<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>LOGARITHMIC ORDER AND DUAL LOGARITHMIC ORDER (Operator Inequalities and Related Areas)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Furuta, Takayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1144: 163-173</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63906</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
LOGARITHMIC ORDER AND DUAL LOGARITHMIC ORDER

東京理科大学理学部 古田孝之 (Takayuki Furuta)

Abstract. We shall define the following four orders for strictly positive operators A and B on a Hilbert space H such that $1 \not\in \sigma(A), \sigma(B)$.

- **Strictly logarithmic order** (denoted by $A \succ_{sl} B$) is defined by \(\frac{A-I}{\log A} > \frac{B-I}{B \log B} \).

- **Logarithmic order** (denoted by $A \succ_{l} B$) is defined by \(\frac{A-I}{\log A} \geq \frac{B-I}{B \log B} \).

- **Strictly dual logarithmic order** (denoted by $A \succ_{sdl} B$) is defined by \(\frac{A \log A}{A-I} > \frac{B \log B}{B-I} \).

- **Dual Logarithmic order** (denoted by $A \succ_{dl} B$) is defined by \(\frac{A \log A}{A-I} \geq \frac{B \log B}{B-I} \).

Firstly we shall show direct and simplified proofs of operator monotonicity of logarithmic function \(f(t) = \frac{t-1}{\log t} \) and dual logarithmic function \(f^*(t) = \frac{t \log t}{t-1} \).

In what follows, let A and B be strictly positive operators on a Hilbert space H such that $1 \not\in \sigma(A), \sigma(B)$. Secondary we shall show the following:

- **(\ast)** \(\log A > \log B \Rightarrow \) there exists $\beta \in (0,1]$ such that $A^\alpha \succ_{sl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

- **(\dagger)** \(\log A > \log B \Rightarrow \) there exists $\beta \in (0,1]$ such that $A^\alpha \succ_{sdl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

By using these two results (\ast) and (\dagger), we summarize the following interesting contrast among $A > B > 0$, $A \geq B > 0$, $\log A > \log B$ and $\log A \geq \log B$.

- **(l-i)** $A > B > 0 \Rightarrow$ there exists $\beta \in (0,1]$ such that $A^\alpha \succ_{sl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

- **(l-ii)** $A \geq B > 0 \Rightarrow A^\alpha \succ_{l} B^\alpha$ for all $\alpha \in (0,1]$.

- **(l-iii)** $\log A \geq \log B \Rightarrow$ for any $\delta \in (0,1]$, there exists $\beta = \beta_\delta \in (0,1]$ such that $(e^{\delta}A)^\alpha \succ_{sl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

- **(l-iv)** $\log A \geq \log B \Rightarrow$ for any $\delta \in (0,1]$, there exists $\beta = \beta_\delta \in (0,1]$ such that $(e^{\delta}A)^\alpha \succ_{sdl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

- **(dl-i)** $A > B > 0 \Rightarrow$ there exists $\beta \in (0,1]$ such that $A^\alpha \succ_{sdl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

- **(dl-ii)** $A \geq B > 0 \Rightarrow A^\alpha \succ_{dl} B^\alpha$ for all $\alpha \in (0,1]$.

- **(dl-iii)** $\log A \geq \log B \Rightarrow$ for any $\delta \in (0,1]$, there exists $\beta = \beta_\delta \in (0,1]$ such that $(e^{\delta}A)^\alpha \succ_{dl} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

(dl-iv) $\log A \geq \log B \implies$ for any $p \geq 0$ there exists $K_p > 1$ such that $K_p \to 1$ as $p \to +0$ and $(K_p)^{pos} \succ_{dl} B^{pos}$ for all $\alpha \in (0, 1]$.

Finally we cite a counterexample related to (l-iii) and (dl-iii).

1. Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T > 0$) if T is positive and invertible. The strictly chaotic order is defined by $\log A > \log B$ for strictly positive operators A and B.

It is well known that the usual order $A \geq B > 0$ ensures the chaotic order $\log A \geq \log B$ since $\log t$ is operator monotone function. Also it is known by [Theorem, 6] and [Example 5.1.12 and Corollary 5.1.11, 5] that

$$A \geq B > 0 \text{ ensures } \frac{A - I}{\log A} \geq \frac{B - I}{\log B}$$

and

$$A \geq B > 0 \text{ ensures } \frac{A \log A}{A - I} \geq \frac{B \log B}{B - I}$$

since $f(t) = \frac{t - 1}{\log t}$ ($t > 0, t \neq 1$) and $f^*(t) = \frac{t \log t}{t - 1}$ ($t > 0, t \neq 1$) are both operator monotone functions (see Theorem A underbelow). The function $f(t) = \frac{t - 1}{\log t}$ ($t > 0, t \neq 1$) is said to be "logarithmic function" which is widely used in the theory of heat transfer of the heat engineering and fluid mechanics. Also the function $f^*(t) = \frac{t \log t}{t - 1}$ ($t > 0, t \neq 1$) is said to be "dual logarithmic function". Related to these two operator inequalities, we shall define the following four orders for strictly positive operators A and B such that $1 \not\in \sigma(A), \sigma(B)$.

Definition 1. Let A and B be strictly positive operators on a Hilbert space H such that $1 \not\in \sigma(A), \sigma(B)$.

(d1) Strictly logarithmic order (denoted by $A \succ_{sl} B$) is defined by $\frac{A - I}{\log A} > \frac{B - I}{\log B}$.

(d2) Logarithmic order (denoted by $A \succ_{l} B$) is defined by $\frac{A - I}{\log A} \geq \frac{B - I}{\log B}$.

(d3) Strictly dual logarithmic order (denoted by $A \succ_{sdl} B$) is defined by $\frac{A \log A}{A - I} > \frac{B \log B}{B - I}$.

(d4) Dual Logarithmic order (denoted by $A \succ_{dl} B$) is defined by $\frac{A \log A}{A - I} \geq \frac{B \log B}{B - I}$.

2. Simplified proofs of operator monotonicity of logarithmic function and dual logarithmic function
We shall show a direct and simplified proof of the following result [Theorem 6] and [Example 5.1.12 and Corollary 5.1.11, 5] without use of Löwner general result.

Theorem A. The function \(f \) and \(f^* \) given by

\[
f(t) = \begin{cases} \frac{t-1}{\log t} & (t > 0, t \neq 1) \\ 1 & (t = 1) \\ 0 & (t = 0) \end{cases}
\]

and

\[
f^*(t) = \begin{cases} \frac{t \log t}{t-1} & (t > 0, t \neq 1) \\ 1 & (t = 1) \\ 0 & (t = 0) \end{cases}
\]

are operator monotone functions satisfying the symmetry condition:

\[f(t) = tf\left(\frac{1}{t}\right) \text{ and } f^*(t) = tf^*\left(\frac{1}{t}\right). \]

Proof. Let \(A \) and \(B \) be strictly positive operators such that \(1 \notin \sigma(A), \sigma(B) \). We have only to show the following (i) and (ii) since the latter half is obvious.

(i) If \(A \geq B \), then

\[
\frac{A-I}{\log A} \geq \frac{B-I}{\log B}.
\]

(ii) If \(A \geq B \), then

\[
\frac{A \log A}{A-I} \geq \frac{B \log B}{B-I}.
\]

First of all, we cite the following obvious result;

1. \(T - I = (T^{\frac{1}{n}} - I)(T^{1-\frac{1}{n}} + T^{1-\frac{2}{n}} + ... + T^{\frac{1}{n}} + I) \) for \(T \geq 0 \) and for any natural number \(n \).
2. \(\lim_{n \to \infty} n(T^{\frac{1}{n}} - I) = \log T \) holds for any \(T \geq 0 \).
3. If \(A \geq B \geq 0 \), then \(A^\alpha \geq B^\alpha \) holds for any \(\alpha \in [0, 1] \). (Löwner-Heinz inequality)

(i). \(\frac{A-I}{n(A^{\frac{1}{n}} - I)} = \frac{1}{n}(A^{-\frac{1}{n}} + A^{-\frac{2}{n}} + ... + A + I) \) by (1) for any natural number \(n \)

\[
\geq \frac{1}{n}(B^{-\frac{1}{n}} + B^{-\frac{2}{n}} + ... + B + I) \text{ by (3) for any natural number } n
\]

\[= \frac{B-I}{n(B^{\frac{1}{n}} - I)} \text{ for any natural number } n \text{ by (1)} \]

tending \(n \) to \(\infty \), so we obtain (i) by (2).

(ii). \(\frac{n(A^{\frac{1}{n}} - I)A}{A-I} = \frac{n}{(A^{-\frac{1}{n}} + A^{-\frac{2}{n}} + ... + A^{-1})} \) by (1) for any natural number \(n \)

\[
\geq \frac{n}{(B^{-\frac{1}{n}} + B^{-\frac{2}{n}} + ... + B^{-1})} \text{ by (3) for any natural number } n
\]

\[= \frac{n(B^{\frac{1}{n}} - I)B}{B-I} \text{ by (1)} \]

tending \(n \) to \(\infty \), so we obtain (ii) by (2).

Remark 1. It is well known that (i) is equivalent to (ii) in Theorem A. Alternative proof of (i) in the proof of Theorem A is cited in [5]. Related to Theorem A, we remark that the following
result in [Corollary 2.6, 4], [Theorem 2, 7] and [Corollary 5.11, 5]: let \(g(t) \) be a continuous positive function such that \((0, \infty) \to (0, \infty)\). Then \(g(t) \) is operator monotone function if and only if \(g^*(t) = \frac{t}{g(t)} \) is operator monotone function. Actually, \(f(t) \) and \(f^*(t) \) in Theorem A satisfy this condition \(f^*(t) = \frac{t}{f(t)} \).

3. Strictly logarithmic order \(A \succ_{sl} B \) and logarithmic order \(A \succ_{l} B \)

Let \(A \) and \(B \) be strictly positive operators such that \(1 \notin \sigma(A), \sigma(B) \). Firstly we shall give Theorem 1 asserting the following

\((*) \quad \log A > \log B \implies \text{there exists } \beta \in (0, 1] \text{ such that } A^\alpha \succ_{sl} B^\alpha \text{ holds for all } \alpha \in (0, \beta)\).

Secondary, we shall give Corollary 2 showing that there exists an interesting contrast between \(A \geq B > 0 \) and \(A > B > 0 \) related to \(A \succ_{sl} B \) and \(A \succ_{l} B \). Thirdly, we shall give some applications of two characterizations (Theorem A and Theorem B under below) of chaotic order to \(A \succ_{sl} B \) and \(A \succ_{l} B \) in Corollary 3.

Lemma 1. Let \(A \) and \(B \) be invertible self adjoint operators on a Hilbert space \(H \). If \(A > B \), then there exists \(\beta \in (0, 1] \) such that the following inequality holds for all \(\alpha \in (0, \beta) \):

\[
\frac{e^{\alpha A} - I}{\alpha A} > \frac{e^{\alpha B} - I}{\alpha B}, \quad \text{i.e., } e^{\alpha A} \succ_{sl} e^{\alpha B}.
\]

Proof. There exists \(\varepsilon \) such that \(A - B \geq \varepsilon > 0 \). Choose \(\alpha \) and \(\beta \) such that

\[(4) \quad 0 < \alpha < \text{Min}\{\varepsilon \left(\frac{e^{||A||}}{||A||} + \frac{e^{||B||}}{||B||} \right)^{-1}, 1 \} = \beta.
\]

By an easy calculation, we obtain

\[
\frac{e^{\alpha A} - I}{A} - \frac{e^{\alpha B} - I}{B} = \sum_{n=1}^{\infty} \frac{\alpha^n}{n!} A^{n-1} - \sum_{n=1}^{\infty} \frac{\alpha^n}{n!} B^{n-1}
\]

\[
= \sum_{n=2}^{\infty} \frac{\alpha^n}{n!} (A^{n-1} - B^{n-1})
\]

\[
= \frac{\alpha^2}{2!} (A - B) + \sum_{n=3}^{\infty} \frac{\alpha^n}{n!} (A^{n-1} - B^{n-1})
\]

\[
\geq \frac{\alpha^2}{2!} \varepsilon - \alpha^3 \left[\sum_{n=3}^{\infty} \frac{1}{n!} (||A||^{n-1} + ||B||^{n-1}) \right]
\]

\[
\geq \alpha^3 \left[\frac{\varepsilon}{2!} - \alpha \left(\frac{e^{||A||}}{||A||} + \frac{e^{||B||}}{||B||} \right) \right] > 0 \quad \text{by (4)},
\]
so that \(\frac{e^{\alpha A} - I}{\alpha A} - \frac{e^{\alpha B} - I}{\alpha B} \) holds, i.e., there exists \(\beta \in (0, 1] \) such that \(e^{\alpha A} \succ_{sl} e^{\alpha B} \) holds for all \(\alpha \in (0, \beta) \) and the proof is complete.

Theorem 1. Let \(A \) and \(B \) be strictly positive operators such that \(1 \not\in \sigma(A), \sigma(B) \). If \(\log A > \log B \), then there exists \(\beta \in (0, 1] \) such that \(A^\alpha \succ_{sl} B^\alpha \) holds for all \(\alpha \in (0, \beta) \).

Proof. We have only to replace \(A \) by \(\log A \) and also \(B \) by \(\log B \) respectively in Lemma 1.

Corollary 2. Let \(A \) and \(B \) be strictly positive operators such that \(1 \not\in \sigma(A), \sigma(B) \). Then

(i) If \(A > B > 0 \), then there exists \(\beta \in (0, 1] \) such that \(A^\alpha \succ_{sl} B^\alpha \) holds for all \(\alpha \in (0, \beta) \).

(ii) If \(A \geq B > 0 \), then \(A^\alpha \succ_{l} B^\alpha \) holds for all \(\alpha \in (0, 1] \).

In Corollary 2, it is interesting to point out the contrast between \(A > B > 0 \) and \(A \geq B > 0 \).

Proof of Corollary 2. (i). We cite the following obvious and fundamental result (5)

\[
\text{If } A > B > 0, \text{ then } \log A > \log B.
\]

In fact if \(A > B > 0 \), then \(A \geq B + \epsilon > B \) for some \(\epsilon > 0 \), so that \(\log A \geq \log(B + \epsilon) > \log B \), that is, (5) holds. (i) follows by (5) and Theorem 1.

(ii). If \(A \geq B > 0 \), then \(A^\alpha \geq B^\alpha \) for all \(\alpha \in (0, 1] \) by Löwner-Heinz inequality and (ii) follows by the result that the function \(f(t) = \frac{t - 1}{\log t} \) \((t > 0, t \neq 1) \) is an operator monotone function by Theorem A, i.e., \(f(A^\alpha) \geq f(B^\alpha) \) for all \(\alpha \in (0, 1] \), so we have (ii).

Corollary 3. Let \(A \) and \(B \) be strictly positive operators such that \(1 \not\in \sigma(A), \sigma(B) \) and \(\log A \geq \log B \). Then

(i) For any \(\delta \in (0, 1] \) there exists \(\beta = \beta_\delta \in (0, 1] \) such that \((e^\delta A)^\alpha \succ_{sl} B^\alpha \) holds for all \(\alpha \in (0, \beta) \).

(ii) For any \(p \geq 0 \) there exists \(K_p > 1 \) such that \(K_p \to 1 \) as \(p \to +0 \) and \((K_p A)^p \succ_{l} B^p \) for all \(\alpha \in (0, 1] \).

We cite the following two results in order to give a proof of Corollary 3.

Theorem A [1][3]. Let \(A \) and \(B \) be invertible positive operators on a Hilbert space \(H \). \(\log A \geq \log B \) holds if and only if for any \(\delta \in (0, 1] \) there exists \(\alpha = \alpha_\delta > 0 \) such that \((e^\delta A)^\alpha > B^\alpha \).

Theorem B [8]. Let \(A \) and \(B \) be invertible positive operators on a Hilbert space \(H \). \(\log A \geq \log B \) if and only if for any \(p \geq 0 \) there exists a \(K_p > 1 \) such that \(K_p \to 1 \) as \(p \to +0 \) and \((K_p A)^p \geq B^p \).
Proof of Corollary 3.

(i) As $\log A \geq \log B$ holds, then for any $\delta \in (0, 1]$, there exists $\alpha' = \alpha'_\delta > 0$ such that $(e^\delta A)^{\alpha'} > B^{\alpha'}$ by Theorem A. Then $e^\delta A > \log B$ by (5), so that there exists $\beta = \beta_\delta \in (0, 1]$ such that $(e^\delta A)^\alpha \succ_{sd} B^\alpha$ holds for all $\alpha \in (0, \beta)$ by Theorem 1.

(ii) As $\log A \geq \log B$ holds, then for any $p \geq 0$ there exists a there exists $K_p > 1$ such that $K_p \rightarrow 1$ as $p \rightarrow +0$ and $(K_pA)^p \geq B^p$ by Theorem B, so we have $(K_pA)^{p\alpha} \geq B^{p\alpha}$ for all $\alpha \in (0, 1]$ by (ii) of Corollary 2

4. Strictly dual logarithmic order $A \succ_{sd} B$ and dual logarithmic order $A \succ_{dl} B$

Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. Firstly we shall give Theorem 4 asserting the following

(1) $\log A > \log B \implies$ there exists $\beta \in (0, 1]$ such that $A^\alpha \succ_{sd} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

Secondary, we shall give Corollary 5 showing that there exists an interesting contrast between $A \geq B > 0$ and $A > B > 0$ related to $A \succ_{sd} B$ and $A \succ_{dl} B$. Thirdly, we shall give some applications of Theorem A and Theorem B to $A \succ_{sd} B$ and $A \succ_{dl} B$ in Corollary 6.

Lemma 2. Let A and B be invertible self-adjoint operators on a Hilbert space H. If $A > B$, then there exists $\beta \in (0, 1]$ such that the following inequality holds for all $\alpha \in (0, \beta)$:
\[
\frac{\alpha A e^{\alpha A}}{e^{\alpha A} - 1} > \frac{\alpha Be^{\alpha B}}{e^{\alpha B} - 1}, \text{ i.e., } e^{\alpha A} \succ_{sd} e^{\alpha B}.
\]

Proof. As $-B > -A$ holds, by applying Lemma 1, there exists $\beta \in (0, 1]$ such that
\[
\frac{e^{-\alpha B} - I}{-\alpha B} > \frac{e^{-\alpha A} - I}{-\alpha A},
\]
holds for all $\alpha \in (0, \beta)$. That is, $\frac{e^{-\alpha B} - I}{\alpha Be^{\alpha B}} > \frac{e^{-\alpha A} - I}{\alpha Ae^{\alpha A}}$ holds iff $\frac{\alpha Ae^{\alpha A}}{e^{\alpha A} - I} > \frac{\alpha Be^{\alpha B}}{e^{\alpha B} - I}$ holds, i.e., there exists $\beta \in (0, 1]$ such that $e^{\alpha A} \succ_{sd} e^{\alpha B}$ holds for all $\alpha \in (0, \beta)$ and the proof is complete.

Theorem 4. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$.

If $\log A > \log B$, then there exists $\beta \in (0, 1]$ such that $A^\alpha \succ_{sd} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

Proof. We have only to replace A by $\log A$ and also B by $\log B$ respectively in Lemma 2.

Corollary 5. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$. Then

(i) If $A > B > 0$, then there exists $\beta \in (0, 1]$ such that $A^\alpha \succ_{sd} B^\alpha$ holds for all $\alpha \in (0, \beta)$.

(ii) If $A \geq B > 0$, then $A^\alpha \succ_{dl} B^\alpha$ for all $\alpha \in (0, 1]$.
In Corollary 5, it is interesting to point out the contrast between $A > B > 0$ and $A \geq B > 0$.

Proof of Corollary 5. By the same way as a proof of Corollary 2, we shall give the following proofs of (i) and (ii).

(i) If $A > B > 0$, then $\log A > \log B$ holds by (5), so that (i) follows by Theorem 4.

(ii) If $A \geq B > 0$, then $A^\alpha \geq B^\alpha$ for all $\alpha \in (0,1]$ by Löwner-Heinz inequality. The function $f^*(t) = \frac{\log t}{t-1} (t > 0, t \neq 1)$ is also an operator monotone function by Theorem A, so that $f^*(A^\alpha) \geq f^*(B^\alpha)$ for all $\alpha \in (0,1]$, so we have (ii).

Corollary 6. Let A and B be strictly positive operators such that $1 \notin \sigma(A), \sigma(B)$ and $\log A \geq \log B$. Then

(i). For any $\delta \in (0,1]$ there exists $\beta = \beta_\delta \in (0,1]$ such that $(e^\delta A)^\alpha\succ_{sdl} B^\alpha$ holds for all $\alpha \in (0,\beta)$.

(ii). For any $p \geq 0$ there exists $K_p > 1$ such that $K_p \rightarrow 1$ as $p \rightarrow +0$ and $(K_p A)^{p\alpha} \succ_{dl} B^{p\alpha}$ for all $\alpha \in (0,1]$.

Proof of Corollary 6. We shall obtain Corollary 6 by the same way as one in Corollary 3.

(i). As $\log A \geq \log B$ holds, then for any $\delta \in (0,1]$, there exists $\alpha' = \alpha'_\delta > 0$ such that $(e^\delta A)^\alpha' > B^{\alpha'}$ by Theorem A. Then $\log e^\delta A > \log B$ by (5), so that there exists $\beta = \beta_\delta \in (0,1]$ such that $(e^\delta A)^\alpha \succ_{sdl} B^\alpha$ holds for all $\alpha \in (0,\beta)$ by Theorem 4.

(ii). As $\log A \geq \log B$ holds, then for any $p \geq 0$ there exists a there exists $K_p > 1$ such that $K_p \rightarrow 1$ as $p \rightarrow +0$ and $(K_p A)^p \geq B^p$ by Theorem B, so that $(K_p A)^{p\alpha} \succ_{dl} B^{p\alpha}$ for all $\alpha \in (0,1]$ by (ii) of Corollary 5.

5. An example related to strictly logarithmic order $A \succ_{sl} B$ and strictly dual logarithmic order $A \succ_{sdt} B$

Related to (i) of Corollary 3, we consider the following problem:

(Q1) "Does $\log A \geq \log B$ ensure that there exists an $\alpha > 0$ such that $A^\alpha \succ_{l} B^\alpha$?"

Also related to (i) of Corollary 6, we consider the following problem too;

(Q2) "Does $\log A \geq \log B$ ensure that there exists an $\alpha > 0$ such that $A^\alpha \succ_{dl} B^\alpha$?"

In fact, we cite a counterexample to (Q1) and (Q2) as follows.
Example 1. Take A and B as follows:

$$
\log A = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \quad \text{and} \quad \log B = \begin{pmatrix} 1 & 0 \\ 0 & -5 \end{pmatrix}.
$$

Then $\log A \geq \log B$ holds, but

(i) $A^\alpha \succ_l B^\alpha$ does not hold for any $\alpha > 0$.

(ii) $A^\alpha \succ_d B^\alpha$ does not hold for any $\alpha > 0$.

(iii) $A^\alpha \geq B^\alpha$ does not hold for any $\alpha > 0$.

In fact, $\log A$ is diagonalized by $U = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$ as follows;

$$U(\log A)U = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}, \quad \text{and} \quad UAU = \begin{pmatrix} e^{-2} & 0 \\ 0 & e^3 \end{pmatrix},$$

so that we have

$$A^\alpha = U \begin{pmatrix} e^{-2\alpha} & 0 \\ 0 & e^{3\alpha} \end{pmatrix} U \text{ and } B^\alpha = \begin{pmatrix} e^{\alpha} & 0 \\ 0 & e^{-5\alpha} \end{pmatrix}.$$

Put $x = e^\alpha > 1$ since $\alpha > 0$. At first we show (i). By a slight elaborate calculation, we have

$$\det \left(\frac{A^\alpha - I}{\log A} - \frac{B^\alpha - I}{\log B} \right)$$

$$= \left| \begin{array}{ccc} 5 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{array} \right|$$

$$= -\frac{1}{50x^7} \left(10x^5 + 33x^4 + 48x^3 + 38x^2 + 18x + 3 \right) < 0 \text{ since } x > 1.$$

Whence $A^\alpha \succ_l B^\alpha$ does not hold for any $\alpha > 0$, so the proof of (i) is complete.

Next we show (ii). By more elaborate calculation than (i), we obtain

$$\det \left(\frac{A^\alpha \log A}{A^\alpha - I} - \frac{B^\alpha \log B}{B^\alpha - I} \right)$$

$$= -\frac{(x-1)^6(10x^5 + 33x^4 + 48x^3 + 38x^2 + 18x + 3)}{150x^7} < 0 \text{ since } x > 1.$$
\[
\begin{align*}
&= \frac{7x^3 + 9x^2 + x - 2}{5(x^3 + 2x^2 + 2x + 1)} - \frac{2(3x^3 + 6x^2 + 4x + 2)}{5(x^3 + 2x^2 + 2x + 1)} \\
&= \left(\frac{7x^3 + 9x^2 + x - 2}{5(x^3 + 2x^2 + 2x + 1)} \right) - \left(\frac{2(3x^3 + 6x^2 + 4x + 2)}{5(x^3 + 2x^2 + 2x + 1)} \right)^2 \\
&= \frac{(x-1)^2(3x^5 + 18x^4 + 38x^3 + 48x^2 + 33x + 10)}{5(x^3 + x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)} < 0 \text{ since } x > 1
\end{align*}
\]

Whence \(A^\alpha \succ_{sl} B^\alpha \) does not hold for any \(\alpha > 0 \), so the proof of (ii) is complete.

Incidentally, we remark that this example also shows that \(\log A \geq \log B \) does not ensure \(A^\alpha \geq B^\alpha \) for any \(\alpha > 0 \). Actually we have

\[
\text{det}(A^\alpha - B^\alpha)
\]

\[
= \left| \begin{array}{cc}
1 & \frac{2(x^5 - 1)}{5x^2} \\
\frac{2(x^5 - 1)}{5x^2} & \frac{2(x^5 - 1)}{5x^2}
\end{array} \right|
\]

\[
= -\frac{1}{5x^7} + x^{-4} - \frac{4}{5x^2} + x - x^4
\]

\[
= \frac{-(x - 1)^4(x + 1)(x^2 + x + 1)(x^4 + 2x^3 + 4x^2 + 2x + 1)}{5x^7} < 0 \text{ since } x > 1,
\]

that is, \(A^\alpha \geq B^\alpha \) does not hold for any \(\alpha > 0 \), so (iii) is shown. In [2], there is another nice example that \(\log A \geq \log B \) does not ensure \(A^\alpha \geq B^\alpha \) for any \(\alpha > 0 \). In fact, we construct Example 1 inspired by an excellent method in [2].

6. Concluding remarks

Let \(A \) and \(B \) be strictly positive operators such that \(1 \notin \sigma(A), \sigma(B) \). We can obtain the following interesting contrast among \(A > B > 0 \), \(A \geq B > 0 \), \(\log A > \log B \) and \(\log A \geq \log B \) by summarizing our results in this paper.

\((*)\) \(\log A > \log B \implies \) there exists \(\beta \in (0, 1] \) such that \(A^\alpha \succ_{sl} B^\alpha \) holds for all \(\alpha \in (0, \beta) \).

\((i)\) \(\log A > \log B \implies \) there exists \(\beta \in (0, 1] \) such that \(A^\alpha \succ_{sdi} B^\alpha \) holds for all \(\alpha \in (0, \beta) \).

\((i)\) \(A > B > 0 \implies \) there exists \(\beta \in (0, 1] \) such that \(A^\alpha \succ_{sl} B^\alpha \) holds for all \(\alpha \in (0, \beta) \).
(l-ii) $A \geq B > 0 \Rightarrow A^\alpha \succ_l B^\alpha$ for all $\alpha \in (0,1].$

(l-iii) $\log A \geq \log B \Rightarrow \text{for any} \, \delta \in (0,1], \text{there exists} \, \beta = \beta_\delta \in (0,1] \text{such that} \, (e^\delta A)^\alpha \succ_{sl} B^\alpha \text{holds for all} \, \alpha \in (0,\beta).$

(l-iv) $\log A \geq \log B \Rightarrow \text{for any} \, p \geq 0 \text{there exists} \, K_p > 1 \text{such that} \, K_p \rightarrow 1 \text{as} \, p \rightarrow +0 \text{and} \, (K_p A)^p \alpha \succ_{dl} B^{p\alpha} \text{for all} \, \alpha \in (0,1].$

(dl-i) $A > B > 0 \Rightarrow \text{there exists} \, \beta \in (0,1] \text{such that} \, A^\alpha \succ_{sdl} B^\alpha \text{holds for all} \, \alpha \in (0,\beta).$

(dl-ii) $A \geq B > 0 \Rightarrow \text{for all} \, \alpha \in (0,1].$

(dl-iii) $\log A \geq \log B \Rightarrow \text{for any} \, \delta \in (0,1], \text{there exists} \, \beta = \beta_\delta \in (0,1] \text{such that} \, (e^\delta A)^\alpha \succ_{sdl} B^\alpha \text{holds for all} \, \alpha \in (0,\beta).$

(dl-iv) $\log A \geq \log B \Rightarrow \text{for any} \, p \geq 0 \text{there exists} \, K_p > 1 \text{such that} \, K_p \rightarrow 1 \text{as} \, p \rightarrow +0 \text{and} \, (K_p A)^p \alpha \succ_{dl} B^{p\alpha} \text{for all} \, \alpha \in (0,1].$

Acknowledgement. We would like to express our cordial thanks to Professor K.Tanahashi and Professor J.I.Fujii for giving useful comments after reading the first version.

References

7. Appendix

Simple proof of the concavity on operator entropy $f(A) = -A \log A$

A capital letter means a bounded linear and strictly positive operator on a Hilbert space. Here we shall give a simple proof of the following well known and excellent result obtained by [1] and [2] independently.

Theorem A. $f(A) = -A \log A$ is concave function for any $A > 0$.

Proof. Firstly we recall the following obvious result

\[(*) \quad \lim_{n \to \infty} (T^{-\frac{1}{n}} - I)n = -\log T \quad \text{for any } T > 0.\]

As $g(t) = t^q$ is operator concave for $q \in [0, 1]$, then for $A > 0$, $B > 0$ and $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta = 1$

\[(\alpha A + \beta B)^{1-\frac{1}{n}} \geq \alpha A^{1-\frac{1}{n}} + \beta B^{1-\frac{1}{n}} \quad \text{for any natural number } n\]

so we obtain

\[-(\alpha A + \beta B) \log (\alpha A + \beta B) \geq (-\alpha A \log A - \beta B \log B) \quad \text{by } (*)\]

that is,

\[f(\alpha A + \beta B) \geq \alpha f(A) + \beta f(B)\]

so the proof is complete.

References

Department of Applied Mathematics, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjukuku, Tokyo, 162-8601, Japan furuta@rs.kagu.sut.ac.jp