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Forcing NS, Completely Bounded via Semiproper Iterations
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Abstract

We consider the combinatorial principle CB. We discuss its consequences, consistency
and negation.

§0. Introducing CB

We begin by defining the combinatorial principle of our concern. This originates from
[B-M], [Y] and [W].

0.0 Definition. We say NS, is completely bounded, if for any ¢ : w; — wy, there
is a sequence (X; |7 < w;) and an ordinal 7 s.t.

e For any ¢ < wy, X; is a countable subset of v with ¢(7) < o.t.(X;). (the order type
of X; is larger than ¢(7).)

e For any i < j < wy, X; C X;. (increasing)

e For any limit ordinal ¢ < wq, X; = J{X; | < i}. (continuous)

oy =U{Xi|i<w}

We say CB for short to express NS, is completely bounded. We also say any sequence
(X; | © <wy)is a CB-sequence for g at v for short to express the above 4 conditions on the
sequence. Notice that once we have a CB-sequence for ¢ at v, then we may raise the value
of v upward anywhere below wy. So CB iff for any g € “*w;, there is a CB-sequence for g
at some w; < v < wy. Hence we may restrict our attention to those v’s with wi < v < ws.

§1. Consequences of CB

1.0 Theorem. CB implies that there are no (w1,1)-morasses.

Proof. By contradiction. Suppose A is an (w1, 1)-morass. We may define g : w; — w;
from A as follows: Given any ¢ < wy, take any A € A s.t. the rank of A in A is ¢. We then
set g(¢) = 0.t.(A) (the order type of A). Since A is an (wy, 1)-morass, this is well-defined.
Now let (X; | ¢ < wy) be any possible CB-sequence for g at any v with w; < v < w,. We
find ¢ s.t. g(¢) > o.t.(X;) so that these X;’s never satisfy CB for g. To this end, we take
a sequence (A; | 1 < wq) s.t. A; € A, v € A; and the rank of A; in A is ;. Since A is
a morass, we know that (4; N~ | ¢ < w;) is continuously increasing to . Since we have



two continuously increasing sequences, we certainly have ¢ < w; s.t. A; Ny = X;. Since
v € A;, we have ¢(1) > 0:.t.(4; Ny) = o.t.(X;).
: a

1.1 Theorem. If CB s ever consistent, then we may construct ¢ universe of set
theory where the following hold simultaneously.

e O, holds.
o A Kurepa tree exists.

e No (w1,1)-morasses exist.

1.2 Note. It is known that the existence of an (w;, 1)-morass implies both O, and
the existence of a Kurepa tree.

Proof. We may start with the ground model where CB holds. We first force O, via
a o-closed and w,-Baire p.o.set ([J]). It is clear that CB remains. We then force a Kurepa

tree via a c.c.c. forcing. This is possible due to O,, ([B]). Both CB ([B-M] and [Y]) and

O., remain in the final model.

0

§2. The Partially Ordered Set Q(g,7)

2.0 Definition. Let ¢ be any function with ¢ : w; — w; and v be any ordinal with
wy < 7. We want to force a CB-sequence (X; | ¢ < wy) for g at 4. To do so, we may define
a p.o.set Q(g,7) as follows: p = (X? | i <) € Q(g,7), if '

e 1? < w;. (pis a sequence of countable length with the last entry.)

e For any i < i, X is a countable subset of v with g(i) < 0.t.(X}) (= the order type
of XP).

o For any i < j < i?, we demand X} C X?. (X}’s are increasing.)

e For any limit ordinal ¢ with ¢ < ¢#, X? = J{X? | | < i}. (XP’s are continuously
increasing.)

For p, ¢ € Q(g,7), we set ¢ < p,if ¢ 2 p. So p € Q(g,v) iff p is a continuously
increasing sequence of countable subsets of  with right order types and p is of countable
length with the last listing. We consider the obvious order on them. Notice that Q(g,~)
does not have the greatest element as defined. But there is no need to worry.

2.1 Lemma. Let g : w3 — w; be any and v be any ordinal with wy < 7. The
following are equivalent.

(1) There is a o-Baire and semiproper p.o.set Q s.t. Q forces a CB-sequence for g at .
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(2) For all sufficiently large regular cardinals § and all countable elementary substructures
N of Hy with g, v € N, there is a countable elementary substructure M of Hy s.1.
NCM,NNw,=MnNuw; and g(M Nwy) < o.t.(MN~).

(8) Q(g,7) is semiproper.

The situation here is very much similar to semiproper seal forcing in the context of
wy-saturation of NS,,. But the relevant large cardinal strength need here appears to be
much lower as we see later. \

We then consider the class of p.o.sets which preserve the stationary subsets of w;. We
remind you that the semiproper p.o.sets are included in this class. They may coincide with
depending on the universes.

2.2 Lemma. Let g : w; — w; be any and v be any ordinal with w; < v. The
following are equivalent.

(1) There is a o-Baire p.o.set Q s.t. Q preserves every stationary subset of wy (with
Boolean value 1) and that Q forces a CB-sequence for g at 7.

(2) For any stationary subset S of wy, A(S)={X €[y]*|XNwi €5 and V: <X Nuw
g(2) < 0.t.(X)} is stationary in [y]“.

(3) Q(g,7) preseves every stationary subset of wy (with Boolean value 1).

We lastly consider the situation with properness. It is hard to come by with a proper
p.o.set, unless ¢ is very simple.

2.3 Lemma. Let g 1wy — w be any and v be any ordinal with wy < v. The
following are equivalent. ‘

(1) There is a (0-Baire, may omit this condition) proper p.o.set Q s.t. Q forces a CB-
sequence for g at 7.

(2) For all sufficiently large regular cardinals 6 and all countable elementary substructures
N of Hy with g, v € N, we have g(N Nwy) < o0.t.(N N7).

(8) Q(g,7) is proper.

We eventually consider an iterated forcing to get CB. But we provide an observation
due to [T] that proper p.o.sets do not work for establishing CB in the latter section. We
also know ([S]) that stationary preserving p.o.sets may collapse wi, if they are iterated
w-times regardless of the limit. Hence what left is the class of semiproper amongest these
three. Since we are interested in semiproper p.o.sets, we provide a proof for the first lemma
alone. Others are more or less the same and left to the interested readers.

Proof of 2.1 Lemma. For (1) implies (2): Suppose Q is a o-Baire and semiproper p.o.
set s.t. Q forces a CB-sequence (X; |7 < w;) for ¢ at . Let us write H = H.+ for short.
We first show the following:
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Claim 1. A= {A € [H]¥|3X st X is countable, ACX, ANwy =XNw, X <H
and g(X Nwy) < 0.t.(X Nv)} contains a club C in [H]*.

Proof. Let S be any stationary set in [H]“. It suffices to show SN A # . Since every
stationary set in [H]“ is semistationary and @ is semiproper, S remains semistationary in
V?. Namely, we have in V@: S* = {X € [H]* |74 € Sst. ACX, ANw; =X Nuw;
and X < H} is stationary in [H]“.

Let x be a sufﬁc1ent1y large regular cardinal. We may take a countable M < H (both
calculated in VQ) st. M N H is in the stationary set S* and (X | i < wi) € M. Let
X = M N H and take A € S which witnesses that X € §*. Since @ is o-Baire, we have
X €V. It is easy to check A € SN A due to X.

g

Now 6 be any regular cardinal s.t. H € Hy. Suppose g, v € N < Hy. Since A is
definable in Hy from ¢ and v, we may assume C € N. Hence NN H € C. So there is a
countable X st. NNHCX, NNw; =X Nuw;, X < H and ¢(X Nw;) < 0.t.(X N+). Let
M={f(&)|Z€ Xn~, f €N} Then this M works. Namely, we have

Claim 2. (1) NCM < Hyp, NNwy =MNw; and X Ny C M.

And so,
(2) (M Nwy) < o.t.(MN7).

Proof. To show N C M, take any n € N. Then, say, let f = {({,n) |[£ <~} :v —
{n}. We have f € N and n = f(0) € M. To show X Ny C M, take any £ € X N~. Then
let f = {(&¢)| €& €~} Wehave z = f(z) € M. To show N Nwy; = M Nw,, take any
jEMNuw;. Soj = f(Z) for some £ € X Ny and f € N. Since f € N < Hy, we may
assume f: <¥y — w;. Since f € NN (*“7w) CNNH C X. So f(#) € X Nw;. Notice
that we in fact had X Ny = M N v above. To show M < Hy, we may use the Tarski’s
criterion. The following is not precise but typical.

Claim 3. For any formula ¢(y,z), if m = f(z) € M s.t. fe N,z € X ﬂ'y and
Hy = “Ty p(y,m)”, then there is such y in M. «

Proof. Take h € N s.t. Hy |= “ for any € € v, if Jy ¢(y, f(£)), then o(h(£), f({))”
This is possible as f,v € N < Hy. Let y = h(z) € M. This y works.

]

(2) implies (3): We first show density (without assuming (2)).

Claim 4. For any p € Q(g,7), any o with ¥ < a < wy and any { < v, there is ¢ < p
s.t. 19 =a and £ € XJ.

Proof. By induction on « for all p, €.

Case 1. For a = 0: It is vacuously true.
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Case 2. For o+ 1: Take p; < p with §?* = a. We may already have £ € X2t
by induction. Then for any X s.t. X2 U{€} C X € [7]* and g(a + 1) < 0.t.(X), let
¢g=p1U{(a+1,X)}. This ¢ works.

Case 3. For limit a: Take a strictly increasing sequence of ordinals (an | n < w)
s.t. ap = ¢® and sup{a, | n < w} = a. Then take a sufficiently large regular cardinal ¢
and any countable N < Hy with {£,7,9,p,{an | n < w),Q(g,7)} C N. This just meant
that N contains every relevant parameters. Since & € N and w; < v € N, we have
g(@) € NNw; < 0.t.(N Nv). So we may place N N+ at the a-th, as long as we make
sure the continuity. To this end, we enumerate N N+ by ({» | n < w). We construct a
discending sequence of conditions {p, | n < w) s.t.

® po =p, 1P = ay.
® Pn <p, pn € N and i*" = a,.

o ¢, gets captured by pn41. Namely, &, € Xart).

Now by construction, we have J{X%, | n < w} = NN~. Hence ¢ = J{pn | n <
w}U{(a, NNv)} € Q(g,7v). This g works.

]

We now assume (2) and proceed to show Q(g,7) is o-Baire and semiproper. Fix
a sufficiently large regular cardinal 6 as in (2) and take any countable N < Hy with
{9,v} € N. And so Q(g,7) € N. Fix any p € Q(¢9,7) N N. Then we may take M as
in (2). Construct any (Q(g,~), M)-generic sequence (¢ | n < w) with ¢o = p. It suffices
to find a lower bound ¢ of these conditions. This is because ¢ is (Q(g, 7v), M )-generic so
q ||—Q(g,7) ‘NNw; = MNw = M[G]Nw; 2 N[G]Nw;” and so ¢ is (Q(g,7), N)-semi-
generic. Let ¢ = J{gn | n <w}U{(MN wl,Mﬂ v)}. By Claim 4, ¢ € Q(g,v) and this ¢
works.
m

(3) implies (1): We first note that Q(g,~) is o-Baire iff Q(g,y) preserves w;. To see
this, suppose Q(g,7) preserved wy. Then |J G must be of length wy, where G is any generic
filter. This is because, given any p € Q(g,7) and any £ € v, it takes nothing to get ¢ < p
with £ € X,. Similarly, given any countably many open dense subsets D,’s of Q(g,7),
there are p,’s in the G N Dy’s. But dom(U{pn | » < w}) < wi. Otherwise they would
collapse w,. Hence there must be a condition g € G which extends every p, € GN D,,. So
g must be in the intersection of the D,,’s.

Now suppose Q(g,7) is semiproper. In particular, Q(g,7) preserves wy. So Q(g,7) is
o-Baire. We want a CB-sequence for g at 7. But as we see above | J G is of length wy and
so it is a CB-sequence for ¢ at ~.

a

83. Using a Measurable Cardinal and Products
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3.0 Lemma. Let & be a measurable cardinal with a normal measure D. For any
regular cardinal § > (2%)t, any N s.t. D € N < Hy and | N |< &, and a,ny§ with
sup(N N k) < €<k, we have M < Hy s.t.

(1) NCM and | M |=| N |.
(2) (M\N)Nk#0 and 1f s 1s the <-least element of(M\N)ﬂ/sthen£<s
(8) For anyn € NNk, 'weha'ueNﬂV,,-MﬂV,,.

Proof. Take s € (\(NND) with s > €. Let M = {f(s) | f € N}. Then this M works.
We provide some details. We first show that M < Hy via the Tarski’s criterion. Namely,

Claim 1. For any f1(s), -+, fn(s) € M, if Hy = “yo(y, f1(3), -+, fa(s))”, then
there is f(s) € M s.t. Hg |= “o(f(s), f1(s),- -, fu(s))”. |

Proof. Note that Hy = “3f : k& — ran(f) Va < &, if Jyp(y, fr(a), -, fala)),
then o(f(a), fi(a), -+, fu(a))’. This may be expressed as Hg |= “Ef@(f, i,y fa)”
for some formula ®. But fi,---,f, € N < Hy, so we may fix such f in N. Hence if
H9 }I “Ey(p(y‘) fl(s)a e 7fn(5))” hOldS, then Hy |: “go(f(s), fl(s)a T fn(s))” holds.

]

For (1): Take any n € N and let f = {(a,n) | @ < x}. Since D € N, we may take
AeDNN. Wehave k =|JAEN. So f € N < Hyand n = f(s) € M. HenceNCM
It is clear that N and M are of same size.

For (2): Let f = {(a,a) | « € k}. Then f € N and s = f(s) € M. By the choice
of £ and s, we have s € (M \ N) N k. So it suffices to show that if g(s) < s with g € N,
then ¢g(s) € N. We may assume g : K — & is a regressive function. Since D is a normal
measure, we have A € D and v < & s.t. ¢"A = {v}. Since relevant parameters are all in
N, we may assume that both A and v are in N. So g(s) =v € N.

For (3): It is clear that for any 7 € NNk, NN7 = M N7 holds by (2). Since
(Vy | n < k) € Hp is definable from « in Hy, we have (V,; | n < k) € N. Now take any
n€ NNk SoV, € N. Let 7 =| V; |[< £ and fix an onto map e : 7 — V;;. We may
assume both 7 and e are in N. To observe M NV, C N, take any m € M NV,. Since e
is onto, there is 1 < 7 s.t. m = e(z). Since m, 7, e are all in M < Hy, we may assume
ieEMNTr=NnN7. Som=¢e() €N.

O

3.1 Corollary. Let x be a measurable cardinal. Then for any g : wy — wq, the
p.o.set Q(g, k) is o-Baire, semiproper and forces a CB-sequence for g at k. For any a with
w1 < a < Kk, we have | a |= w; in the generic extensions. '

Proof. By repeatedly applying 3.0 Lemma, we may make sure the second condition
(2) in 2.1 Lemma. So Q(g, ) is o-Baire and semiproper. By the proof of (3) implies (1)
in 2.1 Lemma, Q(g, x) forces a CB-sequence for g at &.

]



14

In order to take care of all the ¢’s in the ground model at a time (rather than using a
book-keeping method in iterated forcing), we may consider the countable support product
of the Q(g,k)’s for all g. Namely,

3.2 Definition. Let x be a measurable cardinal. Let p € Q(k), if p is a countable
function s.t. dom(p) C “w; and for all g € dom(p), p(g) € Q(g, &)

For p,q € Q(x), let ¢ < p, if dom(q) 2 dom(p) and for all g € dom(p), g(g) < p(g)
hold in Q(g, k).

Q(k) is a p.o.set with the greatest element () and satisfies the following:

3.3 Lemma. (1) For any g € “‘w1, any (§,p) € w1 X Q(k) s.t. Vf € dom(p) () < 6,
and any € < k, there is (X,q) s.t. X € [k]“, ¢ < p, g € dom(q), and for all f € dom(q),

we uniformly have 11D =§and E € X = Xg(f).

(2) Q(k) is o-Baire and semiproper.

(3) In the geﬁerz’c extensions, every g € VN “lw; has a CB-sequence at k.
Proof. 1t is identical to 2.1 Lemma. We provide some details.
For (1): We proceed by induction on ¢ for all g,p,§.
Case 1. For § = 0: Vacuously true.

Case 2. For 6 + 1: By applying induction hypothesis to p[{f € dom(p) | i*f) < 6},
we may assume for all f €dom(p), i?f) = 6. Now take any ¥V € [k]“ s.t. for all f €

dom(p), Xf(f) CY and f(6 +1) < 0.t.(Y). It is easy to construct ¢ via this Y.

Case 3. For limit §: Fix a countable N < H(2x)+ s.t. relevant parameters are all in
N. We may assume ¢ € dom(p). Since dom(p) is countable, we may assume dom(p) C N
and for any f € dom(p), we may assume Q(f,x) € N and p(f) € Q(f,x) N N. Hence we

may construct ¢(f) < p(f) s.t. :9) = § and Xg(f) = NNk as f(§) € NNw;y < o.t.(NNk).
This g works.

For (2): Take any countable N < Hzx)+ with Q(x) € N and any p € Q(x) N N. We
may assume for all f € NN “twy, f(N Nw;y) < 0.t.(N N k), while N Nw; and N N “1w,
remain unchanged. Let {p, | n < w) be any (Q(x), N)-generic sequence with py = p. Then
we have the following by (1): '

e J{dom(p,) | n <w}=NnN “1w;.
e VfENN “twy U{Xz,';((i)) | f € dom(p,), n <w}=NnNk.
o Vfe Nn“w U | f e dom(pn), n <w}=NnNuw.

So we may define ¢ € Q(k) s.t.

e dom(g) =N N “1w;.
o Vf e NN “wi ¢(f) =U{pa(f) | f € dom(ps), n <w}U{(NNwi, NNk)}.
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Then ¢ is a lower bound of the p,’s. In particular, ¢ is (Q(«), N )—generic‘ for this N
and so ¢ is (Q(x), N)-semi-generic in general.

For (3): Let G be a Q(k)-generic filter over the ground model. For any g € V' N “*wy,
let U{p(9) | p € G,g € dom(p)} = (X] | i <wi). This sequence works. :
O

§4. Consistency of CB

~ We recap [M] in order to define our iterated forcing. We construct iterated forcing
(Py | a < p) together with (Qqa | & < p) by recursion on «. The construction is carried out
as usual by specifing what Q4 is in VP at each successor stage. But we take the following

limit.
4.0 Definition. Let v be a limit ordinal and an iterated forcing I = (Py | o < v)

(together with (@4 | @ < 1)) has been specified. Then the simple limit P of I is a suborder
of the inverse limit I* of I s.t. p € P, if there is a sequence of I*-names (&, | n < w) s.t.

o |r“dn < bpgr SV

o If z|r“dy, =&, then [T 1 |+ “an = €.

o pllre i < 7. | .

o |1+ “If & = sup{a, | n < w} and pléa € G[é, then p € G”, where G denotes the
canonical I*-name of the I*-generic filters. ‘

So each condition in this limit has its own countable (Boolean valued) stages &y,’s. The
stages are required to have some simple dependencies on the generic filters. The &,’s are
I*-names but they natually give rise to corresponding P-named stages. When cf(a) = w,
we have P = I*. So nothing new happens. But when cf(«) > wy, there is a chance that
the limit is somewhat larger than the direct limit of I. ‘

4.1 Definition. If we take the simple limit at every limit stage, then the iteration is
called a simple iteration.

We quote the following technical lemma on the simple iterations from [M].

4.2 Lemma. Let (P, | o < p) be any simple iteration s.t. Ya < p |-p, “Qq is
semiproper”. Then
(1) For any a, B with a < f < p, we have ||-p, “Pag 15 semiproper”.
(2) If ¢f(B) = wi, then the direct limit of (P | a < B) 1s dense in Ppg.
(3) If p 15 a regular uncountable cardinal and Vo < p | Py |< p, then the direct limt of
(P, | @ < p) is dense in P,. (This takes no semiproperness.) :
And so,

(4) If p is a regular cardinal with p > wy and Va < p | P, |< p, then P, has the p-c.c.
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Now we may state our main observation.

4.3 Theorem. Let p be the <-least strongly inaccessible cardinal s.t. {x < p | k 1is
measurable} is cofinal below p. Then we have a simple iteration (Py | a < p) s.t.

(1) P, is semiproper and so preserves wy and the stationary subsets of wy.

(2) P, has the p-c.c.

(3) In VP, CB holds and 2** = w, = p. -
Proof. Let (ko | @ < p) enumerate {x < p | £ is measurable} in increasing order.

Notice that for any limit 3, we have sup{xo | & < B} < kg. Construct (P, | @ < p)
together with (Q, | a < p) by recursion so that

(4) Po = {0}
(5) Py € Hy, and |-p, “Qq is the countable support product of the Q(g,%,) for g €
- “1w; NV[G4]” and so,

¢ |-p, “Qq is o-Baire and semiproper”.

. ”—Pa “Q.Ot C H':'/(X[G.a]”'
So we may assume
® Poy1 C Hy, € He, .
(6) For limit 3, Py is the simple limit of (Py | @ < B) and so
o | Pg |[<Tacp | Py |< 28a<slPal < k4,

This completes the construction. By 4.2 Lemma, we know that (1) and (2) hold.

For (3): Suppose g : w; — w; in V[G,], where G, is any P,-generic filter over the
ground model V. Since P, has the p-c.c, there is a stage a < p s.t. g € V[G,]. Then
in V[Ga+1], there is a CB-sequence for g at x,. This is upward absolute. So remains in
VI[G,]. Notice that | ko |= wy in V[Ga41]. But p remains a cardinal. Hence p = w;/[G”].
Since the direct limit of (P, | a < p) is dense in P,, we may conclude that the value of 2«
in V[G,] is exactly p by counting the number of the nice names for the subsets of wy in V.

O

4.4 Question. (1) CB implies the existence of some large cardinal ([D-L]). So we

need some large cardinal to get CB. Can we get the equiconsistency here. It would be
very interesting because this situation sits below the picture: A Woodin cardinal (+ a
measurable cardinal above it) vs. the saturation of NS, ([W]).
(2) It is easy to arrange 2 = 2! = w,. But can you arrange so that 2% = wy, 2% = w,
? In particular, we do not know the value of 2¥ in this model. The approach in [Chaper
XI, say, p. 546 in S] does not seem to work in this case. So the positive solution to this
problem would lead to a new technique in iterated forcing. The negative solution would
shed light on the nature of the universes of set theory.

§5. Negation of CB
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This section is based on [T]. We first rephrase CB using stationary sets.

5.0 Proposition. The following are equivalent.

(1) CB fails. ‘
(2) 3g :wi — wiVy € (w1,w2) {X € [7]Y | g(X Nw1) > 0.t.(X)} is stationary in [y]*.
Proof. Any club in [y]“, with w; < 7y < wsq, contains a continously increasing sequence
of length w; s.t. the union of those countable subsets of v listed in the sequence is exactly
7.
0O

We get a strong failure of CB.

5.1 Lemma. If we force with the set of countable initial segments <“'wy, then in the
generic extensions, we have

o Jdg:w; — wVy>wi{X € [7]¥ | ¢(X Nwy) > 0.t.(X)} is stationary in [y]“.

Proof. Let P = <*'w; and define ¢ = |JG, where G is a P-generic filter. We
observe this g works. Suppose p|-p“f : <@y — 4”. We want to find X € [y]¥ and
g < pst. gq|Fp“X is closed under f and (X Nw;) > 0.t.(X)”. To this end, let @
be a sufficiently large regular cardinal and take a countable N < Hy s.t. P,p, f € N.
Define X = N N+v. Fix a (P, N)-generic sequence (p, | n < w) with py = p. Let
g =U{pn | n < w} U{(N Nuw,v)}, where v € [0.t(N Nv),w;). Then ¢ < pis (P,N)-
generic and ¢ |-p“g(N Nw;) = v 20.t.(X)”. In particular, ¢|-p“X = NNy = N[G] N~
is closed under f € N[G]”. We are done. :

i

So the strong failure of CB is preserved by any notion of forcing which is proper.
Accordingly, we have

5.2 Theorem. It is consistent that no proper forcing construction produce a model
of CB even if large cardinals are available.

Proof. Consider the universe V¥ where P = <“iw;. We have the strong failure of
CB. Since proper forcing preserves every stationary set, no proper forcing over this model
would ever produce CB.

o

5.3 Corollary. ([T]) The following are all consistent provided that a supercompact
cardinal exists.
e PFAT + - CB.
o PFA*T + —(NS,, is saturated).
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e PFAT + —SRP(Strong Reflection Principle).
e PFAT + ~MM (Martin’s Mazimum).

Proof. We simply note the following well-known 1mphcat1ons (see [B]). MM = SRP

= saturation = CB.
]

The last implication is due to [B-M] and likely to [W].
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