A NOTE OF REAL PARTS OF SOME SEMI-HYPONORMAL OPERATORS

神奈川大学工学部 長 宗雄 (Muneo Chō) 新潟大学教育人間科学部 古谷 正 (Tadasi Huruya) 成均館大学(韓国) Young Ok Kim 成均館大学(韓国) Jun Ik Lee

Let \mathcal{H} be Hilbert space and $B(\mathcal{H})$ be set of all bounded linear operators on \mathcal{H} . Then for $T \in B(\mathcal{H})$

T: semi-hyponormal $\iff |T| \ge |T^*|$.

About semi-hyponormal operators, we have following 3 problems:

(1) Re
$$\sigma(T) = \sigma(\text{Re } T)$$
?

(2)
$$\operatorname{conv}\sigma(T) = \overline{W(T)} ?$$

(3)
$$\|(T-z)^{-1}\| \le \frac{1}{\operatorname{d}(z,\sigma(T))}$$
 for every $z \notin \sigma(T)$?

We have 2 kinds of concrete examples of semi-hyponormal operators. D. Xia provides interesting examples (see [1],[5]). Let $\ell^2(\mathbf{Z})$ be the Hilbert space of all doubly-infinite sequences $a = \{a_k\}$ of complex numbers such that

This research was partially supported by Grant-in-Aid for Scientific Researche (No.09640229)

 $||a||^2 = \sum_{k=-\infty}^{\infty} |a_k|^2 < \infty$, and let V be the bilateral shift: $(Va)_k = a_{k-1}$. Let \mathcal{K} be a Hilbert space and let \mathcal{H} be the Hilbert space of all doubly-infinite sequences $x = \{x_k\}$ of elements of \mathcal{K} such that $||x||^2 = \sum_{k=-\infty}^{\infty} ||x_k||^2 < \infty$. Then we have $\mathcal{H} = \ell^2(\mathbf{Z}) \otimes \mathcal{K}$. Let $e_m = \{a_k\} \in \ell^2(\mathbf{Z})$ such that $a_m = 1$ and 0's elsewhere. Every $x = \{x_k\} \in \mathcal{H}$ has the representation $\sum_{k=-\infty}^{\infty} e_k \otimes x_k$. Let $\{A_k\}$ be a doubly-infinite sequence of positive operators on \mathcal{K} such that $\{||A_k||\}$ is bounded. We define bounded operators A and A on A by

$$Ae_k \otimes x_k = e_k \otimes A_k x_k$$
, and $Ue_k \otimes x_k = e_{k+1} \otimes x_k$ $(k = 0, \pm 1, \pm 2, \cdots)$,

respectively. Then U has the form $V \otimes id_{\mathcal{K}}$. Put T = UA. Such an operator is called an operator valued bilateral weighted shift [3]. If positive operators $\{A_k\}$ satisfy that $A_{k+1} \geq A_k$ for every k and there exists j such that $A_{j+1}^2 \not\geq A_j^2$, then T is semi-hyponormal but not hyponormal.

Next second example is as follows: Let S on $\ell^2(\mathbf{Z})$ defined by $S = V(P + I + \frac{1}{2}(V + V^*))$, where P denotes the orthogonal projection from $\ell^2(\mathbf{Z})$ onto the subspace generated by $\{e_0, e_1, e_2, \cdots\}$. Xia showed that S is semi-hyponormal but not hyponormal [8, Chapter 3, Corollary 1.4].

2. Spectral properties.

Lemma 1. Let T be an operator valued bilateral weighted shift. Then there exists a closed set F of positive real numbers such that

$$\sigma(T) = \{z : |z| \in F\}.$$

Proof. Let $c \in \mathbb{C}$ such that |c| = 1. By [6, p. 52, Corollary 2] T and cT are unitarily equivalent. The proof follows from this property.

Theorem 2. Let T be an operator valued bilateral weighted shift such that r(T) = ||T||. Then

conv
$$\sigma(T) = \overline{W(T)}$$
 (i.e., T is convexoid.)

and

$$\sigma(\operatorname{Re} T) = \operatorname{Re} (\sigma(T)).$$

Proof. Let $x \in \sigma(\operatorname{Re} T)$. Suppose that $x \notin \operatorname{Re} \sigma(T)$. Let L be the line $\operatorname{Re} z = x$. Then L is disjoint from $\sigma(T)$. Suppose that $\sigma(T)$ is on the left side of L. There exists ε (>0) such that $\operatorname{Re} \sigma(T) \leq x - \varepsilon$. For any complex number $\lambda = |\lambda| e^{i\theta}$, we can choose $z \in \sigma(T)$ such that $z = |T| |e^{i\theta}|$ by Lemma 1. Since $(||T|| + |\lambda|) e^{i\theta} \in \sigma(T + \lambda I)$, we have

$$r(T + \lambda I) \ge ||T|| + |\lambda| \quad (\ge ||T + \lambda I||).$$

Hence we have $r(T + \lambda I) = ||T + \lambda I||$, that is, T is a transaloid. Therefore by [3] or [5, Theorem 6.15.11] we have

$$\operatorname{conv}\,\sigma(T)=\overline{W(T)}.$$

Thus

$$\operatorname{conv} \sigma(\operatorname{Re} T) = \overline{W(\operatorname{Re} T)} = \operatorname{Re} \overline{W(T)} = \operatorname{Re} \operatorname{conv} \sigma(T) \le x - \varepsilon.$$

This implies that $x \leq x - \varepsilon$, which is a contradiction. We proceed similarly in case $\sigma(T)$ is on the right side. Therefore $\sigma(\text{Re }T) \subseteq \text{Re }\sigma(T)$.

Let $x \in \text{Re } \sigma(T)$. By Lemma 1, there exists $z \in \sigma(T)$ such that Re z = x and |z| = ||T||. Since z is a boundary point of $\sigma(T)$, there exists a sequence $\{f_n\}$ of unit vectors such that $\lim_{n\to\infty} ||(T-zI)f_n|| = 0$. By [5, Lemma 7.5.2], we have that $\lim_{n\to\infty} ||(T^* - \bar{z}I)f_n|| = 0$. Hence

$$\lim_{n\to\infty} ||(\operatorname{Re} T - xI)f_n|| = 0,$$

so that Re $\sigma(T) \subseteq \sigma(\text{Re }T)$. Therefore, Re $\sigma(T) = \sigma(\text{Re }T)$.

In general, it holds that if T is semi-hyponormal, then r(T) = ||T||. Hence we have

Corollary 3. Let T be a semi-hyponormal operator valued bilateral weighted shift. Then

conv
$$\sigma(T) = \overline{W(T)}$$
 and $\sigma(\text{Re}T) = \text{Re}(\sigma(T))$.

Theorem 4. With the notations in the introduction, let $S = V(P + I + \frac{1}{2}(V + V^*))$. Then we have

$$\sigma(\operatorname{Re} S) = \operatorname{Re} \sigma(S).$$

Proof. It F is a proper closed subset of $[0, 2\pi]$ such that $m([0, 2\pi]) = m(F)$. Since $[0, 2\pi] - F$ contains an open interval (a, b), we have $m([0, 2\pi]) - m(F) \ge m((a, b)) > 0$. This is a contradiction. Hence there exits no proper closed set F such that $m(F) = m([0, 2\pi])$. Applying [8, Chapter 4, Example 4.1] with $\alpha(\cdot) = 1$ and $\beta(\cdot) = 1 + \cos \theta$, we have that

$$\sigma(S) = \{ e^{i\theta} (1 + \cos \theta + k) : 0 \le k \le 1, \ 0 \le \theta \le 2\pi \}.$$

Hence Re $\sigma(S) = \{(1+k)\cos\theta + \cos^2\theta : 0 \le k \le 1, 0 \le \theta \le 2\pi \} = [-1, 3]$. Since S is semi-hyponormal, it holds that $\sigma_a(S) = \sigma_{na}(S)$. Hence we have

Re
$$\sigma(S) \subseteq \sigma(\text{Re } S)$$
.

Next we will prove that $\sigma(\text{Re }S)\subseteq [-1,3]$. First by the definition of S, we have $||\text{Re }S||\leq ||S||\leq 3$. Since Re S is convexoid, we may only prove $(\text{Re }S)+I\geq 0$.

Since Re S can be canonically represented by a matrix form with real components, for $\lambda \in \sigma(\text{Re }S)$ we choose a sequence $\{f_m\}$ of unit vectors in $\ell^2(\mathbf{Z})$ with real components such that $\lim_{m\to\infty} ||((\text{Re }S) - \lambda I)f_m|| = 0$. Since

2Re
$$S = (V + V^*) + \frac{1}{2}(V^2 + V^{*2}) + (VP + PV^*) + VV^*$$

we have, for $f = (\alpha_n)$ with all $\alpha_n \in \mathbf{R}$,

$$2(((\operatorname{Re} S) + I)f, f) = ((V + V^*)f, f) + \frac{1}{2}((V^2 + V^{*2})f, f)$$

$$+((VP + PV^*)f, f) + (VV^*f, f) + 2(f, f)$$

$$= 2\sum_{n=-\infty}^{\infty} \alpha_n \alpha_{n+1} + \sum_{n=-\infty}^{\infty} \alpha_n \alpha_{n+2} + 2\sum_{n=0}^{\infty} \alpha_n \alpha_{n+1} + 3\sum_{n=-\infty}^{\infty} \alpha_n^2$$

$$= \sum_{n=-\infty}^{\infty} \alpha_n \alpha_{n+2} + 4\sum_{n=-\infty}^{\infty} \alpha_n \alpha_{n+1}$$

$$-2\sum_{n=-\infty}^{-1}\alpha_n\alpha_{n+1}+3\sum_{n=-\infty}^{\infty}\alpha_n^2.$$

If we can choose a sequence $\{(a_n, b_n, c_n)\}_{n=-\infty}^{\infty}$ of triplets of positive numbers satisfying

$$2(((\operatorname{Re} S) + I)f, f) = \sum_{n = -\infty}^{\infty} (a_n \alpha_n + b_n \alpha_{n+1} + c_n \alpha_{n+2})^2$$

$$= \sum_{n = -\infty}^{\infty} (a_{n+2}^2 + b_{n+1}^2 + c_n^2)\alpha_n^2 + 2\sum_{n = -\infty}^{\infty} (a_n b_n + b_{n-1} c_{n-1})\alpha_n \alpha_{n+1}$$

$$+ 2\sum_{n = -\infty}^{\infty} (a_n c_n)\alpha_n \alpha_{n+2},$$

then we have $(\text{Re }S)+I\geq 0$ and we hence can finish the proof. For $n\geq -1,$ since

(i)
$$a_{n+2}^2 + b_{n+1}^2 + c_n^2 = 3$$
, (ii) $2(a_{n+1}b_{n+1}^2 + b_nc_n) = 4$ and (iii) $2a_nc_n = 1$,

we define

$$a_n = \frac{1}{\sqrt{2}}, \ b_n = \sqrt{2} \ \text{and} \ c_n = \frac{1}{\sqrt{2}}.$$

For $n \leq -2$, since

(i)
$$a_{n+2}^2 + b_{n+1}^2 + c_n^2 = 3$$
, (ii) $2(a_{n+1}b_{n+1} + b_nc_n) = 2$ and (iii) $2a_nc_n = 1$,

inductively we define, in the following order:

$$c_n = \sqrt{3 - a_{n+2}^2 - b_{n+1}^2}, \ b_n = \frac{1 - a_{n+1}b_{n+1}}{c_n}$$
 and $a_n = \frac{1}{2c_n}$.

For a definition of c_n , we need to cheek that $3 > a_{n+2}^2 + b_{n+1}^2$. We caluculate

$$c_{-2} = \frac{1}{\sqrt{2}}, \quad b_{-2} = 0, \qquad a_{-2} = \frac{1}{\sqrt{2}}$$

$$c_{-3} = \sqrt{\frac{5}{2}}, \quad b_{-3} = \sqrt{\frac{2}{5}}, \qquad a_{-3} = \sqrt{\frac{1}{10}}$$

$$c_{-4} = \sqrt{\frac{21}{10}}, \quad b_{-4} = 4\sqrt{\frac{2}{105}}, \qquad a_{-4} = \sqrt{\frac{5}{42}}$$

$$c_{-5} = \sqrt{\frac{109}{42}}, \quad b_{-5} = 17\sqrt{\frac{2}{2289}}, \qquad a_{-5} = \sqrt{\frac{21}{218}}$$

$$c_{-6} = \sqrt{\frac{573}{218}}, \quad b_{-6} = 92\sqrt{\frac{2}{62457}} \text{ and } \quad a_{-6} = \sqrt{\frac{109}{1146}}$$

Then we have that

$$1.61 \le c_{-5}, c_{-6} \le 1.64, \ 0.50 \le b_{-5}, \ b_{-6} \le 0.53, \ 0.30 \le a_{-5}, a_{-6} \le 0.32,$$

$$1.64 \le \sqrt{3 - 0.53^2 - 0.32^2} \le c_{-7} \le \sqrt{3 - 0.50^2 - 0.30^2} \le 1.64,$$

$$0.50 \le \frac{1 - 0.53 \times 0.32}{1.64} \le b_{-7} \le \frac{1 - 0.50 \times 0.30}{1.61} \le 0.53$$

and

$$0.30 \le \frac{1}{2 \cdot 1.64} \le a_{-7} \le \frac{1}{2 \cdot 1.61} \le 0.32.$$

Thus we can define c_n, b_n and a_n for $n \leq -8$. This completes the proof.

By a similar argument in Theorem 2, we have that Im $\sigma(T) = \sigma(\text{Im } T)$ for T of Theorem 2. In the proof of Theorem 4 we regarded Re S as an infinite matrix with real components.

References

- [1] M. Chō and H. Jin, p-hyponormal operatros, Nihonkai Math. J. 6(1995), 201-206.
- [2] M. Chō, I. S. Hwang and J. I. Lee, On spectral properties of log-hyponormal operators, preprint (1999).
- [3] K.F. Clancey, Seminormal operators, Springer Lecture Notes in Math. No. 742, 1979.
- [4] T. Furuta and R. Nakamoto, On the numerical range of an operator, Proc. Japan Acad. 47(1971), 279-284.
- [5] V.I. Istrătescu, Introduction to linear operator Theory, Dekker, New York, 1981.
- [6] C. Pearcy, Topics in operator theory, Amer. Math. Soc., Providence, 1974.

- [7] C.R. Putnam, Commutation properties of Hilbert space operators and related Topics, Springer-Verlarg, Berlin-Heidelberg, New York, 1967.
- [8] D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.

Muneo Chō

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan

Tadasi Huruya

Faculty of Education and Human Sciences, Niigata University, Niigata 950-2181, Japan

Young Ok Kim and Jun Ik Lee

Department of Mathematics, Sungkyunkwan University, Suwon 440-764, Korea