;)} is exactly equal to H,,, because h is surjective.
Therefore, h,, can be uniquely extended to an 1sometry deﬁned on 'H,/, Slnce for any
B, C € B(H;), we have : : '

hu gy (B)RG, 4o (R(C))Tw = huymy(B)RS yhuymy(C)zy
. | huymy(BC)y

7, (h(BC))z,

= Ww(h(B))”w( (C ))mw,

these equalities imply that hw ¢7r¢(B)hw¢ = 7,(h(B)) holds for any B € B(H;), and

i

{7T¢(B)'B€B(H1)} = w{%(h(B)) BEB(Hz)} hoy = CI

where I means the identity mapping on 'H¢, and A’ means the commutant of an algebra .A
These equalities imply that the cyclic representation {H,,,, Ty, Ty } is irreducible, therefore,
we obtain the conclusion. ‘ O

3 The Banach-Alaoglu type theorem of the unital
and completely positive mappings on B(H)

Let 7(H) be the set or all operators of trace class and L(B(H), B(H)) be the set of all
bounded linear transformations defined on B(H) with values in B(H). It follows from
Banach-Alaoglu’s theorem that the closed unit ball of B(H), which is denoted by U(H),
is a weakly* compact subset of B(H) because the conjugate space of 7 (H) is exactly equal
to B(H). Therefore, the topological space U(H)*™) which is equipped with Tychonoff’s
product topology is a compact Hausdorff space.

Here, we define the transformation topology, which is denoted by 77, as the locally convex
topology over L(B(H), B(H)) determined by the family of the following semi-norms:

A(:) — [trace[cA(A)]],

where ¢ runs over all elements of T(H) and A runs over all elements of B(H). Let
UCP(B(H), B(H)) be the set of all unital and completely positive mappings defined on
B(H) with values in B(H). Then we have now the following theorem
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Theorem 3.1. UCP(B(H), B(H)) is a compact subset of the topologlcal space
(L(B(H), B(H)), Tr)- -

Proof. It is clear that, for any A € H(B(H), B(H)), the equalities
Al = A =

hold. If we assume that IT € L(B(calH), L(H)), {A;} C UCP(B(H), B(H)) A — II holds,
then, for any n € N, for any = € H and for any {Ax;1 < k < n},{Bx;1 <k <n} C B(H),
we have

0 < <£L|ZB* AkAl Blll'>
kl=1

= trace | Y_ |Bxz >< Biz|A;(AF A1)
k=1

= Z trace [| Byr >< BzCClA (AR AD)]

k=1
— > trace[|Byz >< Biz|TI(ALA))]
k=1
= < l Z Bk AkAl Blll‘>
ki=1
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