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A weak basis theorem for I13 sets
| of positive measure

Hiroshi Fujita, Ehime University
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Abstract

We give a weak basis result for II} sets of positive measure, which is closely
related to our previous paper [2] in which we have assumed the existence
of 0.

This note is devoted to the following

Theorem 1 Let s € 2 be a real such that RY is a recursive-in-s ordinal. Then
every 113 set of positive measure contains a Al(s) member.

This theorem is closely related to the main theorem of our previous paper [2]:
if OF erists, then every 113 set of positive measure contains a member which
is arithmetical in 0. Indeed, letting s = OF the hypothesis of our present
theorem is achieved and this almost (but not literally) proves our older theorem.
The hypothesis in the present result is weaker than that of the “Of version.”
Therefore, it seems to be applicable to wider context — See Section 3 for some
discussion on L-generic models in which there is a II} singleton s satisfying the
hypothesis of Theorem 1.

1 Tools

Let us fix, once for all, a recursive bijection between w x w and w. By the
notation (i, j) we mean both the ordered pair and the integer which is assigned
to this ordered pair by the fixed bijection. Each real r € 2¥ codes a binary
relation <, defined as :

i< g = (i) =1

Let WO be the set of reals r € 2¥ such that <, well-orders w. For r € WO,
let ||r|| be the order-type of the wellordering <,. A countable ordinal ¢ is said
to be recursive-in-a if £ = ||r|| for some real r € WO which is recursive in a.

The smallest ordinal which is not recursive-in-a is denoted by w¢. Then
w? equals the smallest ordinal £ > w such that the structure (L¢(a), €,a) is
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admissible. A real z is hyperarithmetical in a if and only if it is A}(a) if and

only if it belongs to L,z (a).

: For & countable ordinal € let WO(&) be the set of r € WO with ||r|| < €.
For each countable £, the set WO({) is Borel. Indeed we have:

Lemma 1.1 Let s € 2¥. Let £ be a recursive-in-s ordinal. Then WO(¢) is a
Al(s) set. :

Proof.  Let r € WO be a real which is recursive in s and satisfies £ = ||r|.
Then a real z belongs to WO(¢) if and only if there is an order-preserving
mapping of (w,<;) into an initial segment of (w, <,), if and only if z € WO
and there is no order-preserving mapping of (w, ,.) into (w, <;). This gives a

Ai(r) characterization of WO(¢). 0

Let s € 2“ be a real such that R{ is a recursive-in-s ordinal. This readily
implies RY is countable. Under this assumption, every I} set of reals is Lebesgue
measura.ble The main theorem is proved by examining how this measurabﬂlty
is realized in a certain effective way. To this end, we need two Al 1(8) sets:
Lemma 1.1 implies that the set WO(RY) of codes of constructibly countable
well-ordering is A}(s). Next we see that there is a Al(s) set C of measure one
consisting of random reals over L.

For a real t € 2 and an integer n € w, let (t), be the real defined by:
(t)n(i) = t({n,i)). Each real codes a countable sequence of reals in this way.

Lemma 1.2 There is a Al(s) real t such that
{@)n:new}=2nNnL.

Proof. For2*NL = 2v¥ ﬂLRf , this set belongs to Ly: [s], the smallest admissible

set containing s. Since Lz [s| models “every set is countable,” there exists in it
a surjection f : w —» 2% N Lyr. Let t((n, 1)) = f(n)(3). O

Let U C 2¥ x 2 be a II set which is universal for ITJ. Let ¢ be a real as in
Lemma 1.2. Let C C 2* be the following set

C={ze2’:(Vye2*NnL)[u(Uy,) =0 = z¢U,]}
={z €2 : (Vn)[u(Up,) =0 = ¢ Uy, |}

where y denotes the Lebesgue measure. Then C is a Al(s) set such that u(C) =
1.

Lemma 1.3 Fvery x € C is random over L. Consequently the equality R} Liel _
RE holds for all z € C. 0O

2 Reducing I} sets to II}(s)

Let P be a %1 set of reals, then there is a recursive function f 2¥ x 2% —2¢
su(h t;hd,t
reP < )| f(z,y) e WO].
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By the Shoenfield Absoluteness Lemma, it is equivalent to say
| zeP e (ay € 2 N Liz))| f(z,y) € WO].
In such a césé, we have f (a:, y) € L[:z;] So || f (x,y)]l < Rf[m]. It ‘follows tliat
z€P « (Jye2nL))flz,y) e WO(N [“"1)]
By these observations, we have:

Lemma 2.1 Let P be a £} set of reals, then there is a recursive function f:
2% x 2% — 2% such that

z€P > ()| f(z,y) € WORED),

Now let A be a IT} set of reals. Put P = 2¢\ A, then by Lemmas 1.3 and 2.1,
there is a recursive fucntion f : 2% x 2% — 2% such that

T€C = [z A = (V)[f(z,y) ¢ WORD)]].
Therefore we have
Lemma 2.2 Let A and [ as above Then
ANC={ze€2’:2eC& (W) f(z,y) ¢ WO(RE)]}.
Consequently, ANC is aTli(s) set.

If A has pomtlve Lebesgue measure, so is A N C, for C contains almost all
reals. Being a ITj(s) set of positive measure, A N C contains a Al(s) real by
the Sacks-Tanaka Basis Theorem ([4], Chap.IV, 2.2). Thus we have proved the
main theorem.

3 Some remarks

Theorem 1 would be of no insterst unless there exists a definable real which
makes R{' coyntable. The simplest way to make XY countable is to add to L
a generic function on w onto R{ by forcing with finite partial functions. This
forcing adds no ordinal-definable reals. Hence in the generic extension the non-
constructible reals form a II} set. of positive measure which does not contain
any ordinal-definable real.

Much finer method to force R¥ countable have been invented by Jensen and
Solovay. In [3] they give a forcing notion P € L and a IT} formula ¢ such that
if G C P is generic then there exists a real @ € V[G] such that

Lig] |= (Y2 C ) 9(z) <= z=al;

2. every constructible real is recursive in a.
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Clause 2 implies that the real a is non-constructible. Hence, in L[a], a is a
non-constructible I1} singleton. (See Theorem B of [1] for a yet sharper result
along this line.)

Now let a be as above and s = O%, the hyperjump of a. That is to say, s is
the set of notations of constructive ordinals relative to a. (See Chapter I of [4].
If you are not familiar with theory of hyperarithmetic hierarchy, you can use
here the set {e € w : {e}* € WO} instead of ©0%.) Since every ordinal below
RY is recursive-in-a, we have R} < w? < wi. In L[a], on the other hand, s is a
I1} singleton for, in Lla],

=35 <= ()|y={e}’ = o(y) &z =0Y],

where eg is a universal Godel number which retrieves y from @Y. Thus in the
Jensen-Solovay model, there is a I} singleton s such that R is a recursive-in-s
ordinal: :

Theorem 2 There is a model of ZFC in which 0 does not ezist while every I
set of reals is Lebesgue measurable and every positive-measure 11} set contains
A} members.

In this model, however, exists a A} real r such that there exists a non-
measurable II}(r) set. Can we somehow multiply the Solovay-Jensen method
to obtain an L-generic model of: For every real r every IIi(r) set is Lebesgue
measurable and if it has positive measure then it contains Al(r) members?

Our hypothesis of Theorem 1 “R¥ is a recursive-in-s ordinal” seems quite
essential, for otherwise WO(RY) is not a £}(s) set. We do not know whether
this hypothesis can be weakened to “every ordinal below R is recursive in s,”
or equivalently, “every constructible real is Al(s).” Let us note here that this
condition is strictly weaker than the one in Theorem 1:

Theorem 3 There is a real s € 2% in which every constructible real is recursive
whereas RY is not a recursive-in-s ordinal.

Proof. A model M = (M, €yy) of set theory is called an w-model if all M-
integers are standard. Let us say an w-model M to be nice if M = w and the
natural sequence ((n)™ : n € w) of the M-integers is recursive in the real
world. Every countable w-model has an isomorphic copy which is nice.

Let a C w be a real such that 8}’ = w$. Then let ¥ be the set of reals r € 2¢
which codes the €-relation of a non-wellfounded nice w-model of KP sqt theory
in which an instance of a exists. Then ¥ is a non-empty ¥}(a) set. Therefore
by the Gandy Basis Theorem (see, [4] Chap.III, 1.5), there is an s € ¥ such
that w{®® = ¢ = RE.

Let M be the model coded by s. Since M contais an instance of a, it follows
that w§ < wi. Hence w} = RY'. Each non-standard ordinal in M has order type
wi X (1 4 OrderType(Q, <)) + p for some p < wf. Therefore for each ordinal
§ < wj the set L is isomorphic to an initial part of the constructible hierarchy



in M. It follows that M contains instances of all sets in Lyr. From this it
follows that every constructible real is recursive in s. -
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