<table>
<thead>
<tr>
<th>Title</th>
<th>A weak basis theorem for Π_2^1 sets of positive measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujita, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2000), 1143: 55-59</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63898</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A weak basis theorem for Π_2^1 sets of positive measure

Hiroshi Fujita, Ehime University
(愛媛大学理学部 藤田博司)

Abstract

We give a weak basis result for Π_2^1 sets of positive measure, which is closely related to our previous paper [2] in which we have assumed the existence of $0^\#$. This note is devoted to the following

Theorem 1 Let $s \in 2^\omega$ be a real such that \aleph_1^L is a recursive-in-s ordinal. Then every Π_2^1 set of positive measure contains a $\Delta_1^1(s)$ member.

This theorem is closely related to the main theorem of our previous paper [2]: if $0^\#$ exists, then every Π_2^1 set of positive measure contains a member which is arithmetical in $0^\#$. Indeed, letting $s = 0^\#$ the hypothesis of our present theorem is achieved and this almost (but not literally) proves our older theorem. The hypothesis in the present result is weaker than that of the "$0^\#$ version." Therefore, it seems to be applicable to wider context — See Section 3 for some discussion on L-generic models in which there is a Π_2^1 singleton s satisfying the hypothesis of Theorem 1.

1 Tools

Let us fix, once for all, a recursive bijection between $\omega \times \omega$ and ω. By the notation $\langle i, j \rangle$ we mean both the ordered pair and the integer which is assigned to this ordered pair by the fixed bijection. Each real $r \in 2^\omega$ codes a binary relation \leq_r defined as

$$i \leq_r j \iff r(\langle i, j \rangle) = 1$$

Let WO be the set of reals $r \in 2^\omega$ such that \leq_r well-orders ω. For $r \in \text{WO}$, let $\|r\|$ be the order-type of the wellordering \leq_r. A countable ordinal ξ is said to be recursive-in-a if $\xi = \|r\|$ for some real $r \in \text{WO}$ which is recursive in a.

The smallest ordinal which is not recursive-in-a is denoted by ω_1^a. Then ω_1^a equals the smallest ordinal $\xi > \omega$ such that the structure $(L_\xi(a), \in, a)$ is
admissible. A real x is hyperarithmetic in a if and only if it is $\Delta^1_1(a)$ if and only if it belongs to L_{ω^a}.

For a countable ordinal ξ let $\text{WO}^{*}(\xi)$ be the set of $r \in \text{WO}$ with $\|r\| < \xi$.

For each countable ξ, the set $\text{WO}^{*}(\xi)$ is Borel. Indeed we have:

Lemma 1.1 Let $s \in 2^\omega$. Let ξ be a recursive-in-s ordinal. Then $\text{WO}^{*}(\xi)$ is a $\Delta^1_1(s)$ set.

Proof. Let $r \in \text{WO}$ be a real which is recursive in s and satisfies $\xi = \|r\|$. Then a real x belongs to $\text{WO}^{*}(\xi)$ if and only if it is an order-preserving mapping of (ω, \leq_x) into an initial segment of (ω, \leq_r), if and only if $x \in \text{WO}$ and there is no order-preserving mapping of (ω, \leq_r) into (ω, \leq_x). This gives a $\Delta^1_1(r)$ characterization of $\text{WO}^{*}(\xi)$.

Let $s \in 2^\omega$ be a real such that \aleph^L_1 is a recursive-in-s ordinal. This readily implies \aleph^L_1 is countable. Under this assumption, every Π^1_2 set of reals is Lebesgue measurable. The main theorem is proved by examining how this measurability is realized in a certain effective way. To this end, we need two $\Delta^1_1(s)$ sets: Lemma 1.1 implies that the set $\text{WO}(\aleph^L_1)$ of codes of constructibly countable well-ordering is $\Delta^1_1(s)$. Next we see that there is a $\Delta^1_1(s)$ set C of measure one consisting of random reals over L.

For a real $t \in 2^\omega$ and an integer $n \in \omega$, let $(t)_n$ be the real defined by: $(t)_n(i) = t((n,i))$. Each real codes a countable sequence of reals in this way.

Lemma 1.2 There is a $\Delta^1_1(s)$ real t such that

$$\{ (t)_n : n \in \omega \} = 2^\omega \cap L.$$

Proof. For $2^\omega \cap L = 2^\omega \cap L_{\aleph^L_1}$, this set belongs to $L_{\omega^1}[s]$, the smallest admissible set containing s. Since $L_{\omega^1}[s]$ models "every set is countable," there exists in it a surjection $f : \omega \rightarrow 2^\omega \cap L_{\aleph^L_1}$. Let $t((n,i)) = f(n)(i)$.

Let $U \subset 2^\omega \times 2^\omega$ be a Π^1_2 set which is universal for Π^1_2. Let t be a real as in Lemma 1.2. Let $C \subset 2^\omega$ be the following set

$$C = \{ x \in 2^\omega : (\forall y \in 2^\omega \cap L)[\mu(U_y) = 0 \implies x \notin U_y] \}$$

$$= \{ x \in 2^\omega : (\forall n)[\mu(U_{(t)_n}) = 0 \implies x \notin U_{(t)_n}] \},$$

where μ denotes the Lebesgue measure. Then C is a $\Delta^1_1(s)$ set such that $\mu(C) = 1$.

Lemma 1.3 Every $x \in C$ is random over L. Consequently the equality $\aleph^L_1[x] = \aleph^L_1$ holds for all $x \in C$.

2 Reducing Π^1_2 sets to $\Pi^1_1(s)$

Let P be a Σ^1_2 set of reals, then there is a recursive function $f : 2^\omega \times 2^\omega \rightarrow 2^\omega$ such that

$$x \in P \iff (\exists y)[f(x,y) \in \text{WO}].$$
By the Shoenfield Absoluteness Lemma, it is equivalent to say
\[x \in P \iff (\exists y \in 2^\omega \cap L[x]) [f(x, y) \in \text{WO}(\kappa_1^L[x])]. \]

In such a case, we have \(f(x, y) \in L[x] \). So \(\| f(x, y) \| < \kappa_1^L[x] \). It follows that
\[x \in P \iff (\exists y \in 2^\omega \cap L[x]) [f(x, y) \in \text{WO}(\kappa_1^L[x])]. \]

By these observations, we have:

Lemma 2.1 Let \(P \) be a \(\Sigma_2^1 \) set of reals, then there is a recursive function \(f : 2^\omega \times 2^\omega \to 2^\omega \) such that
\[x \in P \iff (\exists y)[f(x, y) \in \text{WO}(\kappa_1^L[x])]. \]

Now let \(A \) be a \(\Pi_2^1 \) set of reals. Put \(P = 2^\omega \setminus A \), then by Lemmas 1.3 and 2.1, there is a recursive function \(f : 2^\omega \times 2^\omega \to 2^\omega \) such that
\[x \in C \implies [x \in A \iff (\forall y)[f(x, y) \notin \text{WO}(\kappa_1^L)]]. \]

Therefore we have

Lemma 2.2 Let \(A \) and \(f \) as above. Then
\[A \cap C = \{ x \in 2^\omega : x \in C \& (\forall y)[f(x, y) \notin \text{WO}(\kappa_1^L)] \}. \]

Consequently, \(A \cap C \) is a \(\Pi_1^1(\mathfrak{s}) \) set.

If \(A \) has positive Lebesgue measure, so is \(A \cap C \), for \(C \) contains almost all reals. Being a \(\Pi_1^1(\mathfrak{s}) \) set of positive measure, \(A \cap C \) contains a \(\Delta_1^1(\mathfrak{s}) \) real by the Sacks-Tanaka Basis Theorem ([4], Chap.IV, 2.2). Thus we have proved the main theorem.

3 Some remarks

Theorem 1 would be of no interest unless there exists a definable real which makes \(R_1^L \) countable. The simplest way to make \(R_1^L \) countable is to add to \(L \) a generic function on \(\omega \) onto \(R_1^L \) by forcing with finite partial functions. This forcing adds no ordinal-definable reals. Hence in the generic extension the non-constructible reals form a \(\Pi_2^1 \) set of positive measure which does not contain any ordinal-definable real.

Much finer method to force \(R_1^L \) countable have been invented by Jensen and Solovay. In [3] they give a forcing notion \(P \in L \) and a \(\Pi_2^1 \) formula \(\varphi \) such that if \(G \subset P \) is generic then there exists a real \(a \in V[G] \) such that

1. \(L[a] \models (\forall x \subset \omega)[\varphi(x) \iff x = a]; \)
2. every constructible real is recursive in \(a \).
Clause 2 implies that the real a is non-constructible. Hence, in $L[a]$, a is a non-constructible Π^1_2 singleton. (See Theorem B of [1] for a yet sharper result along this line.)

Now let a be as above and $s = \mathcal{O}^a$, the hyperjump of a. That is to say, s is the set of notations of constructive ordinals relative to a. (See Chapter I of [4].) If you are not familiar with theory of hyperarithmetic hierarchy, you can use here the set $\{ e \in \omega : \{ e \}^a \in \text{WO} \}$ instead of \mathcal{O}^a. Since every ordinal below \aleph_1^L is recursive-in-a, we have $\aleph_1^s \leq \omega_1^a < \omega_1^s$. In $L[a]$, on the other hand, s is a Π^1_2 singleton for, in $L[a]$,

$$ x = s \iff (\forall y)[y = \{ e_0 \}^x \implies \varphi(y) \& x = \mathcal{O}^y], $$

where e_0 is a universal Gödel number which retrieves y from \mathcal{O}^y. Thus in the Jensen-Solovay model, there is a Π^1_2 singleton s such that \aleph_1^s is a recursive-in-s ordinal:

Theorem 2 There is a model of ZFC in which 0^d does not exist while every Π^1_2 set of reals is Lebesgue measurable and every positive-measure Π^1_2 set contains Δ^1_3 members.

In this model, however, exists a Δ^1_3 real r such that there exists a non-measurable $\Pi^1_2(r)$ set. Can we somehow multiply the Solovay-Jensen method to obtain an L-generic model of: For every real r every $\Pi^1_2(r)$ set is Lebesgue measurable and if it has positive measure then it contains $\Delta^1_3(r)$ members?

Our hypothesis of Theorem 1 "\aleph_1^s is a recursive-in-s ordinal" seems quite essential, for otherwise $\text{WO}(\aleph_1^s)$ is not a $\Sigma^1_1(s)$ set. We do not know whether this hypothesis can be weakened to "every ordinal below \aleph_1^L is recursive in s," or equivalently, "every constructible real is $\Delta^1_1(s)$." Let us note here that this condition is strictly weaker than the one in Theorem 1:

Theorem 3 There is a real $s \in 2^\omega$ in which every constructible real is recursive whereas \aleph_1^s is not a recursive-in-s ordinal.

Proof. A model $\mathcal{M} = (M, \in_M)$ of set theory is called an ω-model if all \mathcal{M}-integers are standard. Let us say an ω-model \mathcal{M} to be nice if $M = \omega$ and the natural sequence $((n)^M : n \in \omega)$ of the \mathcal{M}-integers is recursive in the real world. Every countable ω-model has an isomorphic copy which is nice.

Let $a \subset \omega$ be a real such that $\aleph_1^a = \omega_1^a$. Then let Ψ be the set of reals $r \in 2^\omega$ which codes the \in-relation of a non-wellfounded nice ω-model of KP set theory in which an instance of a exists. Then Ψ is a non-empty $\Sigma^1_1(a)$ set. Therefore by the Gandy Basis Theorem (see, [4] Chap.III, 1.5), there is an $s \in \Psi$ such that $\omega_1^{(a,s)} = \omega_1^a = \aleph_1^s$.

Let M be the model coded by s. Since M contains an instance of a, it follows that $\omega_1^s \leq \omega_1^s$. Hence $\aleph_1^s = \aleph_1^L$. Each non-standard ordinal in M has order type $\omega_1^s \times (1 + \text{OrderType}(Q, \prec)) + \rho$ for some $\rho < \omega_1^s$. Therefore for each ordinal $\xi < \omega_1^s$ the set L_ξ is isomorphic to an initial part of the constructible hierarchy.

\[\text{ZFC} \]
in M. It follows that M contains instances of all sets in $L_{\aleph_1^L}$. From this it follows that every constructible real is recursive in s.

□

References

