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Let ’H be Hllbert space and B (’H) be set of all bounded hnear operators

on ‘H. Then for T € B(H)

T semi-hyponormal <= |T| > |T7|.
About semi-hyponormal operators, we have following 3 problems:

(1) Reo(T)=cReT) ?
(2) conve (T) =W(T) ?

1
- W — = - ?
3) (T —-2)7"Y < A o) for every z ¢ o(T) 7
We have 2 kinds of concrete examples of semi-hyponormal operators.
D. Xia provides interesting examples (see [1],[5]). Let ¢%(Z) be the Hilbert
space of all doubly-infinite sequences a = {ax} of complex numbers such that
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llall?= > lak|* < 0o, and let V be the bilateral shift: (Va), = az—;. Let

k=-—o0

KC be a Hilbert space and let H be the Hilbert space of all doubly-infinite

sequences z = {x;} of elements of K such that ||z||? = Y [|z&|[* < .
' ‘k=—0c0

Then we have H = (*(Z) ® K. Let e, = {ax} € ¢*(Z) such that a, =1
and 0’s elsewhere. Every z = {z;} € H has the representation Z er ® Ty.

k=—oc0
Let {Ax} be a doubly-infinite sequence of positive operators on K such that
{l|Ax||} is bounded. We define bounded operators A and U on H by

Aep ® x, = e @ Arxr, and Uep ® :vk' = ekg ® Tk (k=0,%x1,%2,--),

respectively. Then U has the form V' ® idx. Put T' = U A. Such an operator
is called an operator valued bilateral weighted shift [3]. If positive operators
{Ax} satisfy that A1 > Ay for every k and there exists j such that A%, #
A?, then T is semi-hyponormal but not hyponormal.

Next second example is as follows: Let S on #%(Z) defined by S =

1
V(P+1+ -2—(V + V*)), where P denotes the orthogonal projection from
¢%(Z) onto the subspace generated by {eo,ej, ez, --}. Xia showed that S is
semi-hyponormal but not hyponormal [8, Chapter 3, Corollary 1.4 |.

2. Spectral properties.

Lemma 1. Let T' be an operator valued bilateral weighted shift. Then
there exists a closed set F' of positive real numbres such that

o(T) ={z:|2| € F}.

Proof. Let ¢ € C such that |c| = 1. By [6, p. 52, Corollary 2] T and cT’
are unitarily equivalent. The proof follows from this property.

Theorem 2. Let T' be an operator valued bilateral weighted shift such
that v(T) = ||T||. Then

conv o(T) = W(T) (i.e.,T is convezoid.)

i3
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and ’
o(Re T') = Re (o(T)).

Proof. Let z € o(Re T'). Suppose that z ¢ Re o(T). Let L be the line
Re z = z. Then L is disjoint from o(T"). Suppose that o(T') is on the left
side of L. There exists € (> 0) such that Re ¢(T) < z — €. For any complex

number A = |\|e?, we can choose z € o(T') such that z = ||T||e* by Lemma
1. Since (||T|| + |\)e? € o(T + AI), we have

r(T+ X > ||T|+ A (> |[T+ M|)).

Hence we have r(T + AI) = ||T' + AI||, that is, T is a transaloid. Therefore
by [3] or [5, Theorem 6.15.11] we have

conv o(T) = W(T).
Thus
conv o(Re T) = W(Re T') = Re W(T') = Re conv O'(T) S T — €.

This implies that £ < x — ¢, which is a contradiction. We proceed 31m11arly s
in case o(T) is on the right side. Therefore o(Re T') C Re o(T')..
Let z € Re o(T'). By Lemma 1, there exists z € o(T') such that Re z =z
and |z| = ||T||. Since z is a boundary point of o(T"), there exists a sequence
{fn} of unit vectors such that lim (T — 2I) fu|| = 0. By [5, Lemma 7.5.2],

we have that lim |[(T" — 2I)fa|| = 0. Hence
Jlim I|(Re T~ =) full = 0,
so that Re o(T") C o(Re T'). Therefore, Re U(T) =o(Re T).

In general, it holds that if T' is semi-hyponormal, then r(T") = ||T’||. Hence
we have

Corollai‘y 3. Let T be a semi-hyponormal operator valued bilateral
wetghted shift. Then

conv o(T) = W(T) and o(ReT) = Re(a(T)).
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Theorem 4. With the notations in the introduction, let S = V(P + 1+
—;—(V +V*)). Then we have

| c(Re S) = Re 0(5).
~ Proof. It F is a proper closed subset of [0,2n] such that m([0,27]) =
m(F). Since [0, 27] — F' contains an open interval (a, b), we have m([0, 27]) —
m(F) > m((a,b)) > 0. This is a contradiction. Hence there exits no proper
closed set I such that m(F) = m([0, 2n]). Applying [8, Chapter 4, Example
4.1) with a(-) =1 and B(-) = 1+ cos§, we have that

o(S) = {e?(1 +cos@+Fk) : 0< k<1, 0<0<2n}.

Hence Re ¢(S) = {(1+ k)cosf +cos?d : 0<k<1,0<6<2n }=[-1,3]
Since S is semi-hyponormal, it holds that 0,(S) = 0ne(S). Hence we have

Re o(S) C o(Re S).

Next we will prove that o(Re S) C [—1,3]. First by the definition of .S,
we have ||Re S|| < ||S]| < 3. Since Re S is convexoid, we may only prove
(Re S)+ 1 >0.

Since Re S can be canonically represented by a matrix form with real com-
ponents, for A € o(Re S) we choose a sequence { f,,} of unit vectors in £*(Z)
with real components such that lim [|((Re S) — AJ) fml|| = 0. Since

%(VQ + V3 + (VP + PV*) +VVY,

we have, for f = (o) with all o, € R,

2Re S=(V+V*)+

2((Re 8) + D, 1) = (V4 V1) + 5V + VL)
HVP+PY)LD) +(VV'F, )+ 200,

=2 Z U1 + E UnCint + 2 Z Qg1 + 3 Z ol

n=—oo n—=——oo n=--00

- Z Qp Q2 + 4 Z OnQnyl

n—=-—00 n=—oo
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-1 00 .
-2 ) o1 +3 ) o2 -

n=-—oo0 n=-—oo

If we can choose a sequence {(@n, bn, €)1 _ oo of triplets of positive numbers
satisfying

2(((R€ S) + I)f’ f) = i (a"nan + bnan-l—i‘l“{“ Cnan+2)2> |

n=-—oo0

oo

= Y (a2, +02+)a2+ 2 Y (anbn + bno1Cn1)0nQni1

“I“v 2 Z (ancn‘)ana'n+2;
then we have (Re S) + 1 > 0 and we hence can finish the proof.
For n > —1, since . |
(1) a2 4y + 02,y + 2 =3, (i) 2ans1byy+bnce) =4 and (i) 2anc, = 1,

we define ]
=+v2and ¢, = —=

a -—}— b
n—ﬁ) n ﬂ'

For n < —2, since
(3) a2, o + b2 1 + 2 =3, (41) 2(ant1bnt1 +bacy) =2 and (i44) 2a,c, = 1,

inductively we define, in the following order:

1~ apyibpys 1
cn:\/3—aﬁ+2—bﬁ+1, bn, = and a, = —.

For a definition of ¢,, we need to cheek that 3 > a2, + b2 ;. We caluculate

C-2 = '—\}—’2") b—2 = 0) a-9 = ;}“ﬁ

c.g = \/g, by = %; a-3 = \/%
Cy = \/%—%—» b = 4y/15 a4 = \/g
cs = /g bs = 17\/—2‘2‘2;*;, a5 = \/‘2'71‘1‘;
C_.¢g = %, b_6 = 92\/—6_2_% and a_g — _lllgtl%
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Then we have that

1.61 S C_.5,C_p _<_ 164, 0.50 S b_5, b_6 _<_ 053, 0.30 S a_g5,0_¢ S 032,

1.64 < /3 —0.532 — 0.322 < c_7 < V3 - 0.502 — 0.302 < 1.64,

1—0.53 x 0.32 1 —0.50 x 0.30
) < < b < < 0.
0-50 < 1.64 Shrs 1.61 = 053
and 1
0.30 < 2 < < 0.32.

- <a
—2-1.64 — 2-1.61
Thus we can define ¢,, b, and a,, for n < —8. This completes the proof.

By a similar argument in Theorem 2, we have that Im o(T") = oc(Im T)
for T' of Theorem 2. In the proof of Theorem 4 we regareded Re S as an
infinite matrix with real components.
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