<table>
<thead>
<tr>
<th>Title</th>
<th>Generalizations of the results on powers of p-hyponormal operators (Operator Inequalities and Related Area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ito, Masatoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2000), 1144: 114-126</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/63910</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Generalizations of the results on powers of p-hyponormal operators

東京理科大学 伊藤公智 (Masatoshi Ito)

This report is based on the following two papers:

Abstract

We shall show that "if T is a p-hyponormal operator for $p > 0$, then T^n is $\min\{1, \frac{p}{n}\}$-hyponormal for any positive integer $n"$ and related results as generalizations of the results by Aluthge-Wang [2] and Furuta-Yanagida [11].

1 Introduction

A capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in H$.

An operator T is said to be p-hyponormal for $p > 0$ if $(T^*T)^p \geq (TT^*)^p$. p-Hyponormal operators were defined as an extension of hyponormal ones, i.e., $T^*T \geq TT^*$. It is easily obtained that every p-hyponormal operator is q-hyponormal for $p \geq q > 0$ by Löwner-Heinz theorem "$A \geq B \geq 0$ ensures $A^\alpha \geq B^\alpha$ for any $\alpha \in [0, 1]$,” and it is well known that there exists a hyponormal operator T such that T^2 is not hyponormal [13], but paranormal [7], i.e., $\|T^2x\| \geq \|Tx\|^2$ for every unit vector $x \in H$. We remark that every p-hyponormal operator for $p > 0$ is paranormal [3] (see also [1][5][10]).

Recently, Aluthge and Wang [2] showed the following results on powers of p-hyponormal operators.

Theorem A.1 ([2]). Let T be a p-hyponormal operator for $p \in (0, 1]$. The inequalities

$$(T^n T^n)^\frac{p}{n} \geq (T^*T)^p \geq (TT^*)^p \geq (T^n T^n)^\frac{p}{n}$$

hold for all positive integer n.

Corollary A.2 ([2]). If T is a p-hyponormal operator for $p \in (0, 1]$, then T^n is $\frac{p}{n}$-hyponormal for any positive integer n.
By Corollary A.2, if T is a hyponormal operator, then T^2 belongs to the class of $\frac{1}{2}$-hyponormal operators which is smaller than that of paranormal operators.

As a more precise result than Theorem A.1, Furuta and Yanagida [11] obtained the following result.

Theorem A.3 ([11, Theorem 1]). Let T be a p-hyponormal operator for $p \in (0, 1]$. Then
\[
(T^{n^*}T^n)^{\frac{p+1}{n}} \geq (T^*T)^{p+1} \quad \text{and} \quad (TT^*)^{p+1} \geq (T^nT^n^*)^{\frac{p+1}{n}}
\]
hold for all positive integer n.

Theorem A.3 asserts that the first and third inequalities of Theorem A.1 hold for the larger exponents $\frac{p+1}{n}$ than $\frac{p}{n}$ in Theorem A.1. In fact, Theorem A.3 ensures Theorem A.1 by Löwner-Heinz theorem for $\frac{p}{p+1} \in (0, 1)$ and p-hyponormality of T.

On the other hand, Fujii and Nakatsu [6] showed the following result.

Theorem A.4 ([6]). For each positive integer n, if T is an n-hyponormal operator, then T^n is hyponormal.

We remark that Theorem A.1, Corollary A.2 and Theorem A.3 are results on p-hyponormal operators for $p \in (0, 1]$, and Theorem A.4 is a result on n-hyponormal operators for positive integer n. In this report, more generally, we shall discuss powers of p-hyponormal operators for all positive real number $p > 0$.

2 Main results

Theorem 1. Let T be a p-hyponormal operator for $p > 0$. Then the following assertions hold:

1. $T^{n^*}T^n \geq (T^*T)^n$ and $(TT^*)^n \geq T^nT^n^*$ hold for positive integer n such that $n < p + 1$.

2. $(T^{n^*}T^n)^{\frac{p+1}{n}} \geq (T^*T)^{p+1}$ and $(TT^*)^{p+1} \geq (T^nT^n^*)^{\frac{p+1}{n}}$ hold for positive integer n such that $n \geq p + 1$.

Corollary 2. Let T be a p-hyponormal operator for $p > 0$. Then the following assertions hold:

1. $T^{n^*}T^n \geq T^nT^n^*$ holds for positive integer n such that $n < p$.

(2) \((T^{n}T^{*})^\frac{p}{n} \geq (T^{n}T^{n^{*}})^\frac{p}{n}\) holds for positive integer \(n\) such that \(n \geq p\). In other words, if \(T\) is a \(p\)-hyponormal operator for \(p > 0\), then \(T^n\) is \(\min\{1, \frac{p}{n}\}\)-hyponormal for any positive integer \(n\).

In case \(p \in (0, 1]\), Theorem 1 (resp. Corollary 2) means Theorem A.3 (resp. Corollary A.2). Corollary 2 also yields Theorem A.4 in case \(p = n\). Theorem 1 and Corollary 2 can be rewritten into the following Theorem 1' and Corollary 2', respectively. We shall prove Theorem 1' and Corollary 2'.

Theorem 1'. For some positive integer \(m\), let \(T\) be a \(p\)-hyponormal operator for \(m-1 < p \leq m\). Then the following assertions hold:

(1) \(T^nT^m \geq (T^*T)^n\) and \((TT^*)^n \geq T^nT^m\) hold for \(n = 1, 2, \cdots, m\).

(2) \((T^nT^m)^\frac{p+1}{n} \geq (T^*T)^{p+1}\) and \((TT^*)^{p+1} \geq (T^nT^m)^\frac{p+1}{n}\) hold for \(n = m+1, m+2, \cdots\).

Corollary 2'. For some positive integer \(m\), let \(T\) be a \(p\)-hyponormal operator for \(m-1 < p \leq m\). Then the following assertions hold:

(1) \(T^nT^m \geq T^nT^m\) holds for \(n = 1, 2, \cdots, m-1\).

(2) \((T^nT^m)^\frac{p}{n} \geq (T^nT^m)^\frac{p}{n}\) holds for \(n = m, m+1, \cdots\).

We need the following theorem in order to give a proof of Theorem 1'.

Theorem B.1 (Furuta inequality [8]).

If \(A \geq B \geq 0\), then for each \(r \geq 0\),

(i) \((B^\frac{r}{2}AB^\frac{r}{2})^\frac{1}{2} \geq (B^\frac{r}{2}B^pB^\frac{r}{2})^\frac{1}{2}\)

and

(ii) \((A^\frac{r}{2}APA^\frac{r}{2})^\frac{1}{2} \geq (A^\frac{r}{2}B^pA^\frac{r}{2})^\frac{1}{2}\)

hold for \(p \geq 0\) and \(q \geq 1\) with \((1 + r)q \geq p + r\).

We remark that Theorem B.1 yields Löwner-Heinz theorem when we put \(r = 0\) in (i) or (ii) stated above. Alternative proofs of Theorem B.1 are given in [4] and [14] and also an elementary one page proof in [9]. It is shown in [15] that the domain drawn for \(p, q\) and \(r\) in the Figure is the best possible one for Theorem B.1.

Proof of Theorem 1'. We shall prove Theorem 1' by induction.
Proof of (1). We shall prove
\[T^{n^*}T^n \geq (T^*T)^n \] (2.1)
and
\[(TT^*)^{n} \geq T^nT^* \] (2.2)
for \(n = 1, 2, \ldots, m \). (2.1) and (2.2) always hold for \(n = 1 \). Assume that (2.1) and (2.2) hold for some \(n \leq m - 1 \). Then we have
\[T^nT^n \geq (T^*T)^n \geq (TT^*)^n \geq T^nT^n^* \] (2.3)
since the second inequality holds by \(p \)-hyponormality of \(T \) and Löwner-Heinz theorem for \(\frac{n}{p} \in (0, 1) \). By (2.3), we have
\[T^{n^*}T^n \geq (TT^*)^n \] (2.4)
and
\[(T^*T)^n \geq T^nT^* \] (2.5)
(2.4) ensures
\[T^{n+1^*}T^{n+1} = T^{*}(TT^*)^nT \geq T^{*}(TT^*)^nT = (T^*T)^{n+1} \]
and (2.5) ensures
\[(TT^*)^{n+1} = T(T^*T)^nT^* \geq T(T^*T)^nT^* = T^{n+1}T^{n+1^*} \]
Hence (2.1) and (2.2) hold for \(n + 1 \), so that the proof of (1) is complete.

Proof of (2). We shall prove
\[(T^{n^*}T^n)^{\frac{p+1}{n}} \geq (T^*T)^{p+1} \] (2.6)
and
\[(TT^*)^{p+1} \geq (T^nT^{*})^{\frac{p+1}{n}} \] (2.7)
for \(n = m + 1, m + 2, \ldots \). Let \(T = U|T| \) be the polar decomposition of \(T \) where \(|T| = (T^*T)^{\frac{1}{2}} \) and put \(A_n = |T|^\frac{2p}{n} \) and \(B_n = |T^{*}|^\frac{2p}{n} \) for each positive integer \(n \). We remark that \(T^* = U^*|T^*| \) is also the polar decomposition of \(T^* \).
(a) Case \(n = m + 1 \). (2.1) and (2.2) for \(n = m \) ensure
\[(T^{m^*}T^m)^{\frac{p}{n}} \geq (T^*T)^p \geq (TT^*)^p \geq (T^nT^{*m})^{\frac{p}{n}} \] (2.8)
since the first and third inequalities hold by (2.1), (2.2) and Löwner-Heinz theorem for $\frac{p}{m} \in (0,1]$, and the second inequality holds by p-hyponormality of T. (2.8) ensures the following (2.9) and (2.10).

$$A_m = (T^{m^*}T^m)^\frac{p}{m} \geq (TT^*)^p = B_1. \quad (2.9)$$

$$A_1 = (T^*T)^p \geq (T^mT^{*m})^\frac{p}{m} = B_m. \quad (2.10)$$

By using (i) of Theorem B.1 for $\frac{m}{p} \geq 1$ and $\frac{1}{p} \geq 0$, we have

$$\begin{align*}
(T^{m+1}T^m)^{\frac{p+1}{m+1}} &= \left(U^*|T^*|T^{m*}T^m|T^*U\right)^{\frac{p+1}{m+1}} \\
&= U^*\left(|T^*|T^{m*}T^m|T^*\right)^{\frac{p+1}{m+1}}U \\
&= U^*(B_1^{\frac{1}{p}}A_m^{\frac{m}{p}}B_1^{\frac{1}{p}})^{\frac{m+1}{p+1}}U \\
&\geq U^*B_1^{1+\frac{1}{p}}U \\
&= U^*|T^*|2(p+1)U \\
&= |T^*|^{2(p+1)} \\
&= (T^*T)^{p+1},
\end{align*}$$

so that (2.6) holds for $n = m + 1$.

By using (ii) of Theorem B.1 for $\frac{m}{p} \geq 1$ and $\frac{1}{p} \geq 0$, we have

$$\begin{align*}
(T^{m+1}T^{m+1})^{\frac{p+1}{m+1}} &= \left(U|T|T^{m*}T^m|T|\right)^{\frac{p+1}{m+1}} \\
&= U\left(|T|T^{m*}T^m|T|\right)^{\frac{p+1}{m+1}}U* \\
&= U\left(A_1^{\frac{1}{2p}}B_m^{\frac{m}{p}}A_1^{\frac{1}{2p}}\right)^{\frac{m+1}{p+1}}U* \\
&\leq UA_1^{1+\frac{1}{p}}U* \\
&= U|T|^{2(p+1)}U* \\
&= |T^*|^{2(p+1)} \\
&= (T^*T)^{p+1},
\end{align*}$$

so that (2.7) holds for $n = m + 1$.

(b) Assume that (2.6) and (2.7) hold for some $n \geq m + 1$. Then (2.6) and (2.7) for n ensure

$$\begin{align*}
(T^mT^n)^{\frac{p}{n}} \geq (T^*T)^p \geq (TT^*)^p \geq (T^nT^m)^{\frac{p}{n}} \quad (2.11)
\end{align*}$$

since the first and third inequalities hold by (2.6) and (2.7) for n and Löwner-Heinz theorem for $\frac{p}{p+1} \in (0,1)$, and the second inequality holds by p-hyponormality of T. (2.11) ensures the following (2.12) and (2.13).

$$A_n = (T^nT^m)^{\frac{p}{n}} \geq (TT^*)^p = B_1. \quad (2.12)$$
$A_1 = (T^*T)^p \geq (T^nT^n^*)^\frac{p}{n} = B_n$. \hspace{2cm} (2.13)

By using (i) of Theorem B.1 for $\frac{n}{p} \geq 1$ and $\frac{1}{p} \geq 0$, we have

$$(T^{n+1}T^{n+1})^\frac{p+1}{n+1} = (U^*|T|T^mT^n|T^*U)^\frac{p+1}{n+1}$$

$$= U^*|T^mT^mT^n|T^*U|^\frac{p+1}{n+1}$$

$$= U^*(B_1^{\frac{1}{p^2}}A_1^{\frac{n}{p}}B_1^{\frac{1}{p^2}})^\frac{1+p}{n+1}U$$

$$\geq U^*B_1^{1+\frac{1}{p}}U$$

$$= U^*|T^*|^2(p+1)U$$

$$= |T|^{2(p+1)}$$

$$= (T^*T)^{p+1},$$

so that (2.6) holds for $n+1$.

By using (ii) of Theorem B.1 for $\frac{n}{p} \geq 1$ and $\frac{1}{p} \geq 0$, we have

$$(T^{n+1}T^{n+1}^*)^\frac{p+1}{n+1} = (U|T^mT^n|T^*U)^\frac{p+1}{n+1}$$

$$= U(|T^mT^mT^n|T^*)^\frac{p+1}{n+1}U^*$$

$$= U(A_1^{\frac{1}{p^2}}B_m^{\frac{n}{p}}A_1^{\frac{1}{p^2}})^\frac{1+p}{n+1}U^*$$

$$\leq U A_1^{1+\frac{1}{p}}U^*$$

$$= U|T|^{2(p+1)}U^*$$

$$= |T^*|^2(p+1)U^*$$

$$= (TT^*)^{p+1},$$

so that (2.7) holds for $n+1$.

By (a) and (b), (2.6) and (2.7) hold for $n = m+1, m+2, \cdots$, that is, the proof of (2) is complete.

Consequently the proof of Theorem 1' is complete. \qed

Proof of Corollary 2'.

Proof of (1). By (1) of Theorem 1', for $n = m+1, m+2, \cdots, m-1$,

$$T^mT^n \geq (T^*T)^n \geq (TT^*)^n \geq T^nT^n^*$$

hold since the second inequality holds by p-hyponormality of T and Löwner-Heinz theorem for $\frac{n}{p} \in (0, 1)$. Therefore $T^mT^n \geq T^nT^n^*$ holds for $n = 1, 2, \cdots, m-1$.

Proof of (2). By (1) of Theorem 1' and Löwner-Heinz theorem for $\frac{p}{m} \in (0, 1]$ in case $n = m$, and by (2) of Theorem 1' and Löwner-Heinz theorem for $\frac{p}{p+1} \in (0, 1)$ in case $n = m+1, m+2, \cdots$, we have

$$(T^*T^n)^\frac{p}{n} \geq (T^*T)^p \geq (TT^*)^p \geq (T^nT^n^*)^\frac{p}{n}$$
since the second inequality holds by \(p \)-hyponormality of \(T \). Therefore \((T^nT^*)^{\frac{p}{n}} \geq (T^nT^{n*})^{\frac{p}{n}} \) holds for \(n = m, m + 1, \ldots \). \(\square \)

3 Best possibilities of Theorem 1 and Corollary 2

Furuta and Yanagida [11] discussed the best possibilities of Theorem A.3 and Corollary A.2 on \(p \)-hyponormal operators for \(p \in (0, 1] \). In this section, more generally, we shall discuss the best possibilities of Theorem 1 and Corollary 2 on \(p \)-hyponormal operators for \(p > 0 \).

Theorem 3. Let \(n \) be a positive integer such that \(n \geq 2 \), \(p > 0 \) and \(\alpha > 1 \).

1. In case \(n < p + 1 \), the following assertions hold:

 (i) There exists a \(p \)-hyponormal operator \(T \) such that \((T^nT^*)^\alpha \not\geq (T^*T)^{n\alpha} \).

 (ii) There exists a \(p \)-hyponormal operator \(T \) such that \((TT^*)^{n\alpha} \not\geq (T^nT^{n*})^\alpha \).

2. In case \(n \geq p + 1 \), the following assertions hold:

 (i) There exists a \(p \)-hyponormal operator \(T \) such that \((T^nT^*)^{\frac{(p+1)\alpha}{n}} \not\geq (T^*T)^{(p+1)\alpha} \).

 (ii) There exists a \(p \)-hyponormal operator \(T \) such that \((TT^*)^{(p+1)\alpha} \not\geq (T^nT^{n*})^{\frac{(p+1)\alpha}{n}} \).

Theorem 4. Let \(n \) be a positive integer such that \(n \geq 2 \), \(p > 0 \) and \(\alpha > 1 \).

1. In case \(n < p \), there exists a \(p \)-hyponormal operator \(T \) such that \((T^nT^*)^\alpha \not\geq (T^nT^{n*})^\alpha \).

2. In case \(n \geq p \), there exists a \(p \)-hyponormal operator \(T \) such that \((T^nT^*)^{\frac{p+r}{q} \not\geq (T^nT^{n*})^{\frac{p+r}{q}} \).

Theorem 3 (resp. Theorem 4) asserts the best possibility of Theorem 1 (resp. Corollary 2). We need the following results to give proofs of Theorem 3 and Theorem 4.

Theorem C.1 ([16][18]). Let \(p > 0 \), \(q > 0 \), \(r > 0 \) and \(\delta > 0 \). If \(0 < q < 1 \) or \((\delta + r)q < p + r \), then the following assertions hold:

(i) There exist positive invertible operators \(A \) and \(B \) on \(\mathbb{R}^2 \) such that \(A^\delta \geq B^\delta \) and

\[
(B^\frac{\delta}{2}A^pB^\frac{\delta}{2})^{\frac{1}{q}} \not\geq B^\frac{p+r}{q}.
\]
(ii) There exist positive invertible operators A and B on \mathbb{R}^2 such that $A^\delta \geq B^\delta$ and
\[
A^{\frac{p+r}{q}} \not\geq (A^{\frac{p}{2}} B^{p} A^{\frac{r}{2}})^{\frac{1}{q}}.
\]

Lemma C.2 ([11]). For positive operators A and B on H, define the operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as follows:

\[
T = \begin{pmatrix}
\ddots & 0 & 0 & \cdots \\
0 & B^{\frac{1}{2}} & 0 & \cdots \\
B^{\frac{1}{2}} & 0 & \square & 0 & \cdots \\
A^{\frac{1}{2}} & 0 & \cdots & B^{\frac{1}{2}} & \cdots \ddots
\end{pmatrix},
\]

where \square shows the place of the $(0,0)$ matrix element. Then the following assertion holds:

(i) T is p-hyponormal for $p > 0$ if and only if $A^p \geq B^p$.

Furthermore, the following assertions hold for $\beta > 0$ and integers $n \geq 2$:

(ii) $(T^n T^*)^\frac{\beta}{n} \geq (T^* T)^\beta$ if and only if
\[
(B^{\frac{k}{2}} A^{n-k} B^{\frac{k}{2}})^{\frac{\beta}{n}} \geq \begin{pmatrix} 0 \\ B^{\frac{1}{2}} & 0 & \cdots & B^{\frac{1}{2}} & \cdots \ddots
\end{pmatrix}^{\beta} \text{ holds for } k = 1, 2, \ldots, n - 1.
\]

(iii) $(T T^*)^\beta \geq (T^n T^*)^\frac{\beta}{n}$ if and only if
\[
A^{\beta} \geq (A^{\frac{k}{2}} B^{n-k} A^{\frac{k}{2}})^{\frac{\beta}{n}} \text{ holds for } k = 1, 2, \ldots, n - 1.
\]

(iv) $(T^n T^*)^\frac{\beta}{n} \geq (T^n T^*)^\frac{\beta}{n}$ if and only if
\[
\begin{cases}
A^{\beta} \geq B^{\beta} \text{ holds and } \\
(B^{\frac{k}{2}} A^{n-k} B^{\frac{k}{2}})^{\frac{\beta}{n}} \geq B^{\beta} \text{ and } A^{\beta} \geq (A^{\frac{k}{2}} B^{n-k} A^{\frac{k}{2}})^{\frac{\beta}{n}} \text{ hold for } k = 1, 2, \ldots, n - 1.
\end{cases}
\]

Proof of Theorem 3. Let $n \geq 2$, $p > 0$ and $\alpha > 1$.

Proof of (1). Put $p_1 = n - 1 > 0$, $q_1 = \frac{1}{\alpha} \in (0, 1)$, $r_1 = 1 > 0$ and $\delta = p > 0$.

Proof of (i). By (i) of Theorem C.1, there exist positive operators A and B on H such that $A^\delta \geq B^\delta$ and $(B^{\frac{p_1}{2}} A^{p_1} B^{\frac{r_1}{2}})^{\frac{1}{q_1}} \not\geq B^{\frac{p_1 + r_1}{q_1}}$, that is,
\[
A^{p_1} \geq B^{p_1}
\]
and
\[(B^{\frac{1}{2}}A^{n-1}B^{\frac{1}{2}})^{\alpha} \not\geq B^{n\alpha}. \] (3.6)

Define an operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as (3.1). Then T is p-hyponormal by (3.5) and (i) of Lemma C.2, and $(T^{*}T)^{n\alpha} \not\geq (T^{*}T)^{n\alpha}$ by (ii) of Lemma C.2 since the case $k = 1$ of (3.2) does not hold for $\beta = n\alpha$ by (3.6).

Proof of (ii). By (ii) of Theorem C.1, there exist positive operators A and B on H such that $A^\delta \geq B^\delta$ and $A^{\frac{p_1+r_1}{q_1}} \not\geq (A^{\frac{r_1}{2}}B^{p_1}A^{\frac{r_1}{2}})^{\frac{1}{q_1}}$, that is,
\[A^p \geq B^p \] (3.7)

and
\[A^{n\alpha} \not\geq (A^{\frac{1}{2}}B^{n-1}A^{\frac{1}{2}})^{\alpha}. \] (3.8)

Define an operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as (3.1). Then T is p-hyponormal by (3.7) and (i) of Lemma C.2, and $(TT^{*})^{n\alpha} \not\geq (T^{*}T)^{n\alpha}$ by (iii) of Lemma C.2 since the case $k = 1$ of (3.3) does not hold for $\beta = n\alpha$ by (3.8).

Proof of (2). Put $p_1 = n - 1 > 0$, $q_1 = \frac{n}{(p+1)\alpha} > 0$, $r_1 = 1 > 0$ and $\delta = p > 0$, then we have $(\delta + r_1)q_1 = \frac{n}{\alpha} < n = p_1 + r_1$.

Proof of (i). By (i) of Theorem C.1, there exist positive operators A and B on H such that $A^\delta \geq B^\delta$ and $(B^{\frac{r_2}{2}}A^{p_1}B^{\frac{r_1}{2}})^{\frac{1}{q_1}} \not\geq B^{(p+1)\alpha}$, that is,
\[A^p \geq B^p \] (3.9)

and
\[(B^{\frac{1}{2}}A^{n-1}B^{\frac{1}{2}})^{\frac{(p+1)\alpha}{n}} \not\geq B^{(p+1)\alpha}. \] (3.10)

Define an operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as (3.1). Then T is p-hyponormal by (3.9) and (i) of Lemma C.2, and $(T^{n\alpha}T^{n\alpha})^{(p+1)\alpha} \not\geq (T^{*}T)^{(p+1)\alpha}$ by (ii) of Lemma C.2 since the case $k = 1$ of (3.2) does not hold for $\beta = (p + 1)\alpha$ by (3.10).

Proof of (ii). By (ii) of Theorem C.1, there exist positive operators A and B on H such that $A^\delta \geq B^\delta$ and $A^{\frac{p_1+r_1}{q_1}} \not\geq (A^{\frac{r_1}{2}}B^{p_1}A^{\frac{r_1}{2}})^{\frac{1}{q_1}}$, that is,
\[A^{(p+1)\alpha} \not\geq (A^{\frac{1}{2}}B^{n-1}A^{\frac{1}{2}})^{\frac{(p+1)\alpha}{n}}. \] (3.11)
Define an operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as (3.1). Then T is p-hyponormal by (3.11) and (i) of Lemma C.2, and $(TT^*)^{(p+1)\alpha} \not\geq (T^nT^*)^{(p+1)\frac{\alpha}{n}}$ by (iii) of Lemma C.2 since the case $k = 1$ of (3.3) does not hold for $\beta = (p + 1)\alpha$ by (3.12).

\[\square \]

Proof of Theorem 4. Let $n \geq 2$, $p > 0$ and $\alpha > 1$.

Proof of (1). Put $p_1 = n - 1 > 0$, $q_1 = \frac{1}{\alpha} \in (0, 1)$, $r_1 = 1 > 0$ and $\delta = p > 0$. By (i) of Theorem C.1, there exist positive operators A and B on H such that $A^\delta \geq B^\delta$ and $(B^{r_1} A^{p_1} B^{r_1})^{\frac{1}{q_1}} \not\geq B^{p_1 + r_1}$, that is,

\[A^p \geq B^p \]

(3.13)

and

\[(B^{\frac{1}{2}} A^{n-1} B^{\frac{1}{2}})^{\alpha} \not\geq B^{n\alpha}. \]

(3.14)

Define an operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as (3.1). Then T is p-hyponormal by (3.13) and (i) of Lemma C.2, and $(T^n T^*)^{\alpha} \not\geq (T^n T^*)^{\alpha}$ by (iv) of Lemma C.2 since the case $k = 1$ of the second inequality of (3.4) does not hold for $\beta = n\alpha$ by (3.14).

Proof of (2). It is well known that there exist positive operators A and B on H such that

\[A^p \geq B^p \]

(3.15)

and

\[A^{p\alpha} \not\geq B^{p\alpha}. \]

(3.16)

Define an operator T on $\bigoplus_{k=-\infty}^{\infty} H$ as (3.1). Then T is p-hyponormal by (3.15) and (i) of Lemma C.2, and $(T^n T^*)^{\alpha} \not\geq (T^n T^*)^{\alpha}$ by (iv) of Lemma C.2 since the first inequality of (3.4) does not hold for $\beta = p\alpha$ by (3.16).

\[\square \]

4 Concluding remarks

Remark 1. An operator T is said to be *log-hyponormal* if T is invertible and $\log T^* T \geq \log TT^*$. It is easily obtained that every invertible p-hyponormal operator is log-hyponormal since $\log t$ is an operator monotone function, and Ando [3] showed that every log-hyponormal operator is paranormal. We remark that log-hyponormal can be regarded as 0-hyponormal since $(T^* T)^p \geq (TT^*)^p$ approaches $\log T^* T \geq \log TT^*$ as $p \to +0$.

As an extension of Theorem A.1, Yamazaki [17] obtained the following Theorem D.1 and Corollary D.2 on log-hyponormal operators.
Theorem D.1 ([17]). Let T be a log-hyponormal operator. Then the following inequalities hold for all positive integer n:

1. $T^*T \leq (T^2T^{2})^{\frac{1}{2}} \leq \cdots \leq (T^nT^n)^{\frac{1}{n}}$.
2. $TT^* \geq (T^2T^2)^{\frac{1}{2}} \geq \cdots \geq (T^nT^n)^{\frac{1}{n}}$.

Corollary D.2 ([17]). If T is a log-hyponormal operator, then T^n is also log-hyponormal for any positive integer n.

The best possibilities of Theorem D.1 and Corollary D.2 are discussed in [12]. As a parallel result to Theorem D.1, Furuta and Yanagida [12] showed the following Theorem D.3 on p-hyponormal operators for $p \in (0, 1]$.

Theorem D.3 ([12]). Let T be a p-hyponormal operator for $p \in (0, 1]$. Then the following inequalities hold for all positive integer n:

1. $(T^*T)^{p+1} \leq (T^2T^{2})^{\frac{p+1}{2}} \leq \cdots \leq (T^nT^n)^{\frac{p+1}{n}}$.
2. $(TT^*)^{p+1} \geq (T^2T^2)^{\frac{p+1}{2}} \geq \cdots \geq (T^nT^n)^{\frac{p+1}{n}}$.

In fact, Theorem D.3 in the case $p \rightarrow +0$ corresponds to Theorem D.1.

As a further extension of Theorem D.3, we obtain the following Theorem 5 on p-hyponormal operators for $p > 0$.

Theorem 5. For some positive integer m, let T be a p-hyponormal operator for $m-1 < p \leq m$. Then the following inequalities hold for $n = m+1, m+2, \cdots$:

1. $(T^*T)^{p+1} \leq (T^{m+1}T^{m+1})^{\frac{p+1}{m+1}} \leq (T^{m+2}T^{m+2})^{\frac{p+1}{m+1}} \leq \cdots \leq (T^nT^n)^{\frac{p+1}{n}}$.
2. $(TT^*)^{p+1} \geq (T^{m+1}T^{m+1})^{\frac{p+1}{m+1}} \geq (T^{m+2}T^{m+2})^{\frac{p+1}{m+1}} \geq \cdots \geq (T^nT^n)^{\frac{p+1}{n}}$.

We remark that Theorem 5 yields Theorem D.3 by putting $m = 1$.

Remark 2. Recently, in [10], we introduced a new class of operators as follows: An operator T belongs to class A if $|T^2| \geq |T|^2$. We call an operator T "class A operator" briefly if T belongs to class A. In [10], we showed that every log-hyponormal operator belongs to class A and every class A operator is paranormal. It turns out that these results contain another proof of Ando's result [3] which states that every log-hyponormal operator is paranormal. We remark that class A is defined by an operator inequality and paranormal is defined by a norm inequality, and their definitions appear to be similar forms.

We obtain the following Theorem 6 on class A.
Theorem 6. Let T be an invertible and class A operator. Then the following inequalities hold for all positive integer n:

(1) $|T|^2 \leq |T^2| \leq \cdots \leq |T^n|^\frac{2}{n}$, i.e., $T^* T \leq (T^2 T^2)^\frac{1}{2} \leq \cdots \leq (T^n T^n)^\frac{1}{n}$.

(2) $|T^*|^2 \geq |T^{2^*}| \geq \cdots \geq |T^{n^*}|^\frac{2}{n}$, i.e., $T T^* \geq (T^{2} T^{2*})^\frac{1}{2} \geq \cdots \geq (T^{n} T^{n^*})^\frac{1}{n}$.

Theorem 6 is an extension of Theorem D.1 since every log-hyponormal operator belongs to class A.

Related to Theorem 6, we have the following Proposition 7 on paranormal operators as a variant from the result in [7].

It is interesting to point out the contrast between Theorem 6 and Proposition 7.

Proposition 7. Let T be a paranormal operator. Then

$$\|T x\| \leq \|T^2 x\|^\frac{1}{2} \leq \cdots \leq \|T^n x\|^\frac{1}{n}$$

hold for every unit vector $x \in H$ and all positive integer n.

References

[8] T. Furuta, $A \geq B \geq 0$ assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1+2r)q \geq p + 2r$, Proc. Amer. Math. Soc., 101 (1987), 85–88.

