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Some properties of Laver forcing

Shizuo Kamo

miERER (RERFSLRE)

1 Introduction

The notion of Laver forcing LT was first introduced by Laver [3] in order to
construct a generic model in which Borel conjecture holds. Many properties
which Laver forcing satisfies have been known (see [1]). One of fundamental
properties of Laver forcing is the Laver property: For any increasing h : w —
w, it holds that '

e Vf € [ h(n) 35 € (JIR)™Y ¥°n <w (f(n) € S(n)).

n<w n<w

In this paper, we first discuss this property more closely by introducing the
notion of simple conditions. After that, we give two applications of it. One
is that Laver forcing satisfies the skip splitting property (for the definition,
see section 3). Another one is a direct proof of the following known result.
Theorem (CH) Let P be the wy-stage countable support iteration by Laver
forcing. Then, it holds that

VP k= 7the splitting number of [w]¥ = w;”.

In the next section, we introduce the notion of simple conditions and show
that, under some assumption, the set of simple conditions 1s <j-dense in
Laver forcing. The first application will be given in section 3 and the next
in section 4.

2 Laver forcing

For each s € w<¥, [s] denotes the set {t € w<“|s Ct}. Let ¢ Cw<¥ be
a tree. For each s € g, succ,(s) denote the set {s™(i) € ¢ |1 <w}. s€q
is called a splitting node, if |succ,(s)] > 1. The first spliiting node of ¢ is
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denoted by stem(q). ¢ is called a Laver tree, if it holds that
Vt € gN [stem(q)] ( succ,() is infinite ). ' )
Laver forcing LT is the forcing notion which is defined by
LT = { ¢ C w<¥| ¢ is a Laver tree }, and
¢ < gqifand only if ¢ C ¢, for any ¢, ¢’ € LT.
Let ¢ € LT. For each s € ¢, ¢[s] denotes the condition {t € g|s Ctort C
s }. For each S C ¢, Succ,(S) denotes the set U succ,(s).

SES

2.1 simple conditions

Define the relation <} on LT by
q' <5 q if and only if ¢’ < ¢ and stem(g) = stem(q').
The following fact is well-known (see e.g. [1]).

Fact 1 Let m < w, a be a LT-name, and g € LT. Ifq I+ a < m, then
there exist ¢’ <§ q and i < m such that ¢ I+ a =1.

Let h € w*. We denote by F), the set {z € w* |V <w( (7) <h(y)) }

Let f be a LT-name such that lFpp f € F.
For each ¢ € LT, define H(g) = H;(q) by
H(q) = {5€w<“l3q <oq(q’ FdcCf)}

For each f, g € wS¥, we denote by A(f,g) the least n € dom(f) N dom(g)
such that f(n) # g(n ) if such n exists, otherwise undefined. For each tree
H Cw<¥, we denote by Lim(H) the set {z € w” |[Vi<w (z[j€ H)}.

The next fact can be easily verfied by using Fact 1. We left a proof to the
reader.

Fact 2 For any q € LT, it holds that

(1) d € H(q) if and only if 3° s € succ,(stem(q)) ( § € H(q[s] ), for any
§€wv, ' ‘

(2) ()€ H(q), and H(q) is a tree, and H(q) does not have a mazimal node.
(3) Lim(H(q)) # ¢ and Lim(H(q)) C F.

(4) If¢ € LT and ¢’ <} q then H(¢') C H(q).

We say that a condition g is f-simple, if |ILim(H(q[s]))| = 1, for all s €
g N [stem(q)].

Lemma 2.1  Foranyq € LT, there exists ¢ <}, q such that |Lim(H(q"))| =
L. : -

Proof Letge LT
Case 1 Lim(H(q)) is finite.
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Take g € Lim(H(g)). Choose n < w such that

n# g | n,for any ¢ € Lim(H(q)) \ {9}
Take ¢’ < ¢ such that g IF glncC f. Since H(¢') C H(g), we have that
Lim(H(q")) = {g}-
Case 2 Lim(H(q)) is infinite.
Take g € Fp, such that

sup{ A(g,9') | ¢’ € Lim(H(q)) \{g}} =w.
Take g; € Lim(H(q)) (for ¢ < w) such that

A(g,9:) < A(g, giy1), for all & < w.
For each i < w, take s; € succ,(stem(q)) and ¢; < g[s;] such that
si# s, forall j<iand g IF g; [ (Alg,9:) +1) C f
Set ¢’ = U ¢;. Then, it holds that ¢’ <} ¢ and Lim(H(¢)) ={g}. 0
<w
Corollary 2.2 For any q € LT, there exists ¢ <j q such that ¢ is ]‘-
simple. a

For each f—sirpple condition ¢, let f[g] € Fi denote the function such that
Lim(H (q)) = { fld] }-
Lemma 2.3 Let q be an f-simple condition. Then, for any s € g N
[stem(q)], the following (a) or (b) hold.
(a) 371t € sucey(s) ( flglsl] = flaltl])-
(b)  sup{ A(flgls]], flalt]]) | £ € succy(s) } = w.

Proof Easy. O

Corollary 2.4 Forany q € LT, there exists q <5 q such that
(1) ¢ s f- simple and,
(2)  for any s € ¢' N [stem(q)], the following (2.a) or (2.b) hold.

) :
E a) V¥t e succy(s) (flgls]] = flglt]))-

b)  For any t, t' € succy(s),
if #(]s]) < #'(]sl) then A(f1s), flg' 1) < Aflg[s]), fla'Tt 'H%
q

fl
(3) For any s € ¢ N [stem(q)], anyt € ¢’ N [s], and any u € ¢' N [t
i flgls) # Fld1) and flg'l) # flglu]] then ACfI TS, FlE ) <
A(flg'T), flg ul)- o
A condition ¢' which satisfies (1) ~ (3) in corollary 2.4 is said to be strongly
f-simple. ,

2.2 Generaters of a condition

Definition 2.1  Let ¢ € LT and S C gN [stem(q)]. We say that S gener-
ates q, if { q[s] | s € S} is a mazimal antichain below q in LT.
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Let S and S’ generate q. S’ is called a refinement of S, if it satisfies that,
for any s € S’, there exists t € S such thatt C s.
For each S C w<¥, define Inf,(S) (for a < w;) such that
Info(S)={seS|Vi<ls|(s[igS)},

Infay1(S) = Infu(S)U{s €w<|I®i<w (s7(5) € Inf,(S))},
Inf,(S5) = U Inf¢(S), if a is a limit ordinal.
{<a
Set cl(S) = Inf,,, (5).

Note that

If S C q € LT then cl(S) C g,

Vs € g [stem(q)] \ cl(S) 3%t € succy(s) (t & cl(S) ),
If S generates q € LT then stem(q) € cl(S).

Lemma 2.5 Let h € w¥, and f an LT-name such that |- f € Fn. Then,
for any q € LT, there exists ¢ <y q such that
(1) ¢ is strongly f-simple, and
(2)  the following (a) or (b) holds.
(a) ¢l f=flg] _ _
(b) {s € qnistem(¢)] ] flgls]] = fld] and f[Q[ 1 # flg[t]], for some/all t €

succy (s) } generates ¢'.

Proof Without loss of generality, we may assume that ¢ is strongly f—
simple. Put
k = |stem(q)|, and . ' . _ ’
S = {s € ¢nistem(q)] | flg's]] = fl¢] and fl¢[s] # flg'[t]], for some/all t €
succy (s) }.
Case 1. stem(q) € cl(5).
Put S" = cl(S) U,es(gN[s]). By induction on n < w, define U, C gNwkt”
by
UO {stem(q) }, .
n+1 ={s"(j) € gnuw**" | s € U, and s7(j) € 5" }.
Then, ¢’ = the condition generated by |, ., Un satisfies (b).
Case 2. stem(q) ¢ cl(5).
Note that
Vs € gn[stem(q)] (if s & cl(S) then 3% j <w (s7(5) € ¢\ cl(S5)) ).
By induction on n < w, define U, C ¢N wktm by :
Uo = {stem(q) },

Unpr = {s ") €q\cl(S) s e Unt.

Then, ¢ = the condition generated by |J, ., Un satisfies (a). a

nw

Definition 2.2  Let S C w<¥. Define the relation <s on LT by
q<sq if and only if ¢ < ¢ and S C g N ¢' N [stem(q)].



Definition 2.3  Let ¢ € LT. A sequence ((¢;,S;) | i < w) is called a
fusion sequence below q, if it satisfies that, for all i < w,

(1) ¢ € LT and S; generates g;.

(2) g0 <5 qand giy1 <s, 4.

(3)  Siy1 is a refinement of Succ,,,, (S;).

Lemma 2.6  Let ((¢;,S:) | 1 < w) be a fusion sequence. Put § = ﬂ qi.
<w
Then, it holds that
g€ LT and g <g, q;, for all i < w. O

Lemma 2.7 Let ¢ € LT and & a LT-name such that ¢ I+ z € [w]”.
Then, there exist ¢ <g q, S C ¢ N [stem(q)], and my; < w (for s € S) such
that ‘ ’

(1) S generates ¢ and Vs € S (|stem(¢)| < |s] ),

(2) q'[s] IF ms€ @, foralls € S, '

(3)  my # my, for all distinct s, t € S.

Proof Let f be the LT-name such that I f is the characteristic function
of #. Without loss of generality, we may assume that g is strongly f-simple.
Set y ={j <w]| flg(5) =1}
Case 1. y is infinite.

By induction on k < w, take ny, € y, s € succy(stem(q)) such that

o o < mnpppand VI < k(s # s ) and flglsk]] [ (e +1) = flg] |
(nk + 1).
For each k < w, take ry <§ g[sg] such that

ri b flglse]] T (ne +1) C f.

Let ¢ = U, 7% and S = {5y | kK <w}, and m,, = ny, for k£ < w. Then,
these are as required.
Case 2. y is finite _ ‘ ‘ '

Let T' = {s € qn[stem(q)] | flgls]] = flg] and flg[s]] # flglt]], for
some/any t € succy(s) }.
Since IF & € [w]¥, T generates q. For each t € T, let

o ={j <w|3Is €suce,(t) (flalslly)=1)}.
Claim 1 «; is infinite, for allt € T.

Proof This is directly followed from the fact that

sup{ A(flqs]], flalt]]) | s € sucey(t)} = w. QED of Claim 1
By using this claim, we can take r, <} ¢[t] (for t € T), and m, < w (for

s € U succ,, (stem(r,))) such that
teT
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ry[s] IF mg € &, for all s € succ,, (stem(r,)) , for all t € T', and,
m, # myg, for all distinct s, s € U succ,, (stem(ry)).
. €T ,
So, ¢ = UteT Ty, S = UteTsuccn(stem(rt)), and m, (for s € S) are as
required. 0

3 The skip splitting property

In this section, we give a first application of the previous section. We
begin with the definition of the skip splitting property. A tree H C 2<% is
called a skip splitting tree, if it holds that

YVt € succy(s) ( tis not a splitting node ), for any splitting node s of
H. :
A forcing notion P has the skip splitting property, if it holds that -

lbp V'f €2¢3H €V (His a skip splitting tree and f € Lim(H) ).

Theorem 3.1 LT has the skip splitting property.
To show this theorem, we use the following fact which is easily checked.

Fact 3 Forany{z;|j <w} C[w], there exist {y; | j < w} such that
(1) y; €[x;]“, for all j < w. .
(2)  y; Ny = ¢, for all distinct j, k < w.
3) VmelJy(m+1¢|Jy)

J<w J<w ‘
Proof of Theorem 3.1 Let f be a LT-name such that I+ f € 2¥ and
q € LT. We show that there exist ¢* <} ¢ and a skip splitting tree H C 2<%
which satisfy
(*) ¢ IF f e Lim(H).

Replace ¢ by a certain strong condition, if necessary, we may assume
that ¢ is strongly f-simple. Put S = {s € ¢ [stem(q)] | flg[s]] #
flq[t]], for some/any t € succy(s) }. For each s € S, put

vs = { A(flals]], flals™ (DD | s7() € ¢}
By the above fact, we can take y; € [2,]“ (for s € S) such that
ys Ny = ¢, for all distinct s, ¢ € S and Vm € U ys (m+1 gU Ys )-
s€S s€S

Put k£ = |stem(q)|. Define U, C ¢ Nw**" (for n < w) by
Uy = stem(q),

§™(j) € Upyy if and only if s € U, and if s € S then A(fq[s]], flgls~()]) € vs.
Let ¢* be the tree generated by |J, ., U. and H the tree generated by



{ flgls]] | s € ¢* }. Since y, is infinite for all s € 5, it holds that ¢* € LT and
q* <% q. So, it holds that ¢* I f € Lim(H). Since it holds that

16| € U ys, for every splitting node 6 € H,
ses

H is a skip silitting tree. O

The skip splitting property is concerned with the cardinal invariant 6,
which is associated with predictors. We call a function from w< to w a
predictor. A predictor 7 constantly predicts f € w*, if there exists an n < w
such that

Vi <w3k e [jn, G+ 1)n) (F(R) =n(f k).

Let 6, denote the smallest cardinality of a set of predictors II such that every
f € 2% is predicted constantly by some 7 € II. It is easy to check that if a
forcing notion P has the skip splitting property, then it holds that, in VP,
every function f € 2“ is predicted constantly by some predictor in the ground
model V. So, if the skip splitting property was preserved by countable sup-
port iterations, we could get a generic model of §; = w; < b = w; by using
Laver forcing. Unfortunately, countable support iterations do not preserve
this property, in general. In fact, it holds that, in a generic model which
is obtained from the w-stage countable support iteration by Laver forcing,
there exists ¢ € 2 which is not predicted constantly by any predictor in the
ground model [2].
Question Is 6, < b consistent with ZFC?

4 The intersection property

In this section, we introduce the intersection property, and show that the
countable support iterations of Laver forcing satisfies this property. As a
corollary, we show the following Theorem.

Theorem 4.1  Assume that V |= CH. Let P be the wy-stage countable
support iteration by Laver forcing. Then, it holds that
VP k= the splitting number s of [w]* = wy.

This corollary is a known result. Professor Kada at Kitami Institute of
Technology informed me that this followed from the fact s < non(A) and a
result of Shelah VI = non(N) = w;.

Throughtout this section, we use the standard notations and notion of
proper forcing (see e.g., [1]). Let A denote an arbitrary but fixed sufficiently
large regular cardinal. We denote by H(A) the set of all sets with hereditary
cardinality < A.

We begin with the definition of the intersection property.
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Definition 4.1 A forcing notion P has the intersection property, if the
following holds. :
For any coutable elementary substructure N of H()), and any {a; | j <
w} C W], of |
PeNandVz e NN [w]“’(:cﬂa7 € [w]), foral j <w,
then, for any p € NN P, there exists p' < p such that
p' is (N, P)-generic and p’ I+ Yz € N[Gp]N[w]* (zNa; € [W]*), for
all j < w.

The next lemma can be proved by a standard argment. We give a proof
for a convenience to the reader.

Lemma 4.2  Countable support iterations preserve the intersection prop-
erty. Le., for any countable support iteration (P, | a < B), (Qu | a < 8),
if

ko, Qu has the intersection property, for all a < B,
then Pg has the intersection property.

Proof By induction on 8 € On. The case that § is a successor ordinal is
casily proved. We only treat with the case that 8 is a limit ordinal. So, let
8 be a limit ordinal, N a countable elementary substructure of H (A), and
{a; | j <w} C[w]”satisty

(Pyla<B)eNandVze NN[w] (zNg; € W] ), forall j <w.
Take an increasing sequence (B, | n < w) of ordinals in N such that
sup B, = sup(8 N N). Take a surjection 7 € N from w to w U w? such that

n<w .
Vi k<wdI®n<w(n(n)=(5k))
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Let (€7 <w)and (& | k < w) be enumerations of {€ € N | £ is Psname and I+

£e€O0On}and {i € N|dis Pgname and IF & € [w]“}, respectlvely To
prove this lemma, let p € Pg N N.

Claim 2  There exist p, € Pg, and a Pg -name r, (for n < w) such that
(1) pn <plBn and py is (N, Pg,)-generic.
) I+ 7, € N[Gp, |0\ Pg/Pp, and 7, <p [ [Bn,B).
‘) Prs1 | Bn = pa and poy1 IF Trpr <7y [[ﬂnvﬁ)
) Pn I Pr+1 r[/Bm /6n+1) .<_ 7n [ﬁnaﬂn%—l)
) pn I VmEN[gpﬁ]ﬂ[w]“’(:vﬂaj € [w]¥), for all j < w.
.2)  IfT(n) =7, then
Prag1 b Tnyy decides the value of §J

(6.b) Ift(n)=(4,k), then

Papr IF Fu€a;]" (Fppr IF u C g ).

Proof of Claim 2 By induction on n < w.
Case 1. n = 0.



Since p | Bo € N N Pg,, by induction hypothesis, take po < p [ By which is

(N, Pg, )-generic and satisfies (5). Put 7o = p [ [Bo, 8).
Case 2. n=m+ 1. ‘
Case 2.1. 7(m) = . . . '

Work in VPm below py,. Since 7, € Ps/Ps, N N|[Gp, Jand §; € N[Gp, ],
we can take r € N[C}pﬁm] N Pg/ Pg,, such that

r <1, and 7 decides the value of fj
Put 7, =7 [ [Bn,3). Take u € Py, /Pg,, such that
(7) uis (N[g'pﬁm], Pgs,/ Ps,)-generic and @ < 7 [ B, 5,).
(8) w Ik Yz e NGp, 1[Gp, sp, |Nw]* (2N ay € w]), for all k < w.
(9) support(u) C N[Gp, |
By (9), we can take p, € Pg, such that
(10) Pa | P = pm and pp - w=p, | [/Bmaﬁn)
Then, p, and 7, satisfy (1) ~ (6).
Case 2.2. 7(m) = (3,k).

In N[gpam], take an interpretation y of &, below 7, such that y is infinite.
By induction hypothesis (5), y N a; is infinite. So, take @ € [y N a;]". Since
u € N[Gp,, |, there exists ' < 7, such that ¥ € N[Gp, | and 7' I+ 4 C 2.
Let 7, = 7' | [Bm,0r). By using a similar argment of the case 2.1, take p,
which satisfy (1) and (4). Then, p, and 7, are as required. QED of Claim 2

Put p' = U pn. By (1) and (6.1), p’ is (N, Pg)-generic. We complete the

n<w

proof by showing that

P IF & Na; € w]Y, forall k, j <w.
So, let k, 7 < w. It suffices to show that

p Ik |zxNaj| >m, forall m < w.
So, let m < w. Take n < w such that m < n and n(n) = (j,k). Then, by
(6.2), it holds that

D1 P Tpgr I |2 Nay| > n.
By this, since p’' [ Bog1 b P’ [ [Bus1,8) < Ty, we have that

p' Ik |:tkﬂaj]2m. O

In order to give a proof of that LT has the intersection property, we need

the following two lemmas.

Lemma 4.3 Let g € LT and ¢ LT -name such that - 2 € V. Then, there
exist ¢* <5 q and S C q* such that

(1) S generates q*.

(2) q¢*[s] decides the value of T, for all s € S.

Proof Let
So = {s € gN[stem(q)] | there is an r <j ¢[s] such that r decides @ },

68



S ={s€ S5l S forallj<ls|}. |
It is not difficult to check stem(q) € cl(.S1). So, we can take ¢ <{ ¢ such that
(3) ¢ N S; generates ¢'.
(4) q'[s] = q[s], forall s € S;N¢.
For each s € S;N¢/, take r, < ¢[s] such that'r, decides . Then, S = 51N

and ¢* = (J,c57s are as required. ‘1 ‘ EI

Lemma 4.4 Suppose that N is a countable elementary substructure of

H()), and a € [w]* satisfies
Vze NNwl (zNa€ w]*).
Let # € N be a LT-name such that I @ € [w]*. Then, for any m < w and
any g € N NLT, there exist ¢ < qand S C ¢ N [stem( "] such that
(1) S generates ¢'. '

(2) d[s]e N andJuea|™ (¢[s] F wuC ), foranys € S.

Proof We first deal with the case m = 1. Work in N. Let'f be the name
of the characteristic function of z.. By Lemma 2.5, take ¢’ <% ¢ such that ¢
is strongly f-simple, and the following (a) or (b) holds.

(a) ¢ fldl=1F
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(b) So={seqnistem(q)] | flgls]] = fl¢] and f[¢[s]) # flg'[¢]], for some/any ¢ €

succy(s) } generates ¢'.
Let g = flgl and y = g7'{1 }.
Case 1. (a) holds.
Returne to V. Since y is infinite and belongs to N, there exists k € a N y.
Note that ¢’ I+ k€ 2. So, ¢’ and {stem(¢’) } are as required.
Case 2. (b) holds.
Case 2.1. y is infinite.
Returne to V. Take k € anNy. In N, take ¢" <§ ¢’ such that
q" I+ g[(k-}—l)Cf
Then, 1t holds that ¢” IF &k € &. So, ¢” and {stenl( q") } are as required.
Case 2.2. y is finite.
Take n < w such that y C n. Put T' = Succy(Sp). For each t € T, set
k,=min{k <w |n <kand fl¢[t]J(k) =1},
and for each s € Sy, set
z,={k|t € succy(s)}.
Return to V. For each s € Sy, since z; € N N [w]*, by the assumption, it
holds that 3¢ € succy(s) (k: € a ). For each s € S, set :
by = {t €succy(s) | ki €a}. -
For each s € Sy and t € by, take r, <3 ¢'[t] such that 7, € N and r; I+ k, € 2.
Set ¢ = U U r, and S = Succ,#(So). Then, ¢” and S are as required.

s€Sp teh,
Now, we deal the case m = n + 1. By induction hypothesis, take ¢’ <f ¢



and S C ¢ which satisfy (1) and (2). Let s € S. Take u, € [a]" such that
¢[s] & us C 2. By using the result of m = 1, take rs <g q'[s] and T C rs
such that

(1) T, generates 7.

(2) rit]€ Nand k€ a(rt] IF k€ z\u, ), forany ¢ € Ts.

Then, ¢' = U r, and S’ = U T, are as required. a

s€S sES
Lemma 4.5 Laver forcing LT has the intersection property.

Proof Let N be a countable elementary substructure of H(X) and { a; |
Jj <w} C [w]” such that
Vee NN [w]” (zNa; € [w]*), forall j <w. ‘
Take enumerations (& | j < w) and (& | k¥ < w) of the sets {{ € N |
£isaLT-nameand IF £ €On}and {$€ N | 1s a LT-name and IF z €
[w]“ },respectively. Take a surjection 7 : w — w U w? such that
Vi, j<w3I®n<w(m(n)=(5k)).

To show this lemma, let ¢ € LT N N. We first show that, by induction on
n < w, we can construct a fusin sequence ( (¢n,5,) | n < w) below g which
satisfies that, for all s € S, v
(1) @ls] €N, _
(2) if m(n) = 7, then Vt € Spt1 ( gny1[t] decides & ),
(3) if m(n) = (J,k), then Vt € Spp13u € [¢;]" ( Guya[t] & u C ).
Case 1. n = 0. '

The pair g = ¢ and Sy = { stem(qo) } satisfy the requirement.
Case2. n=m+ 1.

Let S’ = Succy,, (Sm)-
Cade 2.1. m(m) = 3.

For each s € S’, by using Lemma 4.3, take ry <& gm|s] and Ty C rs such
that
(4) T, generates r; _
(5)  r[t] € N and r,[t] decides the value of ¢;, for all t € T.

Then, ¢, = U U rs and S, = U T, are as required.
ses teTs ses!
Case 2.2. n(m) = (7,k).
For each s € S’, by using Lemma 4.4, take r;, <% ¢n,[s] and Ty C r, such
that
(6) T, generates r;
(7) 1ot} € N and Fu € [a;]” (rs[t] IF u C ap ), forall t € T.
Then, ¢, = U U rs and S, = U T, are as required.
ses teTs ses’
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Let ¢* = m ¢, € LT. By (1) ~ (3), ¢* is as required. 0

nlw
Corollary 4.6  Ever countable support iteration by Laver forcing has the

intersection property. O

Corollary 4.7 (CH) Let P be a countable support iteration by Laver forc-
ing. Then, it holds that
VF &= the splitting number of [w]* = w;. o
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